
Deciding Parity Games in �asipolynomial Time∗

Cristian S. Calude
University of Auckland

Department of Computer Science
Auckland 1142, New Zealand
cristian@cs.auckland.ac.nz

Sanjay Jain
National University of Singapore

School of Computing
Singapore 117417, Singapore

sanjay@comp.nus.edu.sg

Bakhadyr Khoussainov
University of Auckland

Department of Computer Science
Auckland 1142, New Zealand

bmk@cs.auckland.ac.nz

Wei Li
National University of Singapore

Department of Mathematics
Singapore 119076, Singapore

liwei.sg@gmail.com

Frank Stephan
National University of Singapore

Department of Mathematics
Singapore 119076, Singapore
fstephan@comp.nus.edu.sg

ABSTRACT
It is shown that the parity game can be solved in quasipolynomial
time. The parameterised parity game – with n nodes andm distinct
values (aka colours or priorities) – is proven to be in the class of
�xed parameter tractable (FPT) problems when parameterised over
m. Both results improve known bounds, from runtime nO (

√
n) to

O (nlog(m)+6) and from an XP-algorithm with runtimeO (nΘ(m)) for
�xed parameterm to an FPT-algorithm with runtimeO (n5) +д(m),
for some function д depending on m only. As an application it is
proven that coloured Muller games with n nodes andm colours can
be decided in time O ((mm · n)5); it is also shown that this bound
cannot be improved to O ((2m · n)c), for any c , unless FPT =W[1].

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
Complexity classes; • Mathematics of computing → Discrete
mathematics; Graph theory;

KEYWORDS
Parity Games, Muller Games, Quasipolynomial Time Algorithm

ACM Reference format:
Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. 2017. Deciding Parity Games in Quasipolynomial Time. In Proceed-
ings of 49th Annual ACM SIGACT Symposium on the Theory of Computing,
Montreal, QC, Canada, 19–23 June 2017 (STOC 2017), 12 pages.
DOI: http://dx.doi.org/10.1145/3055399.3055409

∗S. Jain is supported in part by NUS grant C252-000-087-001; B. Khoussainov is sup-
ported in part by the Marsden Fund grant of the Royal Society of New Zealand. S. Jain,
B. Khoussainov and F. Stephan are supported in part by the Singapore Ministry of Edu-
cation Academic Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
STOC 2017, Montreal, QC, Canada
© 2017 ACM. 978-1-4503-4528-6/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3055399.3055409

1 INTRODUCTION
A parity game is given by a directed graph (V ,E), a starting node
s ∈ V , a functionval which attaches to eachv ∈ V an integer value
(also called colour) from a set {1,2, . . . ,m}; the main parameter of
the game is n, the number of nodes, and the second parameter is
m. Two players Anke and Boris move alternately in the graph with
Anke moving �rst. A move from a nodev to another nodew is valid
if (v,w) is an edge in the graph; furthermore, it is required that
from every node one can make at least one valid move. Anke and
Boris own certain values. The alternate moves by Anke and Boris
and Anke and Boris and . . . de�ne an in�nite sequence of nodes
which is called a play. The values of the nodes can always be chosen
such that one player wins at the even numbers and the other player
wins at the odd numbers. Anke wins a play through nodes a0,a1, . . .
i� the limit superior (that is, the largest value appearing in�nitely
often) of the sequence val (a0),val (a1), . . . is a number she owns,
that is, a number of her parity. The following �gure provides an
example of a parity game.

1start 2 3 4 5

In this example, the nodes are labeled with their values, which are
unique (but this is not obligatory); furthermore, Anke has even and
Boris has odd parity. Boris has now the following memoryless (that
is, moves are independent of the history) winning strategy for this
game: 1 → 1, 2 → 3, 3 → 3, 4 → 5, 5 → 5. Whenever the play
leaves node 1 and Anke moves to node 2, then Boris will move to
node 3. In case Anke moves to node 4, Boris will move to node 5.
Hence, whenever the play is in a node with even value (this only
happens after Anke moved it there), in the next step the play will
go into a node with a higher odd value. So the largest in�nitely
often visited node value is odd and therefore the limit superior of
these numbers is an odd number which justi�es Boris’ win. Hence
Boris has a winning strategy for the parity game given above.

For parity games, in general, the winner can always use a me-
moryless winning strategy [5, 28, 48, 49, 64]. This fact will be one
central point in the results obtained in this paper: the parity game
will be augmented with a special statistics – using polylogarithmic

252

STOC 2017, 19–23 June 2017, Montreal, QC, Canada Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan

space – which indicates the winner correctly after a �nite time
whenever the winner employs a memoryless winning strategy.

It should be pointed out that one can also consider games where
it only depends on the node which player moves and the players
do not necessarily take turns. Both versions of parity or Muller
games can be translated into each other with a potential increase
of the number of nodes by a factor 2. In the case that one goes from
turn-based to position-based Muller games, one doubles up each
node: Instead of the node v one uses a node (Anke,v), when it is
Anke’s turn to move, and a node (Boris,v), when it is Boris’ turn to
move. For the other direction, each node w receives a prenode w ′
with exactly one outgoing edge from w ′ to w . Now, for each edge
(v,w) from the original game, if the same player moves at v and
at w in the original game, then one puts the edge (v,w ′) into the
new game, else one puts the edge (v,w) into the new game. The
rationale behind this is that the longer path v – w ′ – w has even
length in the case that the players moving at v and w should be
the same for alternating moves. Furthermore, if Anke moves at the
original starting node s , then s is also the starting node of the new
game, else s ′ is the starting node of the new game.

Parity games are a natural class of games which are not only
interesting in their own right, but which are also connected to
fundamental notions like µ-calculus, modal logics, tree automata
and Muller games [3, 6, 7, 14, 27, 28, 38, 57, 61–63]. A possible
application of good algorithms to solve parity games would be
that one gets better algorithms to decide the theory of certain tree
automatic structures [23, 24, 47] and to employ such algorithms in
order to understand these structures better.

For investigating the complexity side of the game, it is assumed
that the game is given by a description in size polynomial in the
number n of nodes and that one can evaluate all relevant parts of
the description in logarithmic space. A possibility is to store the
following three items for each game (where Anke moves �rst and
starts from node 1):

• two numbers m,n with 1 ≤ m ≤ n and one bit which says
whether the values owned by player Anke are the even or the
odd numbers;

• the game graph given by a table, that is, for each pair of nodes,
a bit which says whether there is a directed edge between the
two nodes or not;

• the values of the nodes given by another table which holds, for
each node, a binary number from {1,2, . . . ,m}.

An important open problem for parity games is the time complexity
for �nding the winner of a parity game, when both players play
optimally; the �rst algorithms took exponential time [48, 64] and
subsequent studies searched for better algorithms [40, 42, 44, 51, 56–
58]. Many researchers, including Emerson and Jutla [28] in 1991,
asked whether the winner of a parity game can be determined in
polynomial time.

Emerson, Jutla and Sistla [29] showed that the problem is in
NP ∩ co -NP and Jurdzinski [41] improved this bound to UP ∩
co -UP. This indicates that the problem is not likely to be hard for
NP and might be solvable faster than in exponential time. Indeed,
Petersson and Vorobyov [51] devised a subexponential randomised
algorithm and Jurdzinski, Paterson and Zwick [44] a deterministic
algorithm of similar complexity (more precisely, the subexponential

complexity was approximately nO (
√
n)). Besides this main result,

there are also various practical approaches to solve special cases
[3, 19, 32] or to test out and analyse heuristics [10, 35, 42]; however,
when Friedmann and Lange [30] compared the various parity solv-
ing algorithms from the practical side, they found that Zielonka’s
recursive algorithm [64] was still the most useful one in practice.
McNaughton [48] showed that the winner of a parity game can be
determined in time nm+O (1) and this was subsequently improved to
nm/2+O (1) [8, 59] and to nm/3+O (1) [56, 58], where n is the number
of nodes andm is the maximum value (aka colour aka priority) of
the nodes.

The consideration of the parameter m is quite important; it is
a natural ingredient of the parity games. Schewe [57, 58] argues
that for many applications which are solved using parity games,
the parameterm is much smaller than n, often by an exponential
gap. For example, when translating coloured Muller games into
parity games in the way done by McNaughton [48] and Björklund,
Sandberg and Vorobyov [4], the number of values is, for all but
�nitely many games, bounded by the logarithm of the number of
nodes, see the proof of Theorem 3.4 below. Similarly, an important
application of parity games is the area of reactive synthesis. Here
one translates LTL-formulas into a Büchi automaton which needs
to be determinised by translating it into a parity automaton. Build-
ing on work of Safra [54, 55], Piterman [52] showed that he can
translate non-deterministic Büchi automata withn states into parity
automata with 2 ·nn ·n! states and 2n values. In other words, he can
evaluate various conditions on these parity automata by determin-
ing the winner in the corresponding parity game. Also Di Stasio,
Murano, Perelli and Vardi [18] investigated in their experiments
various scenarios where the number m is logarithmic in n. The
present work takes therefore the parameterm into consideration
and improves the time bounds bounds in two ways:
• The overall time complexity is O (n dlog(m)e+6) which provides

a quasipolynomial bound on the runtime, as one can always
choosem ≤ n.

• Furthermore, if m < log(n), then the overall time complex-
ity is O (n5), which shows that the problem is �xed parameter
tractable when parameterised bym; the parity games are there-
fore in the lowest time complexity class usually considered in
parameterised complexity.

Prior investigations have already established that various other
parameterisations of parity games are �xed-parameter tractable,
but the parameterisation bym was left open until now. Chatterjee
[12] pointed out to the authors that one can also write the result in
a product form with Parity Games be solvable in timeO (2m ·n4) for
allm,n; the proof uses just the methods of Theorem 2.8 but keeping
m as a parameter and not using explicitly the bound of m ≤ log(n)
which, when invoked into above formula, would give the bound
O (n5).

An application of the results is that coloured Muller games with
n nodes and m colours can be decided in time O ((mm · n)5); The-
orem 3.5 and Corollary 3.6 below show that this bound cannot be
improved to O ((2m · n)c) for any c unless FPT =W[1].

Subsequent research [22, 33, 43, 60] has provided the additional
runtime bound

O (dm/ log(n)e4 · n3.45+log(dm/ log(n)e+2))

253

Deciding Parity Games in �asipolynomial Time STOC 2017, 19–23 June 2017, Montreal, QC, Canada

where the bound cited here stems from Stephan’s teaching material
[60, Theorem 20.22] while the research papers [22, 33, 43] obtained
slightly better bounds due to some assumptions they make on the
game and due to the usage of better bounds for binomials. However,
the main contribution of the subsequent research [22, 43] is that
the quasipolynomial time algorithm can be modi�ed such that in
addition to the time bound the workspace the algorithm uses is
only quasilinear in the number of nodes n. This improves over
the here presented algorithm which uses quasipolynomial space.
Furthermore, various authors provided their own version of the
veri�cation of the algorithm presented in this paper [22, 33, 43].
Before presenting the results, the basic properties of the two games
(parity and Muller) is given by the following summary.

1. A game is given by a directed �nite graph of n nodes, a starting
node and a set G of sets of nodes which are called the winning
set of player Anke.

2. Two players, Anke and Boris, move alternately a marker through
the graph, starting from some starting node and each time
along an outgoing edge of the current position; without loss of
generality, every node has at least one outgoing edge (which
can go to the node itself). In certain cases, one also considers
games in a framework where the current node and not the turn
determines which player moves; both types of games can be
translated into each other in polynomial time and the number
of nodes doubles at most.

3. A play is the in�nite sequence of nodes visited by the marker
while Anke and Boris are playing. To decide the winner of a
play, one considers the set of in�nitely often visited nodes
U . Now Anke wins the play i� U ∈ G. Both types of games,
parity games and coloured Muller games, equip the nodes with
additional information (values or colours) and say that G must
respect this information. In these cases, G depends only on the
values or colours of the members of U itself.

4. For parity games, the additional information is that each nodes
carries a value from {1,2, . . . ,m} and then G either contains
all sets U where the maximal value of a node in U is odd (in
this case, Anke has odd parity and Boris has even parity) or
contains all sets U where the maximal value of a node in U
is even (in this case, Anke has even parity and Boris has odd
parity).

5. For coloured Muller games, each node has a colour and the
colours of set U of nodes is the set of all colours which are
taken by some nodes inU . Furthermore,G respects the colours
in the sense that for every setU ∈ G and every setU ′ of nodes
having the same colours asU , it holds that alsoU ′ ∈ G . So one
could represent G also as the set of all combinations of colours
where Anke wins. An equivalent model is to permit multiple
colours (including none) per node, which is sometimes more
succinct and clearer to write; if such a game has m colours
and n nodes, it can be translated in polynomial time into an
equivalent standard game, that is, into a coloured Muller game
with same winner which has exactly one colour per node, where
the overall number of colours is m + 1 and number of nodes is
n · (m + 1).

6. The number m of colours used in the game is an important
parameter of coloured Muller games; for complexity-theoretic

considerations, the exact complexity class of solving coloured
Muller games with n nodes andm colours might also depend
on how G is represented, in particular in the case that m is
large, the size of that formula (which in turn might depend on
the way it is represented) is a further parameter. However, this
parameter is not studied in the present work.

7. A strategy for a player, say for Anke, maps, for every situation
where Anke has to move, the current position and history
of previous moves to a suggested move for Anke. A winning
strategy for Anke is a strategy for Anke which guarantees that
Anke wins a play whenever she follows the suggested moves. A
strategy is called memoryless i� it only depends on the current
node and not on any other aspects of the history of the play.

8. The winner of a game is that player who has a winning strategy
for this game. Parity games and Muller games always have a
winner and this winner wins every play in the case that the
winner follows a winning strategy.

2 THE COMPLEXITY OF THE PARITY GAME
The main result in this section is an alternating polylogarithmic
space algorithm to decide the winner in parity games; later more
concrete bounds will be shown. The idea is to collect for both
players in the game, Anke and Boris, in polylogarithmic space
statistics over their performance in the play: these statistics store
information about whether the play has gone through a loop where
the largest valued node has the parity of the corresponding player.

The following notation will be used throughout the paper. In
order to avoid problems with fractional numbers and log(0), let
dlog(k)e = min{h ∈ N : 2h ≥ k }. Furthermore, a function (or
sequence) f is called increasing whenever for all i, j the implication
i ≤ j ⇒ f (i) ≤ f (j) holds.
Theorem 2.1. There exists an alternating polylogarithmic space
algorithm deciding which player has a winning strategy in a given
parity game. When the game has n nodes and the values of the nodes
are in the set {1,2, . . . ,m}, then the algorithm runs in O (log(n) ·
log(m)) alternating space.

Proof. The idea of the proof is that, in each play of the parity game,
one maintains winning statistics for both players Anke and Boris.
These statistics are updated after every move for both players. In
case a player plays according to a memoryless winning strategy for
the parity game, the winning statistics of this player will eventually
indicate the win (in this case one says that the “winning statistics
of the player mature”) while the opponent’s winning statistics will
never mature. This will be explained in more detail below.

The winning statistics of Anke (Boris) has the following goal: to
track whether the play goes through a loop where the largest value
of a node in the loop is of Anke’s (Boris’) parity. Note that if Anke
follows a memoryless winning strategy then the play will eventually
go through a loop and the node with the largest value occurring in
any loop the play goes through is always a node of Anke’s parity.
Otherwise, Boris can repeat a loop with the largest value being of
Boris’ parity in�nitely often and thus win, contradicting that Anke
is using a memoryless winning strategy.

The naive method to do the tracking is to archive the last 2n + 1
nodes visited, to �nd two identical moves out of the same node by
the same player and to check whose parity has the largest value

254

STOC 2017, 19–23 June 2017, Montreal, QC, Canada Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan

between these two moves. This would determine the winner in
the case that the winner uses a memoryless winning strategy. This
tracking needsO (n ·log(n)) space – too much space for the intended
result. To save space one constructs a winning statistics which still
leads to an Anke win in case Anke plays a memoryless winning
strategy, but memorises only partial information.

The winning statistics of the players are used to track whether
certain sequences of nodes have been visited in the play so far and
the largest value of a node visited at the end or after the sequence is
recorded. The de�nitions are similar for both players. For simplicity
the de�nition is given here just for player Anke.

De�nition 2.2. In Anke’s winning statistics, an i-sequence is a se-
quence (not necessarily consecutive, but in order) of nodes a1,a2, ,a3,
, . . . ,a2i which has been visited during the play so far such that, for
each k ∈ {1,2,3, . . . ,2i − 1}, the maximum value of the nodes visited
between ak and ak+1, that is, max{val (a) : a = ak ∨ a = ak+1 ∨ a
was visited between ak and ak+1}, is of Anke’s parity.

The aim of Anke is to �nd a sequence of length at least 2n+1, as such
a sequence must contain a loop. So she aims for an (dlog(n)e + 2)-
sequence to occur in her winning statistics. Such a sequence is built
by combining smaller sequences over time in the winning statistics.

Here a winning statistics (b0,b1, . . . ,b dlog(n)e+2) of a player con-
sists of dlog(n)e+3 numbers between 0 andm wherebi = 0 indicates
that currently no i-sequence is being tracked and bi > 0 indicates
that

Property-bi : an i-sequence is being tracked
and that the largest value of a node visited at
the end of or after this i-sequence is bi .

Note that for each i at most one i-sequence is tracked. The value
bi is the only information of an i-sequence which is kept in the
winning statistics.

The following invariants are kept throughout the play and are for-
mulated for Anke’s winning statistics; those for Boris’ winning stat-
istics are de�ned with the names of Anke and Boris interchanged. In
the description below, “i-sequence” always refers to the i-sequence
being tracked in the winning statistics.
(I1) Only bi with 0 ≤ i ≤ dlog(n)e + 2 are considered and each

such bi is either zero or a value of a node which occurs in the
play so far.

(I2) An entry bi refers to an i-sequence which occurred in the
play so far i� bi > 0.

(I3) If bi ,b j are both non-zero and i < j then bi ≤ b j .
(I4) If bi ,b j are both non-zero and i < j, then in the play of the

game, the i-sequence starts only after a node with value b j
was visited at or after the end of the j-sequence.

When a play starts, the winning statistics for both players are
initialised with bi = 0 for all i . During the play when a player
moves to a node with value b, the winning statistics of Anke is
updated as follows – the same algorithm is used for Boris with the
names of the players interchanged everywhere.
1. If b is of Anke’s parity or b > bi > 0 for some i , then one

selects the largest i such that
(a) either bi is not of Anke’s parity – that is, it is either 0 or

of Boris’s parity – but all b j with j < i and also b are of
Anke’s parity

(b) or 0 < bi < b
and then one updates bi = b and b j = 0 for all j < i .

2. If this update produces a non-zero bi for any i with 2i > 2n
then the play terminates with Anke being declared winner.

Note that it is possible that both 1.(a) and 1.(b) apply to the same
largest i . In that case, it does not matter which case is chosen, as
the updated winning statistics is the same for both cases. However,
the tracked i-sequences referred to may be di�erent; this does not
e�ect the rest of the proof.

Example 2.3. Here is an example of i-sequences for player Anke.
This example is only for illustrating how the i-sequences and bi ’s
work; in particular this example does not use memoryless strategy for
any of the players. Consider a game where there is an edge from every
node to every node (including itself) and the nodes are {1,2, . . . ,7}
and have the same values as names; Anke has odd parity. Consider
the following initial part of a play:

1 6 7 5 1 4 5 3 2 1 3 2 3 1 3 3 1

The i-sequences and the bi ’s change over the course of above play as
given in the following table. In the table, the nodes pre�xed by “i :”
are the nodes of the corresponding i-sequence.

Move b4,...,b0 i-sequences in play so far rule
1 0,0,0,0,1 0:1 1.(a)
6 0,0,0,0,6 0:1 6 1.(b)
7 0,0,0,0,7 1 6 0:7 1.(a)
5 0,0,0,5,0 1 6 1:7 1:5 1.(a)
1 0,0,0,5,1 1 6 1:7 1:5 0:1 1.(a)
4 0,0,0,5,4 1 6 1:7 1:5 0:1 4 1.(b)
5 0,0,0,5,5 1 6 1:7 1:5 1 4 0:5 1.(a)
3 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 1.(a)
2 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 2
1 0,0,3,0,1 1 6 2:7 2:5 1 4 2:5 2:3 2 0:1 1.(a)
3 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 1.(a)
2 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2
3 0,0,3,3,3 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2 0:3 1.(a)
1 0,1,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 1.(a)
3 0,3,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1.(b)
3 0,3,0,0,3 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 0:3 1.(a)
1 0,3,0,1,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 1.(a)

If at an update of an i-sequence both possible updates 1.(a) and 1.(b)
apply to the same level i then it does not matter for the statistics
which is chosen. However, for the i-sequences, one has to commit to
one choice and for simplicity, (for the above table) one assumes that
1.(a) has priority. So the formal algorithm for updating the sequences
is the following one.

1. If b is of Anke’s parity or b > bi > 0 for some i , then one selects
the largest i such that
(a) either bi is not of Anke’s parity – that is, it is either 0 or

of Boris’s parity – but all b j with j < i and also b are of
Anke’s parity

(b) or 0 < bi < b.
else there is no update and one goes to step 3.

2. For the selected i , one does the following update according to the
�rst of the two above cases which applies:
(a) Let bi = b and let the i-sequence contain all the nodes of the

j-sequences with j < i in that order plus the new node with

255

Deciding Parity Games in �asipolynomial Time STOC 2017, 19–23 June 2017, Montreal, QC, Canada

value b and let b j = 0 for all j < i as the corresponding
j-sequences are merged into the new i-sequence;

(b) Let bi = b and let the i-sequence be unchanged except for
the update of the associated value bi . Furthermore, all j-se-
quences with j < i are made void by setting b j = 0 for all
j < i .

Furthermore, all j-sequences with j > i are maintained as they
are.

3. If this update produces a non-zero bi for any i with 2i > 2n
then the play terminates with Anke being declared winner and
no further tracking of i-sequences is needed.

The 3-sequence in the above table has already a loop, as there are
three occurrences of “3 : 3” and the second and third of these have
that the same player moves. However, as the sequences are not stored
but only the bi , Anke’s winning statistics only surely indicates a win
of player Anke when there is an i > log(2n + 1) with bi > 0; this i is
4 as 24 > 2 · 7 + 1.

Veri�cation of the algorithm. Note that, in the updating al-
gorithm for Anke’s winning statistics, if b is of Anke’s parity, then
there is an i that satis�es 1.(a), as otherwise the algorithm would
have terminated earlier. Initially, the invariants clearly hold as all
bi ’s are 0. Now it is shown that the invariants are preserved at
updates of the bi ’s according to cases 1.(a) or 1.(b).

It is easy to verify that the invariants are maintained if the update
is done due to 1.(b), and it also ensures that Property-bi is main-
tained for the i-sequences being tracked. In case the update is done
due to 1.(a), then the Property-bi ′ is maintained for all i ′-sequences
being tracked for i ′ > i (withbi ′ ≥ b in these cases). For i ′ < i ,bi ′ is
made 0 by the update algorithm. The next paragraph argues about
an appropriate i-sequence being formed. Thus, it is easy to verify
that (I1) to (I4) are maintained by the update algorithm. Note that (I1)
implies that the space bound needed is at mostO (logn logm), (I2) is
used implicitly to indicate which i-sequences are being tracked, and
(I3) gives the order of the i-sequences tracked: a (j + 1)-sequence
appears earlier in the play than j-sequence. This is used implicitly
when one combines the smaller j-sequences into a larger one as
mentioned below.

When updating Anke’s winning statistics by case 1.(a), one forms
a new i-sequence of length 2i by putting the older j-sequences for
j = i − 1,i − 2, . . . ,1,0 together and appending the newly visited
one-node sequence with value b; when i = 0, one forms a new 0-se-
quence of length 20 consisting of just the newly visited node with
value b. Note that in case i > 0 both b and b0 are of Anke’s parity
and therefore the highest valued node between the last member a
of the older 0-sequence and the last node in the new i-sequence
(both inclusive) has the value max{b0,b} (by (I4) and Property-b0
for the older 0-sequence). Furthermore, for every j < i − 1, for the
last node a of the older (j + 1)-sequence and the �rst node a′ of the
older j-sequence, in the new i-sequence a highest valued node in
the play between these two nodes a,a′ (both inclusive) has value
b j+1 (by (I4) and Property-b j+1 of older (j + 1)-sequence) which, by
choice, has Anke’s parity. Thus the overall combined new sequence
indeed satis�es the properties needed for an i-sequence, b is the
value of the last node of this sequence and thus, currently, also the
largest value of a node visited at or after the end of the sequence.

All older j-sequences with j < i are discarded and thus their entries
are set back to b j = 0.

The same rules apply to the updates of Boris’ winning statistics
with the roles of Anke and Boris interchanged everywhere.

Claim 2.4. If a player is declared a winner by the algorithm, then
the play contains a loop with its maximum valued node being a node
of the player.

To prove the claim, it is assumed without loss of generality that
Anke is declared the winner by the algorithm. The play is won by
an i-sequence being observed in Anke’s winning statistics with
2i > 2n; thus some node occurs at least three times in the i-se-
quence and there are h, ` ∈ {1,2,3, . . . ,2i } with h < ` such that the
same player moves at ah and a` and furthermore ah = a` with
respect to the nodes a1,a2,a3, . . . ,a2i of the observed i-sequence.
The maximum value b ′ of a node between ah and a` in the play is
occurring between some ak and ak+1 (both inclusive) for a k with
h ≤ k < `. Now, by the de�nition of an i-sequence, b ′ has Anke’s
parity. Thus a loop has been observed for which the maximum
value of a node in the loop has Anke’s parity.

Claim 2.5. If a player follows a memoryless winning strategy, then
the opponent is never declared a winner.

To prove the claim, suppose that a player follows a memoryless
winning strategy but the opponent is declared a winner. Then the
opponent, by Claim 2.4, goes into a loop with the maximum node of
the opponent’s parity. Hence, the opponent can cycle in that loop
forever and win the play, a contradiction.

Claim 2.6. If a player follows a memoryless winning strategy then
the player is eventually declared a winner.

To prove the claim, it is assumed that the player is Anke, as the case
of Boris is symmetric. The values bi analysed below refer to Anke’s
winning statistics. Assume that the sequence of values of the nodes
in an in�nite play of the game has the limit superior c which, by
assumption, is a value of Anke’s parity. To prove the claim one
needs to argue that eventually b dlog ne+2 becomes non-zero. For
this purpose it will be argued that some counter associated with the
values of bi ’s eventually keeps increasing (except for some initial
part of the play, where it may oscillate). This is argued by using
count (c,t) below, which gives the value of the counter after t steps
of the play.

Consider a step as making a move and updating of the statistics.
For each step t let bk (t) refer to the value of bk at the end of step t
(that is, after the updates in the statistics following the t-th move
in the play). Let Bc (t) be the set of all k such that bk (t) has Anke’s
parity and bk (t) ≥ c . Now de�ne

count (c,t) =
∑
k∈Bc (t) 2

k

Now it is shown that whenever at steps t ,t ′ with t < t ′, a move to
node with value c was made and no move, strictly between steps
t ,t ′, was made to any node with value c ′ ≥ c , then count (c,t) <
count (c,t ′). To see this, let i be the largest index for which there is
a step t ′′ with t < t ′′ ≤ t ′ such that bi is updated at step t ′′.

Note that this implies [bi (t) < c or bi (t) is of Boris’s parity],
and [0 < bi (t

′′) ≤ c]. Now, in the case that bi (t ′′) < c , it holds
that t ′′ < t ′ and at time t ′, condition 1.(b) of the update algorithm

256

STOC 2017, 19–23 June 2017, Montreal, QC, Canada Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan

will ensure that an update (either 1.(a) or 1.(b)) is done to enforce
bi (t

′) = c . Thus
count (c,t ′) − count (c,t) ≥ 2i −∑

j∈Bc (t):j<i 2
j ≥ 1.

Accordingly, once all moves involving nodes larger than c in value
have been done in the play, there will still be in�nitely many moves
to nodes of value c and for each two subsequent such moves at t ,t ′
the inequality count (c,t) + 1 ≤ count (c,t ′) will hold. Consequently,
the number count (c,t), for su�ciently large t where a move to a
node with value c is made at step t , rely on some i withbi (t) ≥ c and
2i > 2n and later the termination condition of Anke will terminate
the play with a win.

The above arguments show that a alternating Turing machine can
simulate both players and, taking the winning statistics into ac-
count, will accept the computation whenever Anke has a winning
strategy for the game. Besides the winning statistics, the alternating
Turing Machine only needs to keep track of the current node in the
play and the player who is to move next. Thus, the alternating Tur-
ing machine uses only O (log(n) · log(m)) space to decide whether
the parity game, from some given starting point, will be won by
Anke (or Boris), provided the winner plays a memoryless winning
strategy (which always exists when the player can win the parity
game). �

Chandra, Kozen and Stockmeyer [11] showed how to simulate an
alternating Turing machine working in polylogarithmic space by
a deterministic Turing machine working in quasipolynomial time.
Their simulation bounds for the alternating Turing machine de-
scribed in Theorem 2.1 give a deterministic Turing machine working
in time O (nc log(m)) for some constant c . As mentioned above, one
can always assume that in a parity game with n nodes, with values
from {1,2, . . . ,m}, one can choosem ≤ n, so one gets the following
parameterised version of the main results that parity games can be
solved in quasipolynomial time.

Theorem 2.7. There is an algorithm which �nds the winner of a
parity game in time O (nc log(m)) for a parity game with n nodes and
values from {1,2, . . . ,m}, withm ≤ n.

For some special choices of m with respect to n, one can obtain
even a polynomial time bound. McNaughton [48] showed that
for every constant m, one can solve a parity game with n nodes
having values from {1,2, . . . ,m} in time polynomial in n; however,
in all prior works the degree of this polynomial depends onm [31];
subsequent improvements were made to bring the dependence
from approximately nm+O (1) �rst down to nm/2+O (1) [8, 59] and
then to approximately nm/3+O (1) [42, 58]. The following theorem
shows that one can bound the computation time by a �xed-degree
polynomial in n, for all pairs (m,n) withm < log(n).

Theorem 2.8. If m < log(n) then one can solve the parity game
with n nodes having values from {1,2, . . . ,m} in time O (n5).

Proof. Note that Theorem 2.1 actually shows that the following
conditions are equivalent:
• Anke can win the parity game.
• Anke can play the parity game such that her winning statistics

matures while Boris’ winning statistics does not mature.

Thus one can simplify the second condition and show that it is
equivalent to the following two games [46, 60]:

• One only maintains Anke’s winning statistics and a play ter-
minates with a win for Anke i� she is eventually declared a
winner and the play is a win for Boris i� it runs forever.

• One only maintains Boris’ winning statistics and a play is a
win for Anke i� it never happens that the winning statistics of
Boris make him to be declared a winner.

The �rst game is called a reachability game [46] and the second
game a survival game [60, Chapter 9]. Both games are isomorphic,
as they are obtained from each other only by switching the player
who is supposed to win. Such type of reductions, though not with
good complexity bounds, were also considered by Bernet, Janin and
Walukiewicz [2]. The reachability game to which one reduces the
parity game, can now be described as follows.

• The setQ of nodes of the reachability game consists of nodes of
the form (a,p,b̃) where a is a node of the parity game, the player
p ∈ {Anke,Boris} moves next and b̃ represents the winning
statistics of Anke.

• The starting node is (s,p, 0̃), where 0̃ is the vector of all bi with
value 0, s is the starting node of the parity game and p is the
player who moves �rst.

• Anke can move from (a,Anke,b̃) to (a′,Boris,b̃ ′) i� she can
move from a to a′ in the parity game and this move causes
Anke’s winning statistics to be updated from b̃ to b̃ ′ and b̃ does
not yet indicate a win of Anke.

• Boris can move from (a,Boris,b̃) to (a′,Anke,b̃ ′) i� he can
move from a to a′ in the parity game and this move causes
Anke’s winning statistics to be updated from b̃ to b̃ ′ and b̃ does
not yet indicate a win of Anke.

The number of elements of Q can be bounded by O (n4). First note
that the number of increasing functions from {0,1, . . . , dlog(n)e +
2} to {1,2, . . . , dlog(n)e} can be bounded by O (n2), as any such
sequence (b ′0,b

′
1, . . . ,b

′
dlog(n)e+2) can be represented by the subset

{b ′k + k : 0 ≤ k ≤ dlog(n)e + 2} of {1,2, . . . ,2dlog(n)e + 2} and that
there are at most O (n2) such sets. Further, note that b ′k ≤ b ′k+1
implies b ′k + k < b ′k+1 + k + 1 and thus all b ′k can be reconstructed
from the set. Given a winning statistics b̃ = (b0,b1, . . . ,b dlog(n)e+2),
one de�nes b ′0 = max{1,b0} and b ′k+1 = max{b ′k ,bk+1} and notes
that only those bk with bk = 0 di�er from b ′k . Thus one needs
dlog(n)e + 3 additional bits to indicate which bk is 0. The overall
winning statistics can then be represented by 3dlog(n)e + 5 bits.
Furthermore, one needs 1 bit to represent the player and dlog(n)e
bits to represent the current node in the play. Accordingly, each
node in Q can be represented with 4dlog(n)e + 6 bits resulting in
O (n4) nodes in Q . The set Q itself can be represented by using a set
of such representations of nodes.

The reachability game can be decided in time O (|Q | · n) by a
well-known algorithm. For the general case of a reachability game,
the time complexity is linear in the number of vertices plus number
of edges of the game graph. The algorithm is listed explicitly by
Khaliq and Imran [45] and appeared much earlier in the literature,
though in other or only related settings [1, 16, 34, 37, 39]. �

257

Deciding Parity Games in �asipolynomial Time STOC 2017, 19–23 June 2017, Montreal, QC, Canada

This special case shows that, for each constant m, the parity game
with n nodes having values from {1,2, . . . ,m} can be solved in
time O (n5) + д(m), for some function д depending only onm, and
the constant in O (n5) being independent ofm. Such problems are
called �xed parameter tractable (FPT), as for each �xed parameter
m the corresponding algorithm runs in polynomial time and this
polynomial is the same for allm, except for the additive constant
д(m) depending only onm.

The main complexity classes for a problem of size n (for example
nodes in a game) and a parameter m (for example the number of
values in a parity game or the number of colours in a coloured
Muller game) are FPT of problems which can be solved in time
f (m) ·nk or time д(m)+nk+1 for some constant k and functions f ,д
and XP of problems which can be solved in timeO (nf (m)) for some
function f . Between FPT at the bottom and XP at the top are the
levels of the W-hierarchy W[1], W[2], . . .; it is known that FPT is
a proper subclass of XP and it is widely believed that all these levels
of the hierarchy are di�erent. Note that the NP-complete problems
are spread out over all the levels of this hierarchy and that even
the bottom level FPT also contains sets outside NP. The level of a
problem can depend on the choice of the parameterm to describe
the problem, therefore one has to justify the choice of the parameter
m which, in the present work, is a very natural parameter of the
problem (number of values or colours of the game). The interested
reader is referred to the books of Downey and Fellows [20, 21]
and Flum and Grohe [25] for further information on parameterised
complexity.

The next result carries over the methods of Theorem 2.8 to the
general case, that is, use everything except those parts which make
use of log(m) ≤ n. So the size of the code representing a winning
statistics for Anke is given by dlog(n)e + 3 ≤ log(n) + 4 numbers of
dlog(m + 1)e ≤ log(m) + 1 bits. As log(m) ≤ log(n), the overall size
of represention of a node in the set Q of nodes of the reachability
game can be bounded by log(n) · (log(m) + 5) + c . Hence, the size
of |Q | is O (nlog(m)+5) and the number of edges in the reachability
game is O (nlog(m)+6).

One can combine this with the usual repeated tests for various
types of NP-problems, which needs an additional factor of n · log(n)
for �nding the winning strategy.

Theorem 2.9. There is an algorithm which �nds the winner of a
parity game in timeO (nlog(m)+6) for a parity game with n nodes and
values from {1,2, . . . ,m}. Furthermore, the algorithm can compute
a memoryless winning strategy for the winner in time O (nlog(m)+7 ·
log(n)).

Follow-up work obtained better bounds on the run-time by using
that the translation into the reachability game provides a game
with at most (

m + 2 · (dlog(n)e + 3)
dlog(n)e + 3

)
· n2

edges. This led to the bound O (2m · n4) [12] which is based on the
fact that

(i
j

)
≤ 2i for all i, j. A further estimate can be obtained by

slightly increasing the binomial upper bound to(
(dm/ log(n)e + 2) · (dlog(n)e + 3)

dlog(n)e + 3

)
· n2

and then using common estimates on binomials, where the upper
number is a multiple of the lower number. The calculations provide
a runtime bound of

O (dm/ log(n)e4 · n3.45+log(dm/ log(n)e+2));
this and similar bounds of this type were obtained by several re-
searchers [22, 33, 43, 60] and subsequent improvements included
replacing the term n2 in the above formulas by the number of edges
in the parity game [22, 33, 43].

The main improvement over the current algorithm by follow-
up work is, however, the usage of space. The current algorithm
uses quasipolynomial time and quasipolynomial space. Subsequent
work has brought down this complexity from quasipolynomial to
quasilinear [22, 43].

3 PARITY GAMES VERSUS MULLER GAMES
Muller games are a well-studied topic [6, 7, 48, 62, 64] and they
had been investigated as a general case already before researchers
aimed for the more speci�c parity games. A Muller game (V ,E,s,G)
consists of a directed graph (V ,E), a starting node s and a set
G ⊆ {0,1}V . For every in�nite play starting in s , one determines
the set U of nodes visited in�nitely often during the play: if U ∈ G
then Anke wins the play else Boris wins the play. In a Muller game
the complement of G is closed under union i� for allU ,U ′ < G , the
set (U ∪U ′) is not in G.

For complexity assumptions, it is natural to consider the case
where G is not given as an explicit list, but as a polynomially sized
polynomial time algorithm computing the membership of a set U
(given by its explicit list) in the set G or some similar equivalent
e�ective representation. The reason for considering such a repres-
entation for G is that Horn [36] showed that if G is given as an
explicit list of all possible sets of nodes in�nitely visited when Anke
wins, then the resulting game is solvable in polynomial time in the
sum of the number of nodes and the number of explicitly listed sets.
Hence, only more �exible ways of formulating winning conditions
permit to cover interesting cases of Muller games.

For Muller games, Björklund, Sandberg and Vorobyov [4] con-
sidered a parameter which is given by the number of colours. For
this, they assign to every node a value or colour from {1,2, . . . ,m}
and take G to be some set of subsets of {1,2, . . . ,m}. Then U is
not the set of in�nitely often visited nodes, but instead, the set
of colours of the in�nitely often visited nodes. Again, if U ∈ G,
then Anke wins the play, else Boris wins the play. Coloured Muller
games permit more compact representations of the winning con-
ditions. In the worst case there is a 2m-bit vector, where m is the
number of colours; however, one also considers the case where this
compressed winning condition is given in a more compact form,
say by a polynomial sized algorithm or formula.
In the following, the interactions between Muller games, memory-
less winning strategies and parity games are presented. The �rst
result is due to Zielonka [64, Corollary 11] and the second one is in
the thesis of Hunter [38].

Theorem 3.1 (Zielonka [64]). Given a Muller game (V ,E,s,G),
assume that the complement of the set G of winning conditions is
closed under union. Now, if Anke has a winning strategy in this Muller
game then Anke has also a memoryless winning strategy.

258

STOC 2017, 19–23 June 2017, Montreal, QC, Canada Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan

As a parity game is also a Muller game in which G is closed under
union for both Anke and Boris, the following corollary holds.

Corollary 3.2 (Emerson and Jutla [28], Mostowski [49]). The
winners in parity games have memoryless winning strategies.

Hunter [38, page 23] found a characterisation for Muller games.
Note that McNaughton [48] also investigated Muller games with
memoryless strategies and characterised them through the concept
of splitting [48], which is just another way of stating that both G
and its complement are union-closed. However, his paper does not
connect these Muller games with parity games explicitly.

Theorem 3.3 (Hunter [38]). Every Muller game (V ,E,s,G) in
which bothG and its complement are closed under the union operation
is a parity game and the translation can be done in polynomial time
whenever the winning set G can be decided in polynomial time.

Besides the standard coloured Muller game of Björklund, Sandberg
and Vorobyov [4], one can also consider the memoryless coloured
Muller game. These are considered in order to see whether the game
is easier to solve if one permits Anke only to win when she follows
a memoryless strategy, otherwise she looses by the rules of the
game. The main �nding is that while memoryless coloured Muller
games are, on one hand, easier in terms of the complexity class to
which they belong, and, on the other hand, their time complexity is
worse and one cannot exploit small numbers of colours as well as
in Muller games. This is the main message of the following lines.

Björklund, Sandberg and Vorobyov [4] proved that the coloured
Muller game is �xed-parameter tractable i� the parity game is �xed-
parameter tractable (with respect to the number of valuesm of the
parity game). It follows from Theorem 2.8 that also the coloured
Muller game is �xed-parameter tractable.

More precisely, McNaughton [48] and Björklund, Sandberg and
Vorobyov [4] showed that a coloured Muller game withm colours
and n nodes can be translated into a parity game with 2m colours
and m! · n nodes. Note that log(m! · n) ≥ 2m for all m ≥ 24 and
n ≥ m: log(m!) ≥ log(8m−8) ≥ 3 · (m − 8) = 3m − 24. For m ≥ 24,
3m − 24 ≥ 2m. Thus, the remaining cases can be reduced to �nite
ones by observing that for allm and n ≥ max{m,248}, log(m! ·n) ≥
2m. So, for almost all pairs of (m,n), log(m! ·n) ≥ 2m and therefore
one can use the polynomial time algorithm of Theorem 2.8 to get
the following explicit bounds.

Theorem 3.4. One can decide in time O (m5m · n5) which player
has a winning strategy in a coloured Muller game withm colours and
n nodes.

For the special case of m = log(n), the corresponding number of
nodes in the translated parity game is approximately nlog(log(n))+2

and the polynomial time algorithm of Theorem 2.8 becomes an
O (n5 log log(n)+10) algorithm. The algorithm is good for this special
case, but the problem is in general hard and the algorithm is slow.

Rabin games and Streett games are games where the winning
set G of the game is determined by a list of pairs of sets of nodes
(A1,B1), (A2,B2), . . . , (Am ,Bm). Now, in the Rabin case, Anke wins
a play i� there is an i such that the set of in�nitely often visited
nodes U intersects Ai and is disjoint to Bi , in the Streett case,
Anke wins a play i� all i satisfy that either U intersects Ai or is
disjoint to Bi . Rabin games and Streett games can be translated

into Muller games by doubling up the number of colours, that is
an n-node Rabin game or Streett game with m conditions can be
translated into an n-node Muller game and 2m colours. The game
graph remains exactly the same and each node caries between 0
and 2m colours, more precisely for each of the pairs (Ai ,Bi) of the
Rabin condition, a node v carries the colour ai if v ∈ Ai and the
colour bi if v ∈ Bi . Player Anke wins a play in the Rabin game i�
the set U of in�nitely often visited nodes satis�es that, for some
i , some node in U has colour ai while no node in U has colour bi .
The winning condition for the Streett game is complementary.

Now one can decide in time O ((2m)10m · n5) which player is
the winner of the Rabin game or Streett game. Alternatively, one
can use the direct translation of Rabin games and Streett games to
parity games [4, 48], which they used to show that these games are
in FPT i� parity games are. This translation increases the number
of nodes by a factor m! ·m2 and the colours by a factor 2 and gives
better bounds for the �nal algorithm of approximatelyO (m5m ·n5),
which is the same bound as the Muller game has. A direct solution
without translating into other games by Piterman and Pnueli [53]
has the runtime O (nm+1 ·m!).

One might ask whether this bound can be improved. Björklund,
Sandberg and Vorobyov [4] showed that under the Exponential
Time Hypothesis it is impossible to improve the above algorithm
to O (2o(m) · nc), for any constant c . Here the Exponential Time
Hypothesis says that the problem 3SAT with n variables is not
solvable in time O (2o(n)). The following result enables to get a
slightly better lower bound based on the more likely assumption
that FPT ,W[1]. Here a dominating set of a graph is a set of nodes
such that from every node in the graph there is an edge to one of
the nodes in the dominating set; for this property one deviates from
the usual convention of the non-existence of self-loops and assumes
that every node has a loop to itself.

Theorem 3.5. Given a graph H with n nodes and a numberm with
1 ≤ m ≤ n, one can compute in time polynomial in n′ a coloured
Muller game withn′ nodes andm′ colours such that, for all su�ciently
largem,n,

• m′ ≤ (4m/ log(m)) · log(n),
• n′ ≤ n(4m/loд(m))+4 and
• the given graph H has a dominating set of size up tom i� player

Anke has a winning strategy in the resulting coloured Muller
game.

Furthermore, the winning set of Boris is closed under union and there-
fore, whenever Anke has a winning strategy, she has a memoryless
winning strategy.

Proof. Assume that the given graph H has vertices {a1, . . . ,an }
and let E be the set of its edges. Without loss of generality assume
that n,m ≥ 2 so that log(n), log(m) are at least 1.

The main complexity bound in the parity game is due to some
compression of m-tuples. Instead of giving a plain m-tuple of m ·
dlog(n)e bits, one stores the m-tuple in subsets of a base set E of
colours.

Let {ak1 ,ak2 , . . . ,akm } be Anke’s choice of the dominating set
in the graph H . The idea is to code each sequence ak1 ,ak2 , . . . ,akh
of nodes as a subset of h · dlog(n)/ log(m)e colours from a set E of
(2m + 2) · dlog(n)/ log(m)e colours. Note that for each subset E ′

259

Deciding Parity Games in �asipolynomial Time STOC 2017, 19–23 June 2017, Montreal, QC, Canada

of E with at mostm colours, there is a one-one mapping fE ′ from
{a1, . . . ,an } to subsets of E such that fE ′ (a`) is the disjoint union
of E ′ and a set of dlog(n)/ log(m)e colours. This one-one function
exists, as |E − E ′ | has at least dlog(n)/ log(m)e · (m + 2) elements
and

|E − E ′ |!/(dlog(n)/ log(m)e! · (|E − E ′ | − dlog(n)/ log(m)e)!)

≥ m dlog(n)/ log(m)e ≥ 2log(m) ·log(n)/ log(m) = 2log(n) = n.

Next one inductively de�nes
• f (a`1) as f∅ (a`1);
• for h = 0,1, . . . ,m − 1, f (a`1 , . . . ,a`h ,a`h+1) = fE ′ (a`h+1)

where E ′ = f (a`1 , . . . ,a`h) and `1, `2, . . . ∈ {1,2, . . . ,n}.
Now the idea of the game constructed for the reduction is that
Boris repeatedly asks Anke to ‘�nd an edge in H from a given ai
into some a j of the dominating set’, for various values of ai ; this is
represented in the game by Anke going through her dominating
set ak1 ,ak2 , . . . ,akm by inductively visiting nodes of the game cor-
responding to ak1 ,ak2 , . . . ,akh for h = 0,1, . . . until an h is reached
with akh = a j . In case these answers are inconsistent for some
choices ai and ai ′ that is, there is an h such that for both choices
ai and ai ′ , Anke goes through nodes of the game corresponding
to ak1 ,ak2 , . . . ,akh−1 but then goes through nodes corresponding
to a` and a`′ , with a` , a`′ , for ai and ai ′ respectively, then Boris
will ask Anke to do this repeatedly for an in�nite number of times
and win the game.

Now the constructed Muller game is de�ned more formally. For
this, in addition to the colours E, the colours {d0,d1, . . . ,dm } are
also used, where E ∩ {d0,d1, . . . ,dm } = ∅. Note that there are in
total (2m + 2) · dlog(n)/ log(m)e colours in E andm + 1 colours in
D = {d0,d1, . . . ,dm }.

To simplify the presentation, in the description below a node w
can have several colours from D ∪ E, instead of only one colour.
This convention does not a�ect the generality, as the nodew can be
replaced by a sequence of up to |D ∪ E | + 1 nodes, where each node
in the sequence has one colour from the set of colours assigned to
w and only one choice for next move; one colour might need to be
repeated in order to �x the player that moves next. All nodes will
have at least the colour d0, so that there are no colourless nodes.

Boris wins a play i� the colours of in�nitely often visited nodes
consist, for some h, exactly of the set {d0,d1, . . . ,dh } and at least
h · dlog(n)/ log(m)e +1 of the colours in E. Note that Boris’ winning
condition from above is closed under union. Given two winning
conditions U ,U ′ for Boris, there are h,h′ such that
• U has at least h · dlog(n)/ log(m)e + 1 colours from E and the

colours {d0,d1, . . . ,dh } and
• U ′ consists of at least least h′ · dlog(n)/ log(m)e +1 colours from

E and the colours {d0,d1, . . . ,dh′ } and
• U ∪U ′ has at least max{h,h′} · dlog(n)/ log(m)e+1 colours from

E and the colours {d0,d1, . . . ,dmax{h,h′ } }.
Thus U ∪ U ′ is also a valid winning condition of Boris. For this
reason, it is su�cient to consider memoryless winning strategies
of Anke. The nodes of the game and their colours are as follows:
1. Starting node (start) with colour {d0}, from where Boris moves

to any node of the form (edдe,ai) described in item 2.

2. For i ∈ {1,2, . . . ,n}, node (edдe,ai) with colour {d0}. From node
(edдe,ai) Anke can move to nodes (a j ,ak1 , f (ak1)) described
in item 3 such that (ai ,a j) is an edge in the graph H .

3. For j,k1,k2, . . . ,kh ∈ {1,2, . . . ,n}, node (a j ,akh , f (ak1 ,ak2 ,
. . . ,akh)) with colours f (ak1 , ,ak2 , . . . ,akh) ∪ {d0,d1,d2, . . . ,
dh }. Boris can move from node (a j ,akh , f (ak1 , . . . ,akh)) to a
node as described below:

(a) always to nodes (edдe,ai) for i with 1 ≤ i ≤ n;
(b) if h < m and a j , akh , then also to the node (nextround,

a j , f (ak1 , . . . ,akh)), described in item 4;
(c) ifh =m∧a j , akh , then also to the node (f ail) described

in item 5.
4. For h with 1 ≤ h < m and j,k1,k2, . . . ,kh ∈ {1,2, . . . ,n},

node (nextround ,a j , f (ak1 ,ak2 , . . . ,akh)) with colours f (ak1 ,
ak2 , . . . ,akh) ∪ {d0,d1, . . . ,dh }. Anke can move from a node
(nextround,a j , f (ak1 , . . . ,akh)) to a node of the form (a j ,akh+1 ,
f (ak1 , . . . ,akh ,akh+1)), forakh+1 being a node inH , as described
in item 3. Here Anke should choose akh+1 according to her dom-
inating set in the graph H , as otherwise she would lose based
on the winning conditions of Boris.

5. Node (f ail), with colours D ∪ E, the players can only move
from (f ail) to (f ail).

So in total there are |E | +m + 1 colours and their number can be
bounded by m′ = 4m · log(n)/ log(m) for all su�ciently large m.
Furthermore, there are
• 1 node according to item 1,
• n nodes according to item 2,
• at most 2m′ · n2 nodes according to item 3,
• 2m′ · n nodes according to item 4 and
• 1 node according to item 5.

These 2m′ · (n2 + n) + n + 2 nodes can be translated into at most
2m′ · (n + 1)2 · (m′ + 1) nodes in the regular Muller games, with one
colour each, as indicated above. Using m′ ≤ 4m · log(n)/ log(m)

andm ≤ n, this number of nodes can be bounded by n4m/ log(m) ·

(n + 1)2 · (4n log(n) + 1) which is bounded by n′ = n(4m/ log(m))+4

for all su�ciently large n. Thus,m′ and n′ are almost always upper
bounds on the number of colours and nodes, respectively.

For the veri�cation, it is shown that Anke wins the game i�
there is a dominating set of size at most m in the original graph.
If there is a dominating set {ak1 ,ak2 , . . . ,akm }, for each choice
(edдe,ai) made by Boris (whenever it is Boris’s turn) Anke always
chooses a j ∈ {ak1 ,ak2 , . . . ,akm } such that (ai ,a j) is an edge in H
and moves to (a j ,ak1 , f (ak1)). Then, Anke goes through choices
(a j ,akh , f (ak1 ,ak2 , . . . ,akh)), for h = 2,3, . . ., until Boris chooses
(edдe,ai ′) in its turn. Note that this will happen when akh = a j or
earlier. The maximal h such that a j = akh is chosen in the play, will
make the set of in�nitely often visited coloursU = f (ak1 , . . . ,akh)
∪ {d0,d1, . . . ,dh }, which has only h · dlog(n)/ log(m)e colours from
E and therefore it will be a win for Anke and not for Boris.

In the case that there is no dominating set, the play will either end
up in the node (f ail) or Anke would not be using its dominating
set consistently as illustrated below. One assumes that Anke plays a
memoryless winning strategy and that Boris knows Anke’s strategy;
thus it is su�cient to show that Boris can counteract this strategy.
So assume that there is no dominating set of sizem. There are two
cases.

260

STOC 2017, 19–23 June 2017, Montreal, QC, Canada Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan

(a) Anke does not consistently maintain the same candidate for a
dominating set. Then there are two nodes ai ,ai ′ such that, when
Boris asks Anke to follow an edge from ai and ai ′ , respectively, into
the dominating set then Anke’s answers are not consistent. More
precisely, there are ai and ai ′ , such that, in the case that the play
goes to nodes (edдe,ai) and (edдe,ai ′), Anke (in series of moves via
nodes of item 2 and 3) chooses (∗,ak1 , f (ak1)), (∗,ak2 , f (ak1 ,ak2)),
. . ., (∗,akh−1 , f (ak1 ,ak2 , . . . ,akh−1)), and then chooses

(∗,akh , f (ak1 ,ak2 , . . . ,akh−1 ,akh)) or
(∗,a′kh

, f (ak1 ,ak2 , . . . ,akh−1 ,a
′
kh

)),

respectively, whereakh , a′kh
and ∗ can be anya j ∈ {a1,a2, . . . ,an }.

Boris exploits this inconsistency by moving to (edдe,ai) at the start
of the play and by alternately choosing (edдe,ai ′) and (edдe,ai)
when the play enters

(∗,akh , f (ak1 ,ak2 , . . . ,akh)) or (∗,a′kh , f (ak1 ,ak2 , . . . ,a
′
kh

)).

As Anke plays a memoryless strategy, the play will result in an
in�nite loop of nodes with the colours f (ak1 ,ak2 , ...,akh−1 ,akh) ∪
f (ak1 ,ak2 , ...,akh−1 ,a

′
kh

) ∪ {d0,d1, ...,dh−1,dh } and the resulting
play is won by Boris.

(b) Anke maintains consistently the same candidate for a domin-
ating set {ak1 ,ak2 , . . . ,akm }. As this candidate is not a dominating
set, there is some ai such that no edge goes from ai into this can-
didate set. So Boris chooses (edдe,ai) and Anke moves to a node
(a j ,ak1 , f ({ak1 })). Now the play will go through all rounds and
at each round through the node (a j ,akh , f (ak1 , . . . ,akh)) and as
a j , akh , Boris can continue the play up until it reaches (f ail).
Then the play will remain in that node forever and as E ∪ D is a
set of colours which is in the winning condition of Boris, Boris will
win this play as well. �

Note that the above algorithm reduces the question whether a graph
of n nodes has a dominating set of size m to a Muller game with
up to m′ = (4m/ log(m)) log(n) colours and n′ = n(4m/ log(m))+4

nodes, for su�ciently large m and n. The construction of the game
takes time O (n′). Assuming now that there is a decision procedure
for Muller games which takes time (2m′ · n′)c , for some constant c ,
one can obtain a decision procedure for the previous dominating set
problem in time nc ·((8m/ log(m))+4) , where the exponent is clearly
o(m). Chen, Huang, Kanj and Xia [15, Theorem 5.4] showed that if
there is an algorithm which solves dominating set problem with
these parameters – note that their paper uses a di�erent notation –
then FPT =W[1]. This provides the following corollary.

Corollary 3.6. For every c there is no algorithm running in time
O ((2m · n)c) which decides the winner of a coloured Muller game
with n nodes andm colours unless FPT =W[1].

The above reduction, due to the optimisation involved, increased
massively the number of nodes in the game. If one does not want
to lower the factor m to (m/ log(m)) · log(n) in the translation,
but only cares to achieve O (m · log(n)) colours, then there are
more straightforward methods. One might ask whether there is
a translation which uses less nodes but increases the number of
colours massively. Zielonka [64] used similar methods to show NP-
hardness of the Muller games, even in the special case of games

where player Anke, in the case that she wins, also has a memoryless
winning strategy.

Theorem 3.7 (Zielonka [64]). The problem to determine whether
Anke can win a Muller game when the set of Boris’ winning conditions
is closed under union is NP-complete; however, for containment in
NP, the winning conditions have to be represented as in Zielonka’s
paper. In general, this problem is in ΣP2 .

Note that for games where Anke might win, but not with a memory-
less winning-strategy, the complexity bound is worse. Dawar, Horn
and Hunter showed that the problem to decide the winner in a
Muller game is PSPACE-complete [17].

Memoryless games are games where Anke wins i� she (a) plays
a memoryless strategy and (b) wins the game according to the spe-
ci�cation of the game. If she does not do (a), this is counted as a
loss for her. This was already done by Björklund, Sandberg and
Vorobyov [4, Section 5] for Streett games and it can also be done
for Muller games.

In contrast to normal coloured Muller games, the complexity
of the memoryless games is di�erent. Björklund, Sandberg and
Vorobyov [4, Section 5] considered memoryless Streett games (call-
ed Quasi-Streett games in their paper) and showed that these are
W[1]-hard. This result implies that memoryless coloured Muller
games are W[1]-hard. Furthermore, on one hand, one can decide in
ΣP2 whether Anke has a winning strategy: There is a memoryless
strategy of Anke such that the graph obtained by �xing Anke’s
moves according to the strategy, does not allow Boris to reach a
loop of length up to 2n2, where the set of colours of this loop is a
non-member ofG . On the other hand, the next result shows that un-
less NP can be solved in quasipolynomial time there is no analogue
of the translation of Björklund, Sandberg and Vorobyov [4] from
memoryless coloured Muller games into parity games. In contrast,
solving memoryless coloured Muller games with four colours is
already NP-complete. So, unless P = NP, the problem is not even
in XP.

Theorem 3.8. Solving memoryless coloured Muller games with four
colours is NP-hard.

Proof. In the following, satis�ability is reduced to memoryless col-
oured Muller game as follows. For ease of writing the proof, Muller
games where nodes determine the player moving are considered.
This could be easily converted to a game where the moves of Anke
and Boris alternate by inserting intermediate nodes if needed.

Suppose x1,x2, . . . ,xk are the variables andy1,y2, . . . ,yh are the
clauses in a satis�ability instance. Without loss of generality assume
that no variable appears both as positive and negative literal in the
same clause. Then, the above instance of satis�ability is reduced to
the following Muller game (where the graph is undirected graph):

1. V = {s}∪{u1,u2, . . . ,uk }∪{v1,v2, . . . ,vh }∪{wi, j : [1 ≤ i ≤ h]
and [1 ≤ j ≤ k] and [x j or ¬x j appears in the clause yi]}.

2. E = {(vi ,wi, j), (wi, j ,x j) : x j or ¬x j appears in yi } ∪ {(s,ui) :
1 ≤ i ≤ k }.

3. The colours are {x ,y,+,−}; s has the colour y, all nodes u j have
the colour x ; all nodesvi have the colour y; for every nodewi, j
in the graph, if x j appears in the clause yi positively then the
colour is + else ¬x j appears in yi and the colour is −.

261

Deciding Parity Games in �asipolynomial Time STOC 2017, 19–23 June 2017, Montreal, QC, Canada

4. The winning sets for Boris are {x ,+,−} and all subsets of {y,+,−};
the winning sets for Anke are {x ,+}, {x ,−}, {x } and all supersets
of {x ,y}.

Now it is shown that the instance of satis�ability problem is satis-
�able i� Muller game is a win for Anke playing in a memoryless
way.

Suppose the instance is satis�able. Then �x a satisfying assign-
ment f (x j) for the variables, and let д(yi) = j such that x j (or ¬x j)
makes the clause yi true. Now Anke has the following winning
strategy: At node vi , move to wi,д(yi) . At node wi, j , if д(yi) = j
then move to u j else move to vi . Intuitively, at nodes vi , Anke
directs the play to the node uд(yi) (via wi,д(yi)). Similarly, for the
nodes wi, j , Anke directs the play to uд(yi) either directly or via
nodes vi and wi,д(yi) .

Thus, clearly, if an in�nite play goes through colour y in�nitely
often, then it also goes through colour x in�nitely often; thus Anke
wins. On the other hand, if an in�nite play does not go through
coloury in�nitely often, then the set of nodes the play goes through
in�nitely often is, for some �xed j , u j and some of the nodes of the
form wi, j . But then, by the de�nition of Anke’s strategy, the play
can only go through nodes of colour − �nitely often (if f (x j) is
true) and through nodes of colour + �nitely often (if f (x j) is false).
Thus, Anke wins the play.

Now suppose Anke has a winning strategy. If there is an i such
that Anke moves fromwi, j tou j then let f (x j) be true if x j appears
positively in clause yi ; else let f (x j) be false. If there is no i such
that Anke moves fromwi, j to u j then truth value of f (x j) does not
matter (and can assigned either true of false).

To see that above is a satisfying assignment, �rst note that for
each clause yi , there exists a wi, j such that Anke moves from wi, j
to u j . Otherwise, Boris can �rst move from start node to u j and
then to wi, j such that x j appears in clause yi ; afterwards the play
will go in�nitely often only through a subset of the nodes of the
form vi ,wi, j and thus the colours which appear in�nitely often in
the above play is a subset of {y,+,−}.

Furthermore, for no j and two nodes wi, j and wi ′, j such that x j
appears in yi and ¬x j appears in yi ′ , does Anke move from wi, j
and wi ′, j to node u j . Otherwise, Boris could win by �rst moving
from s to u j and then alternately going to nodes wi, j and wi ′, j . It
follows that f gives a satisfying assignment for the instance of
satis�ability. �

4 CONCLUSION
The progress reported in this paper shows that solving parity games
is not as di�cult as it was widely believed. Indeed, parity games
can be solved in quasipolynomial time – the previous bounds were
roughly nO (

√
n) – and they are �xed parameter tractable with re-

spect to the number m of values (aka colours or priorities) – the
previously known algorithms were roughlyO (nm/3). These results
are in agreement with earlier results stating that parity games can
be solved in UP ∩ co -UP [41] and that there are subexponential
algorithms to solve the problem [44]. In spite of the current pro-
gress, the original question, as asked by Emerson and Jutla [28] in
1991 and others, whether parity games can be decided in polynomial
time still remains an important open question.

The above results on parity games are then used to give an algorithm
of runtimeO ((mm ·n)5) for coloured Muller games withn nodes and
m colours; this upper bound is almost optimal, since an algorithm
with runtime O ((2m · n)c), for some constant c , only exists in the
case that FPT =W[1], an assumption which is considered to be
unlikely.

One might ask whether the results obtained for parity games
permit further transfers to Muller games, for example, in the special
cases where (a) player Anke can employ a memoryless winning
strategy due to the special type of the game or (b) one does not
permit player Anke to use other strategies than memoryless ones.
Note that case (b) di�ers from case (a), as in case (b) the condition
on using memoryless strategies can be restrictive while case (a)
applies to Muller games of those types where one knows that “if
Anke has a winning strategy then she has a memoryless winning
strategy”. Case (a) was analysed by McNaughton [48] and Zielonka
[64]; it applies to Muller games where the winning condition of
player Boris is closed under union [64].

The above mentioned lower bound directly also applies to case
(a). For case (b), the complexity class of the general problem is also
in the polynomial hierarchy but not PSPACE-complete (unless
PSPACE = ΣP2) as the decision problem for coloured Muller games;
however, the algorithmic bounds are much worse, as one can code
NP-hard problems into instances with four colours.

ACKNOWLEDGEMENTS
The authors would like to thank Krishnendu Chatterjee, Sasha
Rubin, Sven Schewe and Moshe Vardi for correspondence and com-
ments. Further thanks go to the referees of STOC 2017 for numerous
suggestions.

REFERENCES
[1] Catriel Beeri. On the membership problem for functional and multivalued

dependencies in relational databases. ACM Transactions on Database Systems,
5:241–259, 1980.

[2] Julien Bernet, David Janin and Igor Walukiewicz. Permissive strategies: from
parity games to safety games. RAIRO - Theoretical Informatics and Applications,
EDP Sciences, 36:251–275, 2002.

[3] Dietmar Berwanger and Erich Grädel. Fixed-point logics and solitaire games.
Theory of Computing Systems, 37(6):675–694, 2004.

[4] Henrik Björklund, Sven Sandberg and Sergei Vorobyov. On �xed-parameter com-
plexity of in�nite games. Technical report 2003-038, Department of Information
Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden.

[5] Henrik Björklund, Sven Sandberg and Sergei Vorobyov. Memoryless determinacy
of parity and mean payo� games: a simple proof. Theoretical Computer Science,
310(1–3):365–378, 2004.

[6] Hans L. Bodlaender, Michael J. Dinneen and Bakhadyr Khoussainov. On game-
theoretic models of networks. Algorithms and Computation, Twelfth Interna-
tional Symposium, ISAAC 2001, Christchurch, New Zealand, December 2001,
Proceedings. Springer LNCS, 2223:550–561, 2001.

[7] Hans L. Bodlaender, Michael J. Dinneen and Bakhadyr Khoussainov. Relaxed
Update and Partition Network Games. Fundamenta Informaticae, 49(4):301–312,
2002.

[8] Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long and Wilfredo
R. Marrero. An improved algorithm for the evaluation of �xpoint expressions.
Theoretical Computer Science, 178(1–2):237–255, 1997.

[9] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank Stephan.
Deciding Parity Games in Quasipolynomial Time. CDMTCS Research Report 500,
The University of Auckland, October 2016, revised April 2017.

[10] Felix Canavoi, Erich Grädel and Roman Rabinovich. The discrete strategy im-
provement algorithm for parity games and complexity measures for directed
graphs. Theoretical Computer Science, 560:235–250, 2014.

[11] Ashok K. Chandra, Dexter C. Kozen and Larry J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114–133, 1981.

262

STOC 2017, 19–23 June 2017, Montreal, QC, Canada Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan

[12] Krishnendu Chatterjee. Comments on the Quasipolynomial Time Algorithm.
Private communication, 2017.

[13] Krishnendu Chatterjee and Thomas A. Henzinger. Strategy Improvement
and Randomized Subexponential Algorithms for Stochastic Parity Games.
Twentythird Annual Suymposium on Theoretical Aspects of Computer Science,
STACS 2006, Marseille, France, 23–25 February 2006, Proceedings. Springer
LNCS, 3885:512–523, 2006.

[14] Krishnendu Chatterjee, Marcin Jurdzinski and Thomas A. Henzinger. Quantitat-
ive stochastic parity games. SODA 2004, Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 121–130, 2004.

[15] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj and Ge Xia. Strong computational
lower bounds via parameterized complexity. Journal of Computer and System
Sciences, 72(8):1346–1367, 2006.

[16] Stephen A. Cook. Path systems and language recognition. Proceedings of the
Second Annual ACM Symposium on Theory of Computing, STOC 1970, May 4–6,
1970, Northampton, Massachusetts, USA, pp. 70–72, 1970.

[17] Anuj Dawar, Florian Horn and Paul Hunter. Complexity Bounds for Muller Games.
Manuscript, 2011.

[18] Antonio Di Stasio, Aniello Murano, Giuseppe Perelli and Moshe Y. Vardi. Solving
parity games using an automata-based algorithm. Twenty �rst International
Conference on Implementation and Application of Automata, CIAA 2016, 19–22
July 2016, Seoul, South Korea, Springer LNCS, 9705:64–76, 2016.

[19] Christoph Dittmann, Stephan Kreutzer and Alexandru I. Tomescu. Graph opera-
tions on parity games and polynomial-time algorithms. Theoretical Computer
Science, 614: 97–108, 2016.

[20] Rodney G. Downey and Michael R. Fellows. Parameterised Complexity. Springer,
Heidelberg, 1999.

[21] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity Theory. Springer, Heidelberg, 2013.

[22] John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan and Dominik Wojtczak.
An Ordered Approach to Solving Parity Games in Quasi Polynomial Time and Quasi
Linear Space. International SPIN Symposium on Model Checking of Software, SPIN
2017. See also technical report on http://arxiv.org/abs/1703.01296.

[23] Olivier Finkel and Stevo Todorčević. The isomorphism relation between tree-
automatic structures. Central European Journal of Mathematics, 8(2):299–313,
2010.

[24] Olivier Finkel and Stevo Todorčević. A hierarchy of tree-automatic structures.
The Journal of Symbolic Logic, 77(1):350–368, 2012.

[25] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
[26] Oliver Friedmann. An exponential lower bound for the parity game strategy

improvement algorithm as we know it. Logic in Computer Science, LICS 2009, pp.
145–156, 2009.

[27] E. Allen Emerson. Automata, tableaux, and temporal logics. Proceedings of the
Workshop on Logic of Programs, Springer LNCS, 193:79–88, 1985.

[28] E. Allen Emerson and Charanjit S. Jutla. Tree automata, µ-calculus and determin-
acy. Annals of IEEE Symposium on Foundations of Computer Science, pp. 368–377,
1991.

[29] E. Allen Emerson, Charanjit S. Jutla, A. Prasad Sistla. On model checking for the
µ-calculus and its fragments. Theoretical Computer Science, 258(1-2):491–522,
2001.

[30] Oliver Friedmann and Martin Lange. Solving parity games in practice. Automated
Technology for Veri�cation and Analysis, Seventh International Symposium, ATVA
2009, Macao, China, 14–16 October 2009, Springer LNCS, 5799:182–196, 2009.

[31] Jakub Gajarský, Michael Lampis, Kazuhisa Makino, Valia Mitsou and Sebastian
Ordyniak. Parameterized algorithms for parity games. Mathematical Foundations
of Computer Science, MFCS 2015. Springer LNCS, 9235:336–347, 2015.

[32] Aniruddh Gandhi, Bakhadyr Khoussainov and Jiamou Liu. E�cient algorithms
for games played on trees with back-edges. Fundamenta Informaticae, 111(4):391–
412, 2011.

[33] Hugo Gimbert and Rasmus Ibsen-Jensen. A short proof of correctness of
the quasi-polynomial ti8me algorithm for parity games. Technical report on
http://arxiv.org/abs/1702.01953, 2017.

[34] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer,
Moshe Y. Vardi, Yde Venema and Scott Weinstein. Finite Model Theory and Its
Applications. Springer, 2007.

[35] Andrey Grinshpun, Pakawat Phalitnonkiat, Sasha Rubin and Andrei Tarfulea.
Alternating traps in Muller and parity games. Theoretical Computer Science,
521:73–91, 2014.

[36] Florian Horn. Explicit Muller games are PTIME. IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2008, pp. 235–245, Dagstuhl Technical Reports, 1756, 2008.

[37] Yuri Gurevich and Leo Harrington. Trees, automata and games. Proceedings of

the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982,
May 5–7, 1982, San Francisco, California, USA, pp. 60-65, 1982.

[38] Paul William Hunter. Complexity and In�nite Games on Finite Graphs. PhD
Thesis, University of Cambridge, Computer Laboratory Hughes Hall, 2007.

[39] Neil Immerman. Number of quanti�ers is better than number of tape cells.
Journal of Computer and System Sciences, 22(3):384–406, 1981.

[40] Hajime Ishihara, Bakhadyr Khoussainov. Complexity of some in�nite games
played on �nite graphs. Graph-Theoretic Concepts in Computer Science, Twenty-
Eighth International Workshop, WG2002, Cesky Krumlov, Czech Republic, 13–15
June 2002, Proceedings. Springer LNCS 2573:270–281, 2002.

[41] Marcin Jurdzinski. Deciding the winner in parity games is in UP ∩ co -UP.
Information Processing Letters, 68(3):119–124, 1998.

[42] Marcin Jurdziński. Small progress measures for solving parity games. STACS 2000,
Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science, Springer LNCS, 1770:290–301, 2000.

[43] Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving
parity games. Logic in Computer Science, LICS 2017. See also the technical report
on http://arxiv.org/abs/1702.05051.

[44] Marcin Jurdziński, Mike Paterson and Uri Zwick. A deterministic subexponential
algorithm for solving parity games. SIAM Journal on Computing, 38(4):1519–1532,
2008.

[45] Imran Khaliq and Gulshad Imran. Reachability games revisited. Second Inter-
national Conference on Advances and Trends in Software Engineering, SOFTENG
2016, 21–25 February 2016, Lisbon, Portugal, Proceedings, International Academy,
Research and Industry Association (IARIA), Wellington, DE 19810, USA, pp. 129–
133, 2016.

[46] Bakhadyr Khoussainov and Anil Nerode. Automata Theory and its Applications.
Birkhäuser, 2001.

[47] Dietrich Kuske, Jiamou Liu and Markus Lohrey. The isomorphism problem
for omega-automatic trees. Proceedings of Computer Science Logic, CSL 2010,
Springer LNCS, 6247:396–410, 2010.

[48] Robert McNaughton. In�nite games played on �nite graphs. Annals of Pure and
Applied Logic, 65(2):149–184, 1993.

[49] Andrzej Wlodzimierz Mostowski. Games with forbidden positions. Technical
Report 78, Uniwersytet Gdanski, Instytut Matematyki, 1991.

[50] Jan Obdrzalek. Algorithmic analysis of parity games. PhD thesis, University of
Edinburgh, 2006.

[51] Viktor Petersson and Sergei G. Vorobyov. A randomized subexponential al-
gorithm for parity games. Nordic Journal of Computing, 8:324–345, 2001.

[52] Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science, 3(3:5):1–21, 2007.

[53] Nir Piterman and Amir Pnueli. Faster solutions of Rabin and Streett games.
Twenty First IEEE Symposium on Logic in Computer Science, LICS 2006, 12–15
August 2006, Seattle, WA, USA, Proceedings. IEEE Computer Society, pages
528–539, 2006.

[54] Shmuel Safra. On the complexity of ω-automata. Proceedings twenty-ninth
IEEE Symposium on Foundations of Computer Science, pages 319-327, 1988.

[55] Shmuel Safra. Exponential determinization for omega-Automata with a strong
fairness acceptance condition. SIAM Journal on Computing, 36(3):803–814, 2006.

[56] Sven Schewe. Solving parity games in big steps. FCTTCS 2007: Foundations of
Software Technology and Theoretical Computer Science, Springer LNCS, 4855:449–
460, 2007; Journal of Computer and System Sciences, available online, 2016.

[57] Sven Schewe. From parity and payo� games to linear programming. Mathem-
atical Foundations of Computer Science 2009, Thirty-Fourth International Sym-
posium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009.
Proceedings. Springer LNCS, 5734:675–686, 2009.

[58] Sven Schewe. Solving parity games in big steps. Journal of Computer and System
Sciences, 84:243—262, 2017.

[59] Helmut Seidl. Fast and simple nested �xpoints. Information Processing Letters,
59:303–308, 1996.

[60] Frank Stephan. Methods and Theory of Automata and Languages. Lecture Notes,
School of Computing, National University of Singapore, 2016.
http://www.comp.nus.edu.sg/~fstephan/fullautomatatheory-nov2016.ps.

[61] Colin Stirling. Bisimulation, modal logic and model checking games. Logic
Journal of IGPL, 7(1):103–124, 1999.

[62] Wolfgang Thomas. On the Synthesis of Strategies in In�nite Games. Twelfth
International Symposium on Theoretical Aspects of Computer Science, STACS 1995,
Springer LNCS, 900:1–13, 1995.

[63] Thomas Wilkie. Alternating tree automata, parity games and modal µ-calculus.
Bulletin of the Belgian Mathematical Society, 8(2):359–391, 2001.

[64] Wieslaw Zielonka. In�nite games on �nitely coloured graphs with applications
to automata on in�nite trees. Theoretical Computer Science, 200:135–183, 1998.

263

	Abstract
	1 Introduction
	2 The Complexity of the Parity Game
	3 Parity Games versus Muller Games
	4 Conclusion
	References

