
Guest Column: Adiabatic Quantum Computing Challenges1

Cristian S. Calude2 Elena Calude3 Michael J. Dinneen2

Abstract

The paper presents a brief introduction to quantum computing with focus on the adiabatic
model which is illustrated with the commercial D-Wave computer. We also include new theory
and experimental work done on the D-Wave computer. Finally we discuss a hybrid method of
combining classical and quantum computing and a few open problems.

1 Introduction

The proliferation of personal computers and intelligent gadgets, the Internet and industries’ large
amounts of data, and modern scientific challenges, all fuel a huge need of computing power.

If we believe in Moore’s Law—which predicts that the number of transistors on a microproces-
sor will continue to double every 18 months—then around the years 2020–2030 the circuits on a
microprocessor will be on an atomic scale. Accordingly, new types of computers will have to be
designed. Will the new computer be quantum, a machine theorized for more than 30 years? Will
the quantum computer kill the silicon-based computer?

In what follows we present a few elementary facts about quantum computing followed by the
adiabatic model illustrated with D-Wave, the first commercialized adiabatic quantum computer.
Two NP-complete problems, the independent set and the network broadcast problems, are used to
show how D-Wave works. We finish with “quassical computing,” a hybrid method of combining
classical and quantum computing, and a few open problems.

2 A glimpse of quantum computing

Quantum computing was first introduced by Yuri I. Manin [39, 40] in 1980 and Richard Feyn-
man [27] in 1982 and intensively researched afterwards. In this section we briefly present the basics
of quantum computing, milestone results, their meaning, power and limits.

In 1985 Deutsch [21] constructed the first model of quantum computer by quantization of the
universal Turing machine. In 1994 Shor [56] designed a quantum algorithm for factoring integers

1 c©C. S. Calude, E. Calude and M. J. Dinneen, 2015. Supported in part by the Quantum Computing Research
Initiatives at Lockheed Martin.

2Department of Computer Science, University of Auckland, Auckland, New Zealand.
{cristian,mjd}@cs.auckland.ac.nz

3Institute of Natural and Mathematical Sciences, Massey University at Albany, Auckland, New Zealand.
e.calude@massey.ac.nz.

ACM SIGACT News 40 March 2015, vol. 46, no. 1

mailto:mjd@cs.auckland.ac.nz?subject=sigact2015
mailto:cristian@cs.auckland.ac.nz?subject=sigact2015
mailto:mjd@cs.auckland.ac.nz?subject=sigact2015
mailto:e.calude@massey.ac.nz?subject=sigact2015

in polynomial (quantum) time in the size of the input; the problem whether there is a classical
polynomial algorithm for factoring is still open (see more in Section 3). Two years later Grover [31]
discovered a quantum algorithm for searching an unsorted N -entry database in O(

√
N) time and

O(logN) space: this algorithm is optimal within the quantum computing model for black box
oracles [7]. Quantum algorithms are probabilistic and give the correct answer with high probability;
the probability of failure can be decreased by repeating the algorithm.

The most popular model of quantum computing is probably the circuit (gate) model in which
quantum algorithms are built from a small set of quantum gates. Adiabatic quantum computing—
proposed in 2000 [25]—relies on the adiabatic theorem (see Section 4) to do calculations [18].

According to [61] (see also [29]),

a quantum computer is a computation system that makes direct use of quantum-
mechanical phenomena, such as superposition and entanglement, to perform operations
on data.

Classical computers encode data into binary digits (bits) using classical physical systems which
are always in one of two definite states (0 or 1). Quantum computers operate with qubits (quan-
tum bits) which are described as quantum states (i.e. abstract, in Hilbert space) and physically
implemented by quantum systems (e.g., an atom) which are in one of two definite states, denoted
by |0〉 or |1〉. Unlike classical bits, qubits can be in a superposition of states represented as a linear
combination of |0〉 and |1〉, e.g., α|0〉 + β|1〉, |α|2 + |β|2 = 1. Here α and β are complex numbers
representing amplitudes. When we measure a qubit, the probability of outcome |0〉 is |α|2 and the
probability of outcome |1〉 is |β|2. For example, in the quantum state 1√

2
|0〉+ 1√

2
|1〉, |0〉 and |1〉 have

the same probability 1
2 . While a quantum computer can work on all states within a superposition,

we only get the results for one state (or a property of all the states) at measurement time. A
quantum computer with two qubits can be in all superpositions of the states ((|0〉, |0〉), (|0〉, |1〉),
(|1〉, |0〉) and (|1〉, |1〉)), each pair requiring two coefficients, one for |0〉 and another one for |1〉; in
general, n qubits need 2n numbers.

Classical parallel computers operate simultaneously with many processing units. In contrast,
superposition allows a quantum computer to “run” on all its possible quantum states simultaneously,
thus naturally operate in parallel with a single processing unit. Other quantum effects useful
for quantum computation are: a) entanglement, the quantum phenomenon that occurs when the
quantum state of each particle in the group cannot be described independently from the quantum
state of the group as a whole (for example, the state 1√

2
(|00〉 + |11〉) is entangled as it cannot be

separated as a tensor product of any two states), b) tunneling, the quantum phenomenon where a
particle tunnels through a barrier, classically an impossibility.

The quantum evolution (quantum transformation, operator) of (on) a qubit is described by a
“unitary operator,” that is an operator induced by a unitary matrix. In this way we can construct
quantum gates which operate on qubits, the building blocks of the quantum gate model. For
example, the NOT transformation interchanging the vectors |0〉 and |1〉, that is the matrix NOT =(

0 1
1 0

)
: NOT |0〉 = |1〉 and NOT |1〉 = |0〉. The square-root of NOT operator, defined by

√
NOT =

1

2

(
1 + i 1− i
1− i 1 + i

)
; (i =

√
−1)

satisfies the equality √
NOT ·

√
NOT = NOT . (1)

ACM SIGACT News 41 March 2015, vol. 46, no. 1

This operator is a typical “quantum gate” in the sense that it is impossible to have a single-
input/single-output classical binary logic gate that satisfies (1). Quantum computers solve problems
probabilistically, generally with high probability. For more details see [32, 15].

2.1 Deutsch’s problem

Probably the simplest and most frequently used way to illustrate the power of quantum computing
is to solve Deutsch’s problem: Given a (classical) black box that computes an unknown binary
function f : {0, 1} → {0, 1}, decide whether f is constant (f(0) = f(1)) or balanced (f(0) 6= f(1)).

Classically, to solve the problem seems to require the computation of f(0) and f(1), and com-
paring the results. Is it possible to solve the problem with only one computation of f? In a famous
paper [21], Deutsch posed the problem and obtained a “quantum” partial affirmative answer. A
complete, probability-one solution was presented in [17]; see [32, 47, 43].

2.2 Deutsch’s problem: the quantum solution

Suppose that we have a quantum black box which computes a function that coherently extends
f from {0, 1} to the quantum (Hilbert) space generated by the base {|0〉, |1〉}, i.e. on input |x〉
it produces |f(x)〉, x ∈ {0, 1}. The quantum transformation Uf maps two qubits, |x〉 and |y〉, to
|x〉|y⊕ f(x)〉 (⊕ denotes the sum modulo 2). We start the computation with |x〉 and 1√

2
(|0〉− |1〉):

Uf

(
|x〉 1√

2
(|0〉 − |1〉)

)
= |x〉 1√

2
(|0⊕ f(x)〉 − |1⊕ f(x)〉) = (−1)f(x)|x〉 1√

2
(|0〉 − |1〉).

With x = 1√
2
(|0〉+ |1〉) we get:

Uf

(
1√
2

(|0〉+ |1〉) 1√
2

(|0〉 − |1〉)
)

=
1

2
(−1)f(0)(|0〉+ (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉). (2)

If we perform a measurement that projects the first qubit onto the basis 1√
2
(|0〉+|1〉), 1√

2
(|0〉−|1〉)

we will obtain 1√
2
(|0〉 − |1〉) if the function f is balanced and 1√

2
(|0〉+ |1〉) in the opposite case.

The action of (2) can be presented in matrix form as:

Uf =


1− f(0) f(0) 0 0
f(0) 1− f(0) 0 0

0 0 1− f(1) f(1)
0 0 f(1) 1− f(1)

 .

The quantum algorithm solving Deutsch’s problem, presented on the next page, uses the
Hadamard transformation H to generate a superposition of states.

H =


1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2
1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2

 .

ACM SIGACT News 42 March 2015, vol. 46, no. 1

1. Start with a closed physical system prepared in the quantum state |01〉.
2. Evolve the system according to H.

3. Evolve the system according to Uf.
4. Evolve the system according to H.

5. Measure the system.

6. If the result is the second possible output, then f is constant;

if the result is the fourth possible output, then f is balanced.

The Deutsch’s quantum algorithm can be presented mathematically as follows:

HUfH|01〉 = HUfH


0
1
0
0

 =


0

1− f(0)− f(1)
0

f(1)− f(0)

 .

If we measure the state HUfH|01〉 we get: a) output 1 with probability p1 = 0, b) output 2
with probability p2 = (1−fQ(|0〉)−fQ(|1〉))2, c) output 3 with probability p3 = 0, d) output 4 with
probability p4 = (fQ(|1〉)− fQ(|0〉))2 = 1− p2. By magic,4 the quantum algorithm has solved, with
probability one, the problem with just one computation of the black box. There was a widespread
belief that this cannot be done classically, see [21, 32, 15, 43].

2.3 Deutsch’s problem: a classical solution

The success of the quantum solution relies on the following three facts: (a) the “embedding”5 of
f into fQ (see also the discussion in [42]), (b) the ability of the quantum computer to be in a
superposition of states: we can check whether fQ(|0〉) is equal or not to fQ(|1〉) not by computing
fQ on |0〉 and |1〉, but on a superposition of |0〉 and |1〉, and (c) the possibility to extract the
required information with just one measurement.

Assuming that we are allowed to use an “embedding,” then we de-quantize6 Deutsch’s algorithm
in the following way [12]. Let Q be the set of rationals and Q[i] = {a + bi | a, b ∈ Q}. We
embed the original function f in Q[i] and we define the classical analogue Cf of the quantum
evolution Uf acting from Q[i] to itself as follows (compare with the formula (2)): Cf (a + bi) =
(−1)0⊕f(0)a+ (−1)1⊕f(1)bi.

There are four different possible bit-functions Cf from Q[i] to Q[i] (x̄ is the complex conjugate
of x): C00(x) = x̄, if f(0) = 0, f(1) = 0, C01(x) = x, if f(0) = 0, f(1) = 1, C10(x) = −x, if f(0) =
1, f(1) = 0, C11(x) = −x̄, if f(0) = 1, f(1) = 1. Deutsch’s problem becomes: Given a function f
in the set {C00, C01, C10, C11} determine whether the function is balanced or constant.

A simple verification shows the correctness of the following deterministic classical algorithm
which solves the Deutsch’s problem with our computation of Cf :

Given f, calculate (i − 1) × Cf (1 + i). If the result is real, then the

function is balanced; otherwise, the function is constant.

4“Any sufficiently advanced technology is indistinguishable from magic,” A. C. Clarke.
5This is controversial as it changes the problem: instead of the classical box we use the quantum box which has

far more computing power.
6De-quantization, a term coined in [12], is the process of producing a classical algorithm which is as efficient as

its quantum counterpart.

ACM SIGACT News 43 March 2015, vol. 46, no. 1

Here the power of superposition can be exploited classically in a simpler way: there is no need
of quantum physics.

3 What is a quantum computer?

The definition of quantum computer reproduced in Section 2.3 refers to the “direct use of quantum-
mechanical phenomena, such as superposition and entanglement, to perform operations on data.”
The reference to quantum phenomena appears also in Webster dictionary’s definition of quantum
computer [59]: “A type of computer which uses the ability of quantum systems, such as a collection
of atoms, to be in many different states at once. In theory, such superpositions allow the computer
to perform many different computations simultaneously.”

The first informal definitions of quantum computer/computation were proposed in [23, 24]
and have been formalized (to some degree) ten years later in [48]. They resulted in four general
requirements—the availability of a quantum memory, the ability to induce a (near) unitary evolu-
tion, the ability to implement (information-theoretic) cooling and readout of the quantum memory.
Variations of these criteria have been proposed by M. Mosca and discussed in [45].

The quantum computing community is an interdisciplinary one, including among others, physi-
cists, engineers, computer scientists and mathematicians. Different people interpret the require-
ments like “using intrinsically quantum effects” or “to be able to capture the full computational
power of quantum mechanics” differently.

Still, why is it difficult to decide whether a given computer is quantum or not? The first idea
is to run the quantum machine alongside a classical computer and see how they compete—in time
and accuracy of results—for solving well-chosen hard problems. And, indeed, this has been done
many times for D-Wave machines. There are many problems with this approach, including the lack
of (agreed) uniform criteria of comparison and the fact that the choice of problems can favor in
subtle ways one or another machine.

Are there more “objective” obstacles? Yes, there are. A natural idea—to observe how the ma-
chine works—fails because of the famous Schrödinger’s cat paradox: one cannot look at a quantum
system without stopping its quantum behavior. Further, if we observe, i.e. measure, an arbitrary
qubit—which is in a superposition of |0〉 and |1〉—we get either 0 or 1. The information on inter-
mediate states is lost in the process of measurement, and even worse, almost all observables are
value indefinite, that is, they do not have a value before measurement [3].

Another obstacle is related to the recurrent idea that a truly quantum computation uses in-
trinsically quantum effects—that cannot naturally be modeled by classical physics—to the aim of
getting an asymptotic speed-up over the best classical algorithms for some problem.7 We have seen
that the quantum algorithm for Deutsch’s problem uses essentially superpositions of qubits and it
was claimed to be better than any classical solution. However, this is not the case as we showed in
Section 2.3. But maybe this toy example is not significant?

The quantum Fourier transform (QFT)—the operation transforming a quantum state vector
into its Fourier representation—is a more interesting example.8 Given an N qubit state |ψ〉 ∈ CN

7Even with unbounded entanglement this is no guarantee that an algorithm can’t be matched classically, see [2].
8The QFT is often an intermediate step in quantum algorithms (e.g., in Shor’s algorithm), so its de-quantization

can have implications for other quantum algorithms [32].

ACM SIGACT News 44 March 2015, vol. 46, no. 1

(where N = 2n) the QFT performs the transformation FN :

FN

N−1∑
a=0

f(a)|a〉 =

N−1∑
c=0

f̂(c)|c〉, where f̂(c) =
1√
N

N−1∑
a=0

e2πiac/Nf(a).

The QFT can be implemented with n2 2-qubit unitary gates. The quantum algorithm is defined
for the basis states, i.e. the action FN |a〉 is implemented for a basis vector |a〉, where no entanglement
is present in the initial or final state.

The QFT acts on a quantum state, whereas the classical Fourier transform acts on a vector, so,
like in the case of Grover’s algorithm, not every task that uses the classical Fourier transform can
take advantage of the quantum exponential speed-up. In fact this advantage has been challenged:
shortly after the discovery of the Shor’s algorithm a semiclassical algorithm for the QFT was
proposed in [30]; see also [5, 11]. By characterizing carefully when a separable, i.e. not entangled,
state remains separable under the QFT, the following de-quantization result was proved in [1].

Theorem 1 (1) Let |ψN 〉 =

(
α1

β1

)
⊗
(
α2

β2

)
⊗· · ·⊗

(
αn
βn

)
be a separable n-bit quantum state. Then

the state FN |ψN 〉 = |ψ̂N 〉 is separable if and only if there exists an integer k, 0 ≤ k ≤ n, and a
binary string a1a2 . . . ak ∈ {0, 1}k such that the following conditions are satisfied:

i) Each of the first j ≤ k qubits satisfies the following phase relationship:

αj = eπi
∑j

l=1 al/2
j−l
βj .

ii) Qubits k + 2 to n are not in a superposition, i.e. αjβj = 0 for j > k + 1. (The qubit k + 1
can be in an arbitrary superposition state.)

(2) In such a case, the state vector |ψ̂N 〉 can be computed classically (in its product representa-
tion) in time O(n) using complex classical bits.

Separable quantum states are important for de-quantization because one can store the state of
each qubit individually (represented by 2n complex numbers for n qubits); this is not possible for
entangled states which in general need 2n complex numbers. More importantly, the de-quantized
algorithm is provably faster than the QFT.

De-quantization points to the fact that genuinely fast quantum algorithms may not automati-
cally have asymptotic speed-ups over classical algorithms solving the same problems [14, 53].

4 Adiabatic computing

We focus on the adiabatic model of computing which uses the propensity of physical systems—
classical or quantum—to minimize their free energy. Quantum annealing is free energy minimization
in a quantum system.

An adiabatic quantum computation (AQC) is an algorithm9 that computes an exact or approxi-
mate solution of an optimization problem encoded in the ground state—its lowest-energy state—of

9Its precursors are the Monte Carlo methods [58], the Metropolis-Hastings algorithm [44] and the simulated
annealing [36].

ACM SIGACT News 45 March 2015, vol. 46, no. 1

a Hamiltonian (the operator corresponding to the total energy of the system). The algorithm starts
at an initial state HI that is easily obtained, then evolves adiabatically, i.e. by slowly changing to
the Hamiltonian HP . An example of evolution is H = (1 − t)HI + tHP as the time t increases
monotonically from 0 to 1. During the entire computation, the system must stay in a valid ground
state. If the system can reach its ground state we get an exact solution; if it can only reach a local
minimum, then we get an approximate solution. The slower the evolution process the better the
approximate (possibly exact) solution is obtained.

AQC is based on the Born-Fock adiabatic theorem [9] which accounts for the adiabatic evolution
of quantum states when the change in the time-dependent Hamiltonian is sufficiently slow [25]: A
physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly
enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.

The quantum adiabatic computation model and the gate quantum computation model (see
Section 2) are polynomially time equivalent [4].

5 Ising and QUBO specifications

Discrete optimization problems for the adiabatic quantum (annealing) computing model are spec-
ified using the Ising or QUBO models [41]; they are the standard representation for problems for
the D-Wave. These equivalent models are usually chosen by personal preferences: the Ising model
tends to be favored by physicists while the QUBO model is preferred by computer scientists.

The Ising model works with variables xi ∈ {−1,+1} that represent magnetic dipole moments
of atomic spins. These variables interact with neighbors in a graph G = (V,E), where each edge
(i, j) ∈ E has a non-zero energy interaction J(i,j) and each vertex i ∈ V has an external energy hi.
The Ising (minimization) problem of n = |V | variables x = (x1, x2, . . . , xn) has the form:

x∗ = min
x

∑
(i,j)∈E

xiJ(i,j)xj +
∑
i∈V

hixi, where xi ∈ {−1, 1}.

The Quadratic Unconstrained Binary Optimization (QUBO) is an NP-hard mathematical prob-
lem consisting in the minimization of a quadratic objective function z = xTQx, where x is a n-vector
of binary variables and Q is a symmetric n× n matrix:10

x∗ = min
x

∑
i≥j

xiQ(i,j)xj , where xi ∈ {0, 1}.

There is a simple transformation between the spin variables of the Ising model and the binary
variables of the QUBO model: x′ = 2x− 1 (QUBO to Ising) and x′ = (x+ 1)/2 (Ising to QUBO).

6 D-Wave

The D-Wave computers are produced by the Canadian company D-Wave Systems11 which describes
them as using quantum annealing to improve convergence of the system’s energy towards the ground
state energy of an Ising/QUBO problem [54]. The computer architecture consists of qubits arranged

10The study of integer and Boolean optimization was introduced in [33] (see also [10]).
11D-Wave One (2011) operates on a 128-qubit chipset. D-Wave Two (2013) works with 512 qubits [19].

ACM SIGACT News 46 March 2015, vol. 46, no. 1

with a host configuration as a subgraph of a Chimera graph.12 A Chimera graph consists of an
M × N two-dimensional lattice of blocks, with each block consisting of 2L vertices (a complete
bipartite graph KL,L), in total 2MNL variables. The D-Wave One has M = N = L = 4 for a
maximum of 128 qubits. D-Wave qubits are loops of superconducting wire, the coupling between
qubits is magnetic wiring and the machine itself is supercooled.

To index a qubit we use four numbers (i, j, u, k), where (i, j) indexes the (row, column) of the
block, u ∈ {0, 1} is the left/right bipartite half of KL,L and 0 < k < L is the offset within the
bipartite half. Qubits indexed by (i, j, u, k) and (i′, j′, u′, k′) are neighbors if and only if

1. i = i′ and j = j′ and [(u, u′) = (0, 1) or (u, u′) = (1, 0)] or

2. i = i′ ± 1 and j = j′ and u = u′ and u = 0 and k = k′ or

3. i = i′ and j = j′ ± 1 and u = u′ and u = 1 and k = k′.

Figure 1 shows for L = N = 4 (and M > 2) the structure of an initial part of a Chimera
graph where the two half partitions of the bipartite graphs KL,L (blocks) are drawn horizontally
and vertically, respectively. The linear index (qubit id of the vertices) from the four tuple (i, j, u, k)
is the value 2NLi+ 2Lj + Lu+ k.

. . .

...
. . .

0 1 2 3

4

5

6

7

8 9 10 11

12

13

14

15

32 33 34 35

36

37

38

39

40 41 42 43

44

45

46

47

Figure 1: D-Wave architecture: a subgraph of a Chimera graph with L = N = 4.

12A monster from Greek mythology that breathes fire, has a lion’s head, a goat’s body and a snake’s tail.

ACM SIGACT News 47 March 2015, vol. 46, no. 1

The questions about whether D-Wave machines perform quantum computation and allow a
quantum speed-up have been heatedly debated [8, 53, 55]. Note that part of the difficulties in
answering these questions are theoretical, as previously discussed in Section 3.

7 The independent set problem

We now show the QUBO formulation of an NP-hard problem, namely the Maximum Independent
Set problem for graphs [28]: Given a graph G = (V,E), what is the largest set V ′ ⊆ V such that
for all u, v ∈ V ′ we have (u, v) 6∈ E?

For a graph G we consider all possible subsets of a n-vector x of length n = |V |. We take
xi = 1 if and only if i ∈ V is selected as an element of a potential independent set. Finally we
constrain the maximum number (and legality) of variables xi = 1 by giving a large penalty to any
edge (u, v) ∈ E in which both xu = xv = 1:

Q(i,j) =


−1, if i = j,
≥ 2, if i < j and (i, j) ∈ E,
0, if i < j and (i, j) 6∈ E.

The calculation of the maximum independent set of an example graph (C6 with a chord as
shown in Figure 2) that embeds in the D-Wave Chimera architecture is shown in Figure 3. Here we
used the penalty value of 6 for each edge. Note that qubit 3 is not used because of the requirement
to embed this graph into the Chimera graph, which is a restriction imposed by the use of a D-Wave
computer.

Our example’s vertex labeling is just a subgraph of Figure 1. This particular program, when
run on a local D-Wave simulator [20], returns two maximum solutions ({4, 5, 6} and {0, 1, 2}) of
maximum size 3 (i.e. global optimum) and one maximal solution {2, 5} of size 2 (i.e. local optimum),
corresponding to final annealing energies -3 and -2, respectively.

More information about this problem, including a weighted version and finding embeddings in
Chimera graphs, is in [16]. Direct formulations of NP-hard problems for the adiabatic quantum
computing are presented in [38].

6

2

0

4

5

1

Figure 2: Graph input used in our Maximum Independent Set program.

ACM SIGACT News 48 March 2015, vol. 46, no. 1

import dwave_sapi

use a local solver

solver=dwave_sapi.local_connection.get_solver("c4-sw_sample")

print "Number of qubits", solver.properties["num_qubits"]

print "Working qubits: ", solver.properties["qubits"]

print "Working couplers: ", solver.properties["couplers"]

Q = {}

Q[(0, 4)] = Q[(0, 5)] = Q[(0, 6)] = Q[(1, 4)] = 6

Q[(1, 5)] = Q[(2, 4)] = Q[(2, 6)] = 6

Q[(0, 0)] = Q[(1, 1)] = Q[(2, 2)] = -1

Q[(3, 3)] = 10 # unused qubit/vertex

Q[(4, 4)] = Q[(5, 5)] = Q[(6, 6)] = -1

answer = solver.solve_qubo(Q, num_reads=10)

print "QUBO answer (using \"optimized\" method): ", answer

Number of qubits 128

Working qubits: (0, 1, 2, 3, 4, 5, 6, 7, ...

Working couplers: ((0, 4), (0, 5), (0, 6), (0, 7),

(0, 32), (1, 4), (1, 5), (1, 6), (1, 7), (1, 33),

(2, 4), (2, 5), (2, 6), (2, 7), (2, 34), ...

QUBO answer (using "optimized" method):

{’energies’: [-3.0, -3.0, -2.0],

’num_occurrences’: [2, 7, 1],

’solutions’: [[0, 0, 0, 0, 1, 1, 1, 3, ..., 3],

[1, 1, 1, 0, 0, 0, 0, 3, ..., 3],

[0, 0, 1, 0, 0, 1, 0, 3, ..., 3]]}

Figure 3: QUBO Example: Maximum Independent Set.

ACM SIGACT News 49 March 2015, vol. 46, no. 1

8 The network broadcast problem

Broadcasting concerns the dissemination of a message originating at one node of a network to all
other nodes [26, 34]. This task is accomplished by placing a series of calls over the communication
lines of the network between neighboring nodes. Each call requires a unit of time, a call can involve
only two nodes and a node can participate in only one call per time step.

A broadcast tree/protocol for a vertex v (called the originator) of an undirected graph G = (V,E)
is a sequence V0 = {v}, E1, V1, E2, . . . , Et, Vt = V (of broadcast height t) such that each Vi ⊆ V ,
each Ei ⊆ E, and for every 1 ≤ i ≤ t: (1) each edge in Ei has exactly one endpoint in Vi−1, (2) no
two edges in Ei share a common endpoint, and (3) Vi = Vi−1 ∪ {w | {u,w} ∈ Ei}.

The Broadcast Problem is the following: Given a connected graph G = (V,E), originator v ∈ V
and integer t, find whether there exists a broadcast tree Tv rooted at v with the height of Tv at
most t? This is a well-known NP-complete problem (see [ND49] of [28]), even for graphs of maxi-
mum vertex degree 3 (see [22]). The optimization version of this problem is approximable within
O(log2 |V |/ log log |V |), but is not expected to have a polynomial-time approximation scheme [51].

In the example shown in Figure 4 (hypercube Q3) an optimal broadcast tree is illustrated for
the originator vertex 0.

0
2

1

3

3

2

3

3

1

2 3

54

6 7

Figure 4: The graph Q3 with broadcast time 3.

The development of the quantum solution will be presented in a sequence of four phases.

8.1 Integer programming formulation

In the first phase we present a simple formulation (i.e. polynomial-time reduction) of the Broadcast
Problem with the originator fixed13 at v = 0 as an Integer Programming (IP) Optimization Problem
(see [60]). The input is a connected graph G = (V = {0, 1, . . . , n − 1}, E) representing a network
with n = |V | vertices and m = |E| edges. For the graph G, we use the following n + 2m + 1
variables:

• t is the required time to complete a broadcast,

13Solving the problem for other originators can be easily done by relabelling the vertices of the graph or doing
obvious modifications in the formulation below.

ACM SIGACT News 50 March 2015, vol. 46, no. 1

• vi is the time in {0, . . . , t} in which the vertex i ∈ V receives the message, 0 ≤ i < n,

• bi,j is a binary variable which is 1 if and only if the vertex i broadcasts to the vertex j (for
each {i, j} ∈ E).

The objective function for our optimization problem is min t (or equivalently, max(n− t)).
First, the time t must be at most n− 1:

0 ≤ t ≤ n− 1. (3)

Every vertex receives the message at a time step at most t:

0 ≤ vi ≤ t, for all i ∈ V. (4)

The originator vertex has no parent and every other vertex must have exactly one parent in the
broadcast tree: ∑

j 6=0

bj,0 = 0, (5)

∑
j 6=i

bj,i = 1, for all i ∈ V \ {0}. (6)

There are no broadcast cycles, that is for a child vertex, the informed time of the parent must
be strictly less than its message received time:

bi,j(1 + vi − vj) ≤ 0, for all {i, j} ∈ E. (7)

Finally, every two child vertices (j, k) informed by the same parent i must occur at different
times:

bi,j + bi,k − (vj − vk)2 ≤ 1, for all {i, j} ∈ E, {i, k} ∈ E with j 6= k. (8)

8.2 Binary integer programming formulation

Next we convert all non-binary variables (in IP formulation) into binary variables. The following
simple procedure converts an integer constrained variable 0 ≤ x ≤ D into a set of O(logD) binary
variables x0, x1, . . . , xc representing its binary representation:

x = x0 + 2x1 + 4x2 + · · ·+ 2cxc =
c∑
i=0

2ixi,

where xi ∈ {0, 1} and 2c ≤ D < 2c+1. Each constraint of the form x ≤ D is replaced by the
following equivalent constraint:

c∑
i=0

2ixi ≤ D. (9)

ACM SIGACT News 51 March 2015, vol. 46, no. 1

8.3 Linear binary integer programming formulation

Using standard techniques (e.g., see [35]) we convert the above quadratic binary IP formulation
into a linear formulation. Each occurrence of a product of two binary variables xy is replaced by a
new variable zxy and the following two linear constraints:

0 ≤ x+ y − zxy ≤ 1, (10)

−1 ≤ 2zxy − (x+ y) ≤ 0, (11)

enforce zxy = xy.
We can reduce the number of “product” binary variables by observing that for equation (7) we

do not need to consider j = 0 and for equation (8) we can only consider vertices j > 0 and k > 0
with a common neighbor.

Note that the above reduction was automated and the Sage Mixed Integer Program Solver [57]
was used to verify correctness of many small graphs [13].

8.4 QUBO formulation

The first step to converting the current binary linear IP formulation to QUBO is to use a “standard
form,” where all inequalities are replaced with equalities by introducing slack variables [60].

The next step is to build an equivalent QUBO of the IP formulation and add rules to force
all linear equation constraints to be satisfied when assigning 0/1 to the binary variables. Consider
a linear equality constraint Ck of the form

∑n
i=1 c(k,i)xi = dk for xi ∈ {0, 1} with fixed integer

constants c(k,i) and dk. This equation is satisfied if and only if
∑n

i=1 c(k,i)xi−dk = 0, or equivalently,
if 〈ck,x〉 − dk = 0, where ck = (c(k,i), c(k,2), . . . , c(k,n)) and 〈ck,x〉 is the product of the vectors ck
and x. If 〈ck,x〉 − dk is not zero we need to have a penalty greater than the maximum feasible
value of t, which is n. Thus, we can construct the following QUBO that is equivalent to the IP
formulation of the Broadcast Problem:

x∗ = min
x

(
t+ n ·

∑
k

(〈ck,x〉 − dk)2
)
, where xi ∈ {0, 1}.

Note first that the variable t is obtained from the variables used in equation (3) of Section 8.1
and is added to the other QUBO entries in Q from the set of linear constraints Ck. The QUBO
constants for the binary variables representing t will be powers of 2, as given by equation (9).
Second, any term d2k in the square terms of (〈ck,x〉 − dk)2 which does not involve a variable xi can
be ignored since those additive terms are independent of any assignment of variables (i.e. we have a
fixed additive QUBO offset to the objective solution). Third, since variables xi are binary, we have
x2i = xi and the constants for those terms are included in the main diagonal entries of Q. Finally,
the conversion from an arbitrary Broadcast Problem instance to QUBO was automated [13].

8.5 Q3 example

In this section we illustrate the quantum solution phases for Q3. In the first phase (IP formulation)
we get 33 integer variables (the variable t, eight variables of the type vi, and 24 variables of the type
bi,j) and 65 quadratic constraints. The conversion to the binary formulation results in 51 binary
variables as we need three binary variables for each of the previous integer variables t, v0, . . . , v7;

ACM SIGACT News 52 March 2015, vol. 46, no. 1

e.g., 51 = 33 + 2 ·9. The next conversion (Section 8.3) produces 447 binary variables and 851 linear
constraints. Finally, the conversion to QUBO generated 999 slack variables, so in total 1446 binary
variables: they represent the number of logical qubits for our QUBO formulation. See [13] for all
details.

To be able to solve this QUBO problem on D-Wave we need one more step (see [20]) which will
be illustrated in the next section with a feasible example for the D-Wave Two.

8.6 K2 example

We present both the final IP formulation (see Table 1) and QUBO matrix Q (see Table 2) for the
Broadcast Problem for the (toy) graph K2 of one edge. The total number of binary variables is 22
(13 of them are slack variables) and the QUBO offset is 12. When run on the D-Wave simulator [20]
(without embedding onto the hardware, which has limited qubit connections) we get the following
expected result:

answer={

’energies’: [-11.0],

’solutions’: [[1,0,0,1,1,0,0,1,0,0,1,1,0,0,0,0,1,0,1,0,0,0]]

}

When we add the offset 12 to the minimum energy state we get our expected broadcast time of 1.
We can also see that t = x1 = 1, b0,1 = x7 = 1 and b1,0 = x8 = 0, which indicates a valid broadcast
tree from the obtained solution x∗.

To actually run this QUBO instance on the D-Wave machine we need to find a minor-
containment embedding on the actual physical qubit hardware (the Chimera graph). One valid
heuristic is to map each logical qubit to a path of physical qubits. One such example is given below
where our 22 logical qubits, labeled 0 to 21, become 50 active hardware qubits.

’embedding=’: [0=[224, 226, 228], 1=[230], 2=[276, 283, 284, 288, 292],

3=[290], 4=[227, 291, 348, 355, 356, 357], 5=[229], 6=[336, 338, 341, 347, 349],

7=[293, 297, 301, 361], 8=[294, 296, 302], 9=[289], 10=[300], 11=[298, 362, 365],

12=[359, 367], 13=[364], 14=[345, 351], 15=[344], 16=[346],

17=[275, 277, 281, 285, 339], 18=[272], 19=[274], 20=[303], 21=[343]]

This best energy solution of -11 is also obtained when we run it on an actual D-Wave Two
machine. This optimal answer occurs about 33% of the time for our trials of about 1000 runs. In
the other cases, the machine did not converge to the optimal ground-state energy.

8.7 Experimental results

We have produced QUBO representations of the Broadcast Problem for several small common
graphs using the above IP formulation procedure. Tables 3 and 4 summarize them for some small
common graph families and known special graphs (all graphs can be obtained from Sage [57, 13]).
Recall that for non-symmetric graphs we initiate the broadcast at vertex labeled 0, using the
vertex labels given by Sage’s adjacency lists. In these tables, columns 2 and 3 (Integer Variables
and Quadratic Constraints) indicate the size of the IP formulation presented in Section 8.1. Next,
columns 4 and 5 (Binary Variables and Binary Constraints) indicate the size of the IP formulation
given in Section 8.3. Finally, columns 6–8 (Slack Variables, Logical Qubits and Chimera/Physical

ACM SIGACT News 53 March 2015, vol. 46, no. 1

Table 1: Final Binary Integer Program for broadcasting in K2.

Integer Program Constraints Comments

x0 + x1 = 1 x0 is objective variable t and x1 is a slack variable
−x0 + x2 + x3 = 0 x2 is vertex variable v0; equation (4)
−x0 + x4 + x5 = 0 x4 is vertex variable v1; equation (4)
x6 = 0 x6 is broadcast variable b1,0; equation (5)
x7 = 1 x7 is broadcast variable b0,1; equation (6)
x2 + x7 − x8 + x9 = 1 x8 is for product b0,1v0 with equation (10)
−x2 − x7 + 2x8 + x10 = 0 equation (7) with equation (11)
x4 + x7 − x11 + x12 = 1 x11 is for product b0,1v1
−x4 − x7 + 2x11 + x13 = 0 equation (7)
x4 + x6 − x14 + x15 = 1 x14 is for product b1,0v1
−x4 − x6 + 2x14 + x16 = 0 equation (7)
x2 + x6 − x17 + x18 = 1 x17 is for product b1,0v0
−x2 − x6 + 2x17 + x19 = 0 equation (7)
x7 + x8 − x11 + x20 = 0 equation (8)
x6 + x14 − x17 + x21 = 0 equation (8)

Table 2: Final QUBO matrix Q for broadcasting in K2.

3 4 -4 -4 -4 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 -2 0

-4 0 2 4 0 0 8 8 -12 4 -4 0 0 0 0 0 0 -12 4 -4 0 0
-4 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-4 0 0 0 2 4 8 8 0 0 0 -12 4 -4 -12 4 -4 0 0 0 0 0
-4 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 0 8 0 4 0 0 0 0 0 0 0 -8 4 -4 -16 4 -4 0 4
0 0 8 0 8 0 0 0 -8 4 -4 -16 4 -4 0 0 0 0 0 0 4 0
0 0 -12 0 0 0 0 -8 16 -4 8 -4 0 0 0 0 0 0 0 0 4 0
0 0 4 0 0 0 0 4 -4 -2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -4 0 0 0 0 -4 8 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -12 0 0 -16 -4 0 0 16 -4 8 0 0 0 0 0 0 -4 0
0 0 0 0 4 0 0 4 0 0 0 -4 -2 0 0 0 0 0 0 0 0 0
0 0 0 0 -4 0 0 -4 0 0 0 8 0 2 0 0 0 0 0 0 0 0
0 0 0 0 -12 0 -8 0 0 0 0 0 0 0 16 -4 8 -4 0 0 0 4
0 0 0 0 4 0 4 0 0 0 0 0 0 0 -4 -2 0 0 0 0 0 0
0 0 0 0 -4 0 -4 0 0 0 0 0 0 0 8 0 2 0 0 0 0 0
0 0 -12 0 0 0 -16 0 0 0 0 0 0 0 -4 0 0 16 -4 8 0 -4
0 0 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 -4 -2 0 0 0
0 0 -4 0 0 0 -4 0 0 0 0 0 0 0 0 0 0 8 0 2 0 0
0 0 0 0 0 0 0 4 4 0 0 -4 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 -4 0 0 0 2

ACM SIGACT News 54 March 2015, vol. 46, no. 1

Qubits) indicate the size of the final QUBO representation described in Section 8.4. Using this
approach, the number of logical qubits equals the number of binary variables plus the number of
slack variables.

9 Quassical computing

A handful of quantum algorithms are provably faster than the best competing classical algorithms.
However, this does not imply that quantum computing is generally superior to classical computing.
Quite the contrary, the computational complexity of many classical algorithms provably cannot be
improved through the use of quantum computing; the Fourier Transform discussed in Section 3 is
such an example.

Classical computing and quantum computing have obvious complementary strengths, so instead
of opposing them it might be better to combine them into a new type of computing. Such a proposal,
called “hybrid quantum-classical computing,”14 was discussed in [37].

Why quassical computing? Here are two examples. Grover’s black box oracle quantum al-
gorithm searches an unsorted database with N entries15 in O(

√
N) time with O(logN) storage

space [31], while classical algorithms cannot search an unsorted database in less than linear time.
As Grover’s algorithm is optimal within the quantum model for black box oracles [7], we may
seem to have an example where quantum computing is provably superior to classical computing. A
more careful analysis shows that there is a significant difference between the complexity-theoretical
and the applicability of the Grover’s algorithm. To search with Grover’s algorithm we need a pre-
processing of the database, i.e. we need to compute a quantum description of the original (classical)
database, which requires O(N) storage space.16 A fairer comparison between Grover’s quantum
algorithm and the best classical counterpart algorithms presented in [37] concludes that classical
computing offers a better solution than the quantum one. More interestingly, the paper [37] shows
how an enhanced Grover’s quantum search method can be incorporated into classical procedural
algorithms to achieve performance that is in some cases provably more efficient than any classical
computing solution alone. The main finding is a solution which mitigates (in this instance) the
negative effect of the no-cloning theorem—the impossibility of making a perfect copy (or clone) of
an arbitrary (unknown) quantum state [62].

Another example is the development of a quassical computing algorithm for the Sudoku problem;
an experimental analysis of its feasibility is presented in [52].

10 Final comments and open problems

Quantum computing will continue to be intensively researched and experimentally tested in both
academia and the private sector. How the field is going to evolve even in the near future is anybody’s
guess.

14The short name “quassical computing” was coined by N. Allen who first noticed the natural emergence of the
quassicality as a result of integrating the D-Wave machines into the CAE network at Lockheed Martin. He first used
the term in a January 2014 letter discussing the phenomenon with M. Bremner [6].

15A rather contrived problem.
16The cost of the “quantum embedding” (see also Sections 2.3 and 3) necessary for the use of a quantum algorithm

is not easy to evaluate, so frequently omitted.

ACM SIGACT News 55 March 2015, vol. 46, no. 1

Table 3: Number of qubits required for some small graphs families.
Integer Quadratic Binary Binary Slack Logical Chimera

Graph Order Size Variables Constraints Variables Constraints Variables Qubits Qubits

C3 3 3 10 16 50 86 96 146 394
C4 4 4 13 21 74 131 146 220 662
C5 5 5 16 26 178 324 366 544 3258
C6 6 6 19 31 240 443 495 735 4164
C7 7 7 22 36 311 580 642 953
C8 8 8 25 41 391 735 807 1198
C9 9 9 28 46 778 1484 1608 2386
C10 10 10 31 51 944 1809 1948 2892
C11 11 11 34 56 1126 2166 2320 3446
C12 12 12 37 61 1324 2555 2724 4048
Grid2x3 6 7 21 37 254 472 543 797 4306
Grid3x3 9 12 34 65 832 1597 1816 2648
Grid3x4 12 17 47 93 1414 2745 3084 4498
Grid4x4 16 24 65 133 2420 4737 5252 7672
Grid4x5 20 31 83 173 5537 10909 11815 17352
K2 2 1 5 7 9 15 13 22 47
K3 3 3 10 16 50 86 96 146 394
K4 4 6 17 33 94 171 202 296 1378
K5 5 10 26 61 248 469 606 854 7973
K6 6 15 37 103 366 713 981 1347
K7 7 21 50 162 507 1014 1482 1989
K8 8 28 65 241 671 1375 2127 2798
K9 9 36 82 343 1264 2591 4200 5464
K10 10 45 101 471 1574 3279 5588 7162
K2x1=P2 3 2 8 12 36 59 64 100 170
K1x2=S2 3 2 8 12 40 68 76 116 238
K2x2=C4 4 4 13 21 74 131 146 220 662
K2x3 5 6 18 32 192 353 414 606 4823
K3x3 6 9 25 49 282 529 633 915
K3x4 7 12 32 69 381 727 894 1275
K4x4 8 16 41 97 503 973 1227 1730
K4x5 9 20 50 129 976 1906 2432 3408
K5x5 10 25 61 171 1214 2391 3124 4338
K5x6 11 30 72 118 1468 2914 3896 5364
K6x6 12 36 85 277 1756 3511 4804 6560
S2=K1x2 3 2 8 12 40 68 76 116 238
S3 4 3 11 18 64 114 130 194 505
S4 5 4 14 25 164 301 354 518 3711
S5 6 5 17 33 226 423 501 727 5120
S6 7 6 20 42 297 564 672 969
S7 8 7 23 52 377 724 867 1244
S8 9 8 26 63 760 1471 1736 2496
S9 10 9 29 75 926 1803 2132 3058
S10 11 10 32 88 1108 2168 2568 3676

ACM SIGACT News 56 March 2015, vol. 46, no. 1

Table 4: Number of qubits required for hypercubes and some other small known graphs.
Integer Quadratic Binary Binary Slack Logical Chimera

Graph Order Size Variables Constraints Variables Constraints Variables Qubits Qubits

Q1=K2 2 1 5 7 9 15 13 22 47
Q2=C4 4 4 13 21 74 131 146 220 662
Q3 8 12 33 65 447 851 999 1446
Q4 16 32 81 193 2564 5045 5860 8424

BidiakisCube 12 18 49 97 1432 2779 3124 4556
Bull 5 5 16 28 178 324 366 544 3523
Butterfly 5 6 18 33 192 353 414 606 5927
Chvatal 12 24 61 145 1540 3013 3604 5144
Clebsch 16 40 97 273 2708 5373 6628 9336
Diamond 4 5 15 27 84 151 174 258 742
Dinneen 9 21 52 142 994 1950 2552 3546
Dodecahedral 20 30 81 161 5515 10855 11645 17160
Durer 12 18 49 97 1432 2779 3124 4556
Errera 17 45 108 320 4480 8900 10890 15370
Frucht 12 18 49 97 1432 2779 3124 4556
GoldnerHarary 11 27 66 209 1414 2814 3792 5206
Grotzsch 11 20 52 118 1288 2508 2968 4256
Heawood 14 21 57 113 1894 3691 4100 5994
Herschel 11 18 48 101 1252 2429 2800 4052
Hexahedral 8 12 33 65 447 851 999 1446
Hoffman 16 32 81 193 2564 5045 5860 8424
House 5 6 18 32 192 353 414 606 4176
Icosahedral 12 30 73 205 1648 3257 4164 5812
Krackhardt 10 18 47 114 1088 2116 2548 3636
Octahedral 6 12 31 73 324 619 795 1119
Pappus 18 27 73 145 4514 8869 9575 14089
Petersen 10 15 41 81 1034 1995 2276 3310
Poussin 15 39 94 276 2446 4863 6152 8598
Robertson 19 38 96 229 5211 10287 11570 16781
Shrikhande 16 48 113 369 2852 5715 7508 10360
Sousselier 16 27 71 154 2474 4849 5452 7926
Tietze 12 18 49 97 1432 2779 3124 4556
Wagner 8 12 33 65 447 851 999 1446

ACM SIGACT News 57 March 2015, vol. 46, no. 1

There are many open problems. Developing efficient graph minor embeddings into Chimera
graphs and reducing the number of variables in the linear binary programming formulation of
various algorithms (both to reduce number of physical qubits) and developing direct conversions of
hard combinatorial problems to QUBO format (to reduce number of logical qubits) are just a few.

Error correcting methods are announced for future D-Wave machines [49, 50], a significant
change of the current approach from dealing with noisy qubits; Google is also developing quantum
annealing hardware with an emphasis on reliable qubits [46]. Can adiabatic quantum computing
continue to be scaled up while maintaining a reasonable probability of correctness?

Finally, a more challenging open problem is to develop a methodology combining quantum and
classical components in efficient quassical computing algorithms.

Acknowledgements

We thank A. A. Abbott, N. Allen, L. Hemaspaandra, M. Triplett, K. L. Pudenz, M. Stay and
G. J. Tee for discussions and comments leading to a better presentation.

Dedication

The first two authors’ contribution is dedicated to one of the co-founders of pseudo-boolean opti-
mization [33], Prof. S. Rudeanu, on the occasion of his 80th Birthday.

References

[1] A. A. Abbott. De-quantisation of the quantum Fourier transform. Applied Mathematics and
Computation, 291(1):3–13, 2012.

[2] A. A. Abbott and C. S. Calude. Understanding the quantum computational speed-up via
de-quantisation. EPTCS, 26:1–12, 2010.

[3] A. A. Abbott, C. S. Calude and K. Svozil. Value indefiniteness is almost everywhere. Physical
Review A, 89(3):032109–032116, 2014.

[4] D. Aharonov, W. v. Dam, J. Kempe, Z. Landau, S. Lloyd and O. Regev. Adiabatic quantum
computation is equivalent to standard quantum computation. arXiv:quant-ph/0405098, March
2005.

[5] D. Aharonov, Z. Landau and J. Makowsky. The quantum FFT can be classically simulated.
arXiv:quant-ph/0611156v2, 2007.

[6] N. Allen. Personal communication to C. S. Calude, November 7, 2014.

[7] C. H. Bennett, E. Bernstein, G. Brassard and U. Vazirani. Strengths and weaknesses of
quantum computing. SIAM Journal on Computing, 26:1510–1523, 1997.

[8] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis and
M. Troyer. Quantum annealing with more than one hundred qubits. arXiv:1304.4595v2, July
2013.

[9] M. Born and V. Fock. Beweis des adiabatensatzes. Zeitschrift für Physik, 51(3-4):165–180,
1928.

ACM SIGACT News 58 March 2015, vol. 46, no. 1

[10] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123(1–3):155–225, 2002.

[11] D. E. Browne. Efficient classical simulation of the quantum Fourier transform. New Journal
of Physics, 9(5):146, May 2007.

[12] C. S. Calude. De-quantizing the solution of Deutsch’s problem. International Journal of
Quantum Information, 5(3):409–415, 2007.

[13] C. S. Calude and M. J. Dinneen. Solving the broadcast time problem using a D-Wave quantum
computer. Report CDMTCS-473, Centre for Discrete Mathematics and Theoretical Computer
Science, University of Auckland, Auckland, New Zealand, November 2014.

[14] C. S. Calude, M. J. Dinneen and K. Svozil. Reflections on quantum computing. Complexity,
6:35–37, 2000.

[15] C. S. Calude and G. Păun. Computing with Cells and Atoms. Taylor & Francis Group, London
and New York, 2001.

[16] V. Choi. Minor-embedding in adiabatic quantum computation: I. The parameter setting
problem. Quantum Information Processing, 7(5):193–209, 2008.

[17] R. Cleve, A. Ekert, C. Macchiavello and M. Mosca. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 454(1969):339–354, 1998.

[18] E. Cohen and B. Tamir. D-Wave and predecessors: From simulated to quantum annealing.
International Journal of Quantum Information, 12(03):1430002, 2014.

[19] D-Wave. D-Wave overview: A brief introduction to D-Wave and quantum computing, 2013.
http://www.dwavesys.com/sites/default/files/D-Wave-brochure-102013F-CA.pdf.

[20] D-Wave. Programming with QUBOs. Technical report, D-Wave Systems, Inc., 2013. Python
Release 1.5.1-beta4 (for Mac/Linux), 09-1002A-B.

[21] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sci-
ences (1934-1990), 400(1818):97–117, 1985.

[22] M. J. Dinneen. The complexity of broadcasting in bounded-degree networks. Technical Report
Combinatorics report LACES-[05C-94-31], Los Alamos National Laboratory, 1994. http:
//arxiv.org/abs/math/9411222.

[23] D. P. Divincenzo. Topics in quantum computers. In G. S. L. Sohn, L. Kouwenhoven, editor,
Mesoscopic Electron Transport, pages 657–677, Dordrecht, 1996. Kluwer Academic Publishers.

[24] D. P. Divincenzo. The physical implementation of quantum computation. Fortsch. Phys.,
48:771–783, 2000.

[25] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser. Quantum computation by adiabatic
evolution. arXiv:quant-ph/0001106, January 2000.

[26] A. Farley, S. Hedetniemi, S. Mitchell and A. Proskurowski. Minimum broadcast graphs. Dis-
crete Mathematics, 25:189–193, 1979.

ACM SIGACT News 59 March 2015, vol. 46, no. 1

http://www.dwavesys.com/sites/default/files/D-Wave-brochure-102013F-CA.pdf
http://arxiv.org/abs/math/9411222
http://arxiv.org/abs/math/9411222

[27] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21:467–488, 1982.

[28] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[29] N. Gershenfeld and I. L. Chuang. Quantum computing with molecules. Scientific American,
6:66–71, 1998.

[30] R. Griffiths and C. Niu. Semiclassical Fourier transform for quantum computation. Physical
Review Letters, 76(17):3228–3231, January 1996.

[31] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 212–219. ACM
Press, 1996.

[32] J. Gruska. Quantum Computing. McGraw-Hill, London, 1999.

[33] P. L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related Areas.
Springer-Verlag, Berlin, Heidelberg, New York, 1968.

[34] S. M. Hedetniemi, S. T. Hedetniemi and A. L. Liestman. A survey of gossiping and broadcasting
in communication networks. Networks, 18:319–349, 1998.

[35] M. Khosravani. Searching for Optimal Caterpillars in General and Bounded Treewidth Graphs.
PhD dissertation, University of Auckland, Auckland, New Zealand, 2011.

[36] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by simulated annealing. SCI-
ENCE, 220(4598):671–680, 1983.

[37] M. Lanzagorta and J. K. Uhlmann. Hybrid quantum-classical computing with applications
to computer graphics. In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY,
USA, 2005. ACM.

[38] A. Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2(5), 2014.

[39] Y. I. Manin. Vychislimoe i nevychislimoe [Computable and Noncomputable] (in Russian).
Sov. Radio. pp. 13–15. (Checked 30 October 2014). http://www.worldcat.org/title/
vychislimoe-i-nevychislimoe/oclc/11674220, 1980.

[40] Y. I. Manin. Classical computing, quantum computing, and Shor’s factoring algorithm.
arXiv:quant-ph/9903008v1, March 1999.

[41] C. C. McGeoch and C. Wang. Experimental evaluation of an adiabatic quantum system for
combinatorial optimization. In Proceedings of the ACM International Conference on Comput-
ing Frontiers, CF ’13, pages 23:1–23:11, New York, NY, USA, 2013. ACM.

[42] D. N. Mermin. What’s wrong with these elements of reality? Physics Today, 43(6):9–10, June
1990.

[43] D. N. Mermin. Quantum Computer Science. Cambridge University Press, Cambridge, 2007.

[44] N. C. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller. Equations of state
calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087–1092, 1953.

ACM SIGACT News 60 March 2015, vol. 46, no. 1

http://www.worldcat.org/title/vychislimoe-i-nevychislimoe/oclc/11674220
http://www.worldcat.org/title/vychislimoe-i-nevychislimoe/oclc/11674220

[45] L. Mirani and G. Lichfield. Why nobody can tell whether the worlds biggest quantum com-
puter is a quantum computer, April 2014. http://qz.com/194738/why-nobody-can-tell-
whether-the-worlds-biggest-quantum-computer-is-a-quantum-computer/.

[46] H. Neven. Hardware initiative at quantum artificial intelligence lab. URL: https://plus.
google.com/+QuantumAILab/posts/UcWGvc9Y6dU [Accessed 28 October 2014], 2014.

[47] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, 2000.

[48] C. A. Perez-Delgado and P. Kok. What is a quantum computer, and how do we build one?
arXiv:0906.4344v2, 2010.

[49] K. L. Pudenz, T. Albash and D. A. Lidar. Error-corrected quantum annealing with hundreds
of qubits. Nat. Commun., 5, 02 2014.

[50] K. L. Pudenz, T. Albash and D. A. Lidar. Quantum annealing correction for random Ising
problems. arXiv:1408.4382v1, August 2014.

[51] R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast time (extended
abstract). In Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
FOCS’94, pages 202–213. IEEE Computer Society Press, 1994.

[52] T. Resnick. Sudoku at the Intersection of Classical and Quantum Computing. Report
CDMTCS-475, Centre for Discrete Mathematics and Theoretical Computer Science, University
of Auckland, Auckland, New Zealand, Dec. 2014.

[53] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar
and M. Troyer. Defining and detecting quantum speedup. Science, 345(6195):420–424, 2014.

[54] G. Rose and W. Macready. An introduction to quantum annealing. Technical Report Document
0712, DWave Systems, Inc., 2007.

[55] S. W. Shin, G. Smith, J. A. Smolin and U. Vazirani. How “quantum” is the D-Wave machine?
arXiv:1401.7087, May 2014.

[56] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Pro-
ceedings of the 35th Annual Symposium of on Foundations of Computer Science, Santa Fe, NM,
Nov. 20-22, 1994. IEEE Computer Society Press, November 1994. arXiv:quant-ph/9508027.

[57] W. Stein et al. Sage Mathematics Software (Version 6.3). The Sage Development Team, 2014.
http://www.sagemath.org.

[58] G. J. Tee. The Monte Carlo Method. Pergamon Press, Oxford and New York, 1966.

[59] Webster. Quantum computer (Accessed: 30 October 2014). http://www.webster-
dictionary.org/definition/quantum%20computer.

[60] Wikipedia. Integer programming (Accessed 30 October 2014). http://en.wikipedia.org/
wiki/Integer_programming.

[61] Wikipedia. Quantum computer (Accessed: 30 October 2014). http://en.wikipedia.org/
wiki/Quantum_computer.

[62] W. K. Wooters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802–803,
1982.

ACM SIGACT News 61 March 2015, vol. 46, no. 1

http://qz.com/194738/why-nobody-can-tell-whether-the-worlds-biggest-quantum-computer-is-a-quantum-computer/
http://qz.com/194738/why-nobody-can-tell-whether-the-worlds-biggest-quantum-computer-is-a-quantum-computer/
https://plus.google.com/+QuantumAILab/posts/UcWGvc9Y6dU
https://plus.google.com/+QuantumAILab/posts/UcWGvc9Y6dU
http://www.sagemath.org
http://www.webster-dictionary.org/definition/quantum%20computer
http://www.webster-dictionary.org/definition/quantum%20computer
http://en.wikipedia.org/wiki/Integer_programming
http://en.wikipedia.org/wiki/Integer_programming
http://en.wikipedia.org/wiki/Quantum_computer
http://en.wikipedia.org/wiki/Quantum_computer

