
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
DigiPro 2014, August 09, 2014, Vancouver, British Columbia, Canada.
Copyright © ACM 978-1-4503-3044-2/14/08 $15.00

Can We Solve the Pipeline Problem?

Cristian S. Calude1, Alasdair Coull2, J. P. Lewis2,3∗
1Department of Computer Science, University of Auckland, New Zealand

2Weta Digital, Wellington, New Zealand
3School of Engineering and Computer Science, Victoria University, Wellington, New Zealand

Abstract

A list of the most important unsolved problems in VFX production
should include the word “pipeline”. Pipelines are a major source of
efficiency, but they require ongoing development, and are seem-
ingly never finished. They also resist change. Is it possible to
automatically generate pipelines given desired inputs and outputs
or design one “universal” pipeline that can do everything with no
further modification ever needed? We present similarities between
pipelines and programs, and recall metamathematical statements
which show that the answer to the above question is negative. How-
ever, new approximate solutions may someday mitigate to a large
extent this negative situation.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Software Support; F.4.1 [Computation by Abstract Devices]: Mod-
els of Computation—Computability Theory; D.2.7 [Software En-
gineering]: Management—Cost Estimation

Keywords: pipeline, automation, metamathematics

1 Introduction

In computer graphics production, “pipeline” refers to the collec-
tion of scripts and processes that streamline passing data between
programs and across departments. It often includes version control
and dependency tracking capabilities. “Pipeline” is sometimes also
considered to include the artists who embody a facility’s knowledge
of these processes. Pipelines are frequently developed on-demand
and incrementally, and are often proprietary, although some com-
mercial pipeline solutions do exist.

A pipeline is a major source of efficiency. It automates regular
aspects of workflow, reducing errors. As one example of the po-
tential for such error, consider the work of a lighting technical di-
rector. S/he works during the day adjusting lights and shader set-
tings while using either a preview renderer or low-resolution set-
tings suitable for rapid exploration. Before leaving for the day,
the artist switches the render settings to appropriate high-resolution
values and launches an overnight render on the farm. The problem
is that there may be 10 or more such parameters that have to be
changed (image resolution, shading rate and other sample rates, file
paths, etc.). A pipeline component can encapsulate these parameter

∗Authors are alphabetically listed. Lewis is the lead author.

changes as a single “interactive” versus “hires” switch and thereby
reduce the potential that some changes are overlooked.

Pipelines are a benefit, but also a problem. A mature pipeline grows
to (literally) millions of lines of code, representing tens of person-
years of work. Pipelines also resist innovation: the introduction of
new software requires not just completing and debugging software,
but also adapting the pipeline to incorporate it. One might say that
a poorly designed pipeline makes a company efficient at doing what
it did in the past.

In this note we consider the (somewhat obvious) observation that
pipelines share many characteristics with programs. This sug-
gests that terms and concepts from programming can be applied to
pipelines—as is already done in practice. It also suggests, however,
that developing a pipeline is intrinsically difficult. Metamathemat-
ical arguments show that programming cannot be fully automated,
hence pipeline development cannot be fully automated too. How-
ever, recent results—which mitigate this negative statement—open
the door to tools allowing significant possibilities of automation.

2 Pipelines are (a lot) like programs

A number of components of pipelines resemble or make use of pro-
gramming constructs, for example:

Iteration. Visual effects involves iterative development. The as-
sets that comprise each shot are iteratively improved and
shown to a visual effects supervisor until approval.

Conditional Branching. Data can conditionally pass through dif-
ferent parts of the pipeline. For example, consider a character
whose clothing is simulated. If the clothing interpenetrates,
the simulation may be rerun with adjusted inputs. However if
the simulation takes hours to run and the shot is due tomor-
row, the shot may instead be sent to the paint department to
fix.

Polymorphism. Level of detail is a type of polymorphism. A sin-
gle model may exist in several different resolutions suitable
for either different view distances, or different purposes (ani-
mation, simulation, rendering), and the pipeline software may
automatically retrieve the correct version for the purpose.

Structures. A character asset may consist of the geometry at var-
ious resolutions, together with associated textures, shaders,
and other things. These objects travel together through the
pipeline, resembling a C++ structure.

Variables. Objects may be retrieved by name from a database.

Specific Algorithms. Pipeline design involves algorithmic
choices. For example, the render queue, and the workflow as
a whole, may be processed as a priority queue (the general
job scheduling problem is known to be NP-hard [Garey and
Johnson 1979]). If N software packages are in use (Light-
wave, Softimage, Houdini, etc.), it will save development
time to have a star topology with a common interchange
format and up to N converters, rather than implementing the

25

up to N(N − 1)/2 converters required to directly convert
every package’s file format into every other.

Parallelism. A good pipeline is designed to allow parallel execu-
tion.

The reader can probably think of additional examples of parallels
and similarities between pipelines and programs.

Conditional branching and variables are generally enough to estab-
lish Turing completeness, so we see that the computational power
of pipelines is equivalent to that of Turing machines. This equiv-
alence is not superficial or accidental. The various programming
constructs listed above were introduced into pipelines in order to
effectively solve the problems at hand.

3 Undecidable problems in mathematics and
programming

Given the analogy between pipelines and programs, we will make
a further comparison, to mathematics. It is possible to setup cor-
respondences between mathematics and computation, for exam-
ple [Svozil 1993]

axioms⇐⇒ program input or initial state
rules of inference⇐⇒ program interpreter

theorem(s)⇐⇒ program output
derivation⇐⇒ computation

Note that there are several ways of defining the correspondence be-
tween formal and computational systems. For example, the Curry-
Howard isomorphism involves “natural deduction style” rather than
“Hilbert style” proofs. Also the division of a computational sys-
tem into “computer” and “program” can be done in different ways.
Regardless, the correspondences can be made rigorous and allow
metamathematical statements from one domain to be translated to
the other.

Metamathematical incompleteness statements describe the ultimate
limits of what can be proved or computed. Curiously, a number of
the incompleteness theorems resemble classic paradoxes. For ex-
ample, the Berry paradox involves a phrase of the form “the small-
est integer that cannot be defined in less than 20 words”, which has
used 12 words to identify the integer in question. This paradox is
related to the Chaitin incompleteness theorem in algorithmic infor-
mation theory [Calude 2002], that says that if a formal system can
be described in n bits, it cannot prove statements that assert that a
particular string (i.e. bitpattern) has algorithmic complexity much
larger than n. Incompleteness in computer science takes the form
of undecidable problems—questions that do not have an algorith-
mic solution. The most (in)famous is the halting problem: there is
no program which can decide in a finite time whether an arbitrarily
given program (as input) eventually stops or not.

The halting problem is occasionally regarded as an isolated math-
ematical curiosity, but, in fact, it is the reason many programming
problems (like debugging) have no algorithmic solutions. In fact
most questions about program and programming are undecidable.
For example Rice’s theorem states that there is no algorithmic way
of deciding any non-trivial externally observable property of pro-
grams. Under straightforward assumptions it is not possible to
objectively estimate the time needed to develop programs [Lewis
2001]. The maximum run time of a program that halts rises faster
than any computable function of the size of that program [Cooper
2004]. Undecidable problems not only exist, but there are “every-
where” [Calude et al. 1994].

For our purposes the Hilbert decision problem—does there ex-
ist an algorithm that can prove or disprove every mathematical
statement?—is the central undecidable problem. The negative
answer—which is a consequence of the undecidability of the halt-
ing problem—was proved by Church and Turing [Cooper 2004].
It shows that mathematics cannot be automated, hence, because
of the mathematics-computation analogy, programming cannot be
fully automated (a result sometimes called sometimes the “full em-
ployment theorem”).

4 Does it matter?

New pipeline development is driven by both desired efficiency
gains and by the need to support tools that solve new problems.
The tools available are getting better and better. If at some hypo-
thetical point in the future there are no new visual effects problems,
pipelines will nevertheless remain in development—until we reach
the point where every movie can be made automatically or in a short
time by a single person.

If the equivalence between pipelines and programs, described
above, is granted, the full employment theorem asserts that pipeline
problem is undecidable: there is no general method to automati-
cally generate pipelines (given desired inputs and outputs) nor a
single “universal” pipeline that can do everything. This is an ab-
stract negative result. Does it matter for the practice of pipeline
development?

The boundary between solvable and undecidable problems is be-
ing mapped with recent results: Most programs which do not
halt quickly, never stop [Calude and Stay 2008]. This fact was
used to design anytime algorithms—programs that exchange exe-
cution time for quality of results [Grass 1996]—which provide ap-
proximate (with arbitrary precision) solutions to the halting prob-
lem [Calude and Desfontaines 2014]. Proof-assistants, like Coq or
Isabelle, are software tools for the development of formal proofs
by human-machine collaboration [Wikipedia 2014]. These positive
results extend the boundary of what is known to be possible and
mitigate the impact of undecidability.

At present our discussion remains general and abstract. Practical
program design debates consider specific questions such as whether
delegation is preferable to inheritance, whether C++ templates are
worth the trouble, or whether Python is better than Perl.1 While
discussing these complexities, it is perhaps easy to imagine that our
problems will be “solved” if the next software system incorporates
better decisions with regard to these polarizing choices. The merit
of examining our problem in full generality is that it abstracts from
these particulars and remind us that programming is intrinsically
hard (while also indicating what will be needed to make profound
progress). This essay has shown that developing pipelines is as hard
as programming and as such it is a problem worthy of significant
resources and expert minds.

References

CALUDE, C. S., AND DESFONTAINES, D., 2014. Anytime al-
gorithms for non-ending computations. U. Auckland CDMTCS
Research Report 463.

CALUDE, C. S., AND STAY, M. A. 2008. Most programs stop
quickly or never halt. Advances in Applied Mathematics 40,
295–308.

1It is.

26

CALUDE, C., JÜRGENSEN, H., AND ZIMAND, M. 1994. Is inde-
pendence an exception? Applied Mathematics and Computation
66, 1, 63–76.

CALUDE, C. S. 2002. Information and Randomness: An Algo-
rithmic Perspective, 2nd ed. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

COOPER, S. 2004. Computability Theory. Chapman Hall/CRC,
London.

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman & Co., New York, NY, USA.

GRASS, J. 1996. Reasoning about computational resource allo-
cation: An introduction to anytime algorithms. Crossroads 3, 1
(Sept.), 16–20.

LEWIS, J. P. 2001. Large limits to software estimation. ACM
Software Engineering Notes 26, 4, 54–59.

SVOZIL, K. 1993. Randomness & Undecidability in Physics.
World Scientific, Singapore.

WIKIPEDIA, 2014. Proof assistant — Wikipedia, the free encyclo-
pedia. Online: accessed 21 June.

27

