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1. Introduction

Randomness is an important resource in science, statistics, cryptography, gambling, medicine, art and politics. Pseudo-
random number generators (PRNGs) – computer algorithms designed to simulate randomness – have been the main, if not 
the only, sources of randomness for a long time, but their quality is weak. As early as 1951 von Neumann realised the 
danger of mistakenly believing that PRNGs produce “true“ randomness [42]: “Anyone who attempts to generate random 
numbers by deterministic means is, of course, living in a state of sin.” Problems with the poor quality PRNGs are well 
known: a classical example is the discovery in 2012 of a weakness in a worldwide-used encryption system which was 
traced to a PRNG [32].

With the development of algorithmic information theory [23,33,25] various classes of (algorithmic) random strings/se-
quences have been studied and von Neumann intuition was rigorously proved in a more general form: mathematically there 
is no ‘true“ random string/sequence [19].

The importance of high quality randomness – which is obvious in cryptography, where good randomness is vital to the 
security of data and communication, but is equally true in other areas ranging from statistics and information science to 
medicine, physics, politics and religion – has driven a recent surge of interest in developing “better than PRNG” random 
number generators, in particular, quantum random number generators (QRNGs) [22,28]. QRNGs are generally considered to 
be, by their very nature, “better than PRNGs” and are expected to “excel” precisely on properties of randomness where 
algorithmic PRNGs obviously fail: incomputability and inherent unpredictability. The formulation “better than PRNGs” can be 
read into two radically different ways: a) “better” than some PRNGs, b) “better” than any PRNGs. Of course, b) is the required 
property.
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To date only one class of QRNGs has been proved to satisfy b) [6,8,30]. This type of QRNG is based on a located 
form [3,5,9,10] of the Kochen-Specker Theorem [29], a result true only in Hilbert spaces of dimension at least three. These 
QRNGs – which locate and repeatedly measure a value-indefinite quantum observable – produce more than incomputable 
sequences (over alphabets with at least three letters); more precisely, they generate sequences having a form of algorithmic 
randomness called bi-immunity [25], that is, sequences for which no algorithm can compute more than finitely many exact 
values. The experimental analysis of 10 samples of 230 binary strings generated with the implementation [30] of the QRNG 
proposed in [6,8] showed incomputability in a weak and not decisive manner. Some possible reasons include a problematic 
branch with probability zero used in the generalised beam splitter – recall, the Kochen-Specker Theorem is false in dimen-
sion 2 –, the not long enough length of samples, and, of course, imperfections in the implementation of the measuring 
protocol [2].

In this paper we improve the QRNG [6,8,30] and propose a new ternary QRNG based on measuring located value 
indefinite observables with probabilities 1/4, 1/2, 1/4. We prove that every sequence generated is maximally unpredictable, 3-
bi-immune, and its prefixes are Borel normal. The ternary quantum random digits produced by the QRNG are algorithmically 
transformed into quantum random bits using an alphabetic morphism which preserves all the above properties.

The paper is organised as follows. Section 2 includes the notation and main definitions. In Section 3 we present the main 
theoretical basis of the QRNG: localising value indefinite observables, and their unpredictability. Section 4 is devoted to the 
blueprint of the original QRNG based on Spin-1; in Section 5 we present the new QRNG. In Section 6 we prove the main 
properties of ternary sequences produced by the QRNG and in Section 7 we introduce the transformation from ternary to 
binary and prove that it preserves all properties proved in the previous section. The last section includes a summary and 
further questions.

2. Notation and definitions

The set of positive integers will be denoted by N . Consider the alphabet Ab = {0, 1, . . . , b −1}, where b ≥ 2 is an integer; 
the elements of Ab are to be considered the digits used in natural positional representations of numbers in the interval [0, 1)

at base b. By A∗
b and Aω

b we denote the sets of (finite) strings and (infinite) sequences over the alphabet Ab . Strings will be 
denoted by x, y, u, w; the length of the string x = x1x2 . . . xm , xi ∈ Ab , is denoted by |x|b = m (the subscript b will be omitted 
if it is clear from the context); Am

b is the set of all strings of length m. Sequences will be denoted by x = x1x2 . . . ; the prefix 
of length m of x is the string x(m) = x1x2 . . . xm . Strings will be ordered quasi-lexicographically according to the natural 
order 0 < 1 < 2 < · · · < b − 1 on the alphabet Ab . For example, for b = 2, we have 0 < 1 < 00 < 01 < 10 < 11 < 000 . . . . We 
assume knowledge of elementary computability theory over different size alphabets [19]. Sequences can be also viewed as 
Ab-valued functions defined on N .

Let B(R) be the class of Borel sets in R, that is, the smallest σ -algebra containing all opens sets. Let (�, F , P ) be a 
probability space. A random variable X : � →R is a function such that for every B ∈ B(R) we have {w ∈ � : X(w) ∈ B} ∈F . 
Furthermore, if for all x, y ∈R, P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y), we say that X, Y are independent random variables. 
By E(X) = ∑

x xP (X = x) we denote the expectation of the random variable X [14]. Let u ∈ A∗
b , u Aω

b = {x ∈ Aω
b : x(|u|) = u}

and consider the smallest σ -algebra B(Aω
b ) generated by the family (u Aω

b : u ∈ A∗
b ). The Lebesgue space (probability) is the 

probability space (Aω
b , B(Aω

2 ), P ) where P (u Aω
b ) = b−|u| [19].

In contrast to the bounds on probability distributions given by Bell Theorem [11,12] under the premise of locality, 
Kochen-Specker Theorem shows that, assuming non-contextuality,1 the Hilbert-space structure of quantum mechanics makes 
it impossible to assign “classical” definite values to all possible quantum observables in a consistent manner. Since such 
a definite value is precisely a (deterministic) hidden variable specifying, in advance, the result of a measurement of an 
observable, the theorem shows that the outcomes of all quantum measurements on a system cannot be simultaneously 
pre-determined.

As is common in modern treatments of the Kochen-Specker Theorem [16,17,37] we focus on one-dimensional (rank-
1) projection observables, and we denote the observable projecting onto the linear subspace spanned by a vector |ψ〉 as 
Pψ = |ψ〉〈ψ |

|〈ψ |ψ〉| . We then fix a positive integer n ≥ 2 and let O  ⊆ {Pψ : |ψ〉 ∈ Cn} be a non-empty set of one-dimensional 
projection observables on the Hilbert space Cn .

Definition 1. A set C ⊂ O is a context of O if C has n elements (i.e. |C | = n) and for all Pψ, Pφ ∈ C with Pψ �= Pφ, 〈ψ |φ〉 = O .

Definition 2. A value assignment function (on O ) is a partial function v : O  → {0, 1} assigning values to some (possibly all) 
observables in O . The partiality of the function v means that v(P ) can be 0, 1 or indefinite.

Definition 3. An observable P ∈ O is value definite (under the assignment function v) if v(P ) is defined, i.e. it is 0 or 1; 
otherwise, it is value indefinite (under v). Similarly, we call O value definite (under v) if every observable P ∈ O is value 
definite.

1 Informally, the property that the outcome of the measurement of a quantum observable is independent of how that value is eventually measured.
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3. Theoretical basis

In this section we present the main theoretical basis of the QRNG.

3.1. Localising value indefiniteness

Consider the following Kochen-Specker assumptions:

• Admissibility: Let O be a set of one-dimensional projection observables on Cn and let v : O  → {0, 1} be a value 
assignment function. Then v is admissible2 if for every context C of O , we have that 

∑
P∈C v(P ) = 1, i.e. only one 

projection observable in a context can be assigned the value 1.
• Non-contextuality of definite values: The outcome obtained by measuring a value definite observable (a pre-existing 

physical property) is non-contextual, i.e. it does not depend on other compatible observables which may be measured 
alongside it.

The fundamental result is:

Theorem 1 (Kochen-Specker [29]). Let n ≥ 3. Then there exists a (finite) set of one-dimensional projection observables O on the Hilbert 
space Cn such that there is no value assignment function v satisfying the following three conditions: i) O is value definite under v, ii) 
v is admissible, iii) v is non-contextual.

Kochen-Specker Theorem shows that, in agreement with quantum mechanics, not every observable can be both non-
contextual and value definite, but it does not describe the extent of this incompatibility. In fact, it has been shown that for 
any sets of observables there exists an admissible assignment function under which the set of observables is value definite 
and at least one observable is non-contextual. That is, the incompatibility between the Kochen-Specker assumptions is not 
maximal, hence not all observables need to be value indefinite.

Why are value indefinite observables important? One reason is that measuring one such observable may produce a random 
outcome. But, to measure a value indefinite observable we have to “effectively find” one, not just know that such an ob-
servable exists as Kochen-Specker Theorem assures. Essentially, to answer the above question in the affirmative, we need 
a constructive form of the Kochen-Specker Theorem allowing to localise a value indefiniteness observable. Motivated by 
Einstein, Podolsky and Rosen definition of physical reality [26, p. 777]:

If, without in any way disturbing a system, we can predict with certainty the value of a physical quantity, then there 
exists a definite value prior to observation corresponding to this physical quantity.

we make the following assumption:

• Eigenstate principle: If a quantum system is prepared in the state |ψ〉, then the projection observable Pψ is value 
definite.

In detail, if a quantum system is prepared in an arbitrary state |ψ〉 ∈ Cn , then the measurement of the observable Pψ

should yield the outcome 1, hence, if Pψ ∈ O , then v(Pψ) = 1.

Theorem 2 (Localised Kochen-Specker [3,7,10]). Assume a quantum system prepared in the state |ψ〉 in a dimension n ≥ 3 Hilbert 
space Cn, and let |φ〉 be any state neither orthogonal nor parallel to |ψ〉 (0 < |〈ψ |φ〉| < 1). If the following three conditions are 
satisfied: i) admissibility, ii) non-contextuality and iii) eigenstate principle, then the projection observable Pψ is value indefinite.

From Theorem 2 we deduce that, given a system prepared in state |ψ〉, a one-dimensional projection observable can 
only be value definite if it is an eigenstate of that observable. Furthermore, for any diagonalisable observable O with 
spectral decomposition O  = ∑n

i=1 λi Pλi , where λi denotes each distinct eigenvalue with corresponding eigenstate |λi〉, O
has a predetermined measurement outcome if and only if each projector in its spectral decomposition has a predetermined 
measurement outcome. Thus, we can generalise our previous result to the outcome of the measurement of an observable 
with non-degenerate spectra. Such generalisation is of particular importance for applying this result to elements of physical 
reality where a measurement is assumed to yield a meaningful result that describes a physical attribute; thus, utilising 
the value assignment function to represent the realisation of a given state whenever the corresponding observable is value 
definite. The latter can be observed as follows.

Let C = {P1, . . . , Pn} be a context of projection observables and let v be a value assignment function such that v(P1) = 1
under C . Since a context is a maximal set of compatible projection observables it follows that, if any pair (P1, Pi) is 

2 In agreement with quantum mechanics predictions.



JID:TCS AID:12591 /FLA Doctopic: Theory of natural computing [m3G; v1.292; Prn:28/08/2020; 15:42] P.4 (1-11)

4 J.M. Agüero Trejo, C.S. Calude / Theoretical Computer Science ••• (••••) •••–•••
measured, then the system will collapse into the eigenstate |φ〉 of the projection observable P1 with eigenvalue 1. It follows 
that, as all observables in C are physically co-measurable and 

∑n
j=1 P j = 1, we deduce that |φ〉 is an eigenstate of Pi with 

corresponding eigenvalue 0; that is, v(Pi) = 0. Similarly, if v(Pi) = 0 for i �= 1, then v(P1) = 1. Hence, the admissibility of v
serves as a generalisation of the sum rule that corresponds to the physical interpretation of the measurement process.

Finally, we can answer the question ‘how “large” or “typical” is the set of value indefinite observables?’

Theorem 3 ([7]). The set of value indefinite observables has constructive Lebesgue measure one, that is, almost all observables are 
value indefinite.

Theorem 2 paved the way to construct a class of QRNGs based on measuring value indefinite observables. How “good” is 
such a QRNG? The answer will use the following

• epr principle: If a repetition of measurements of an observable generates a computable sequence, then these observ-
ables are value definite.

Assume the Eigenstate and epr principles. An infinite repetition of the experiment measuring a quantum value indefinite 
observable always generates an incomputable infinite sequence x1x2 . . . . In fact, a stronger result is true as we will show in 
Section 6.1. Informally, a sequence x is bi-immune if no algorithm can generate infinitely many correct values of its elements 
(pairs, (i, xi)). The formal definition is as follows. A sequence x ∈ Aω

b (b ≥ 2) is bi-immune if there is no partially computable 
function ϕ from N to Ab having an infinite domain dom(ϕ) with the property that ϕ(i) = xi for all i ∈ dom(ϕ) [13]). In the 
binary case we have:

Theorem 4 ([3]). Assume the Eigenstate and epr principles. An infinite repetition of the experiment measuring a quantum value indef-
inite observable in C2 always generates a bi-immune sequence x ∈ Aω

2 .

3.2. Value definiteness and unpredictability

Since probability spaces lie at the core of quantum mechanics, we can describe quantum behaviour in different con-
texts by utilising the probabilistic framework that the theoretical notion of the wave function characterisation provides; 
here, physical attributes correspond to projection operators and their corresponding eigenvalues. However, the use of the 
eigenstate assumption is restricted to contexts that contain the observable Pψ , where |ψ〉 is the state in which the system 
was prepared. For this reason, formalising the notion of predictability with respect to the value that corresponds to a given 
observable is required.

Consider a system that continuously repeats the process of state preparation and measurement, as in [3]. Let x = x1x2 . . .

denote the infinite sequence produced by concatenating the outputs of the measurement performed at each iteration. Let 
O,C be a fixed set of observables and contexts, respectively, with O i, Ci denoting the observable and the corresponding 
context for the i-th measurement. We say that a measurement outcome is predictable if there exists a computable function
f :N ×O × C → {0, 1} such that, for every iteration i we have that f (i, O i, Ci) = xi . Note that if every value of a sequence 
of measurement results is predictable, then the computability of f ensures that there is some function that outputs the 
values xi of x corresponding to each iteration. However, an incomputable f provides no way of obtaining each term of the 
sequence and therefore offers no method of prediction [40]. Finally, following [3], if such function exists, we assume there 
is a definite value associated with the sequence of observables used for computing each term of the function output; that 
is f (i, O i, Ci) = vi(O i, Ci).

Theorem 4 proves this form of unpredictability, but leaves the possibility of finitely many exceptions. An even stronger 
result, which removes this possibility, was obtained by using a non-probabilistic model for unpredictability [8,9]. To this 
aim we consider an experiment E producing a single bit x ∈ {0, 1}; with a particular trial of E we associate the parameter λ
(the state of the universe) which fully describes the trial; λ can be viewed as a resource from which one can extract finite 
information from in order to predict the outcome of the experiment E . The trials of E generate a succession of events of 
the form “E is prepared, performed, the result recorded, E is reset”, iterated finitely many times in an algorithmic fashion.

An extractor is a physical device selecting a finite amount of information from λ without altering the experiment E; it 
produces a finite string of bits 〈λ〉. A predictor for E is an algorithm P E which halts on every input and produces 0 or 1 or
prediction withheld. The predictor P E can use as input the information 〈λ〉, but must be passive, that is, it must not disturb 
or interact with E in any way.

A predictor P E provides a correct prediction using the extractor 〈 〉 for an instantiation of E with parameter λ if, when 
taking as input 〈λ〉, it outputs 0 or 1 (i.e. it does not refrain from making a prediction) and the output is equal to x, the 
result of the experiment. Fix an extractor 〈 〉; the predictor P E is k, 〈 〉-correct if there exists an n ≥ k such that when E
is repeated n times with associated parameters λ1, . . . , λn producing the outputs x1, x2, . . . , xn , P E outputs the sequence 
P E(〈λ1〉), P E (〈λ2〉), . . . , P E(〈λn〉) with the following two properties: (i) no prediction in the sequence is incorrect, and (ii) in 
the sequence there are k correct predictions. The confidence we have in a k, 〈 〉-correct predictor increases as k → ∞. If P E
is k, 〈 〉-correct for all k, then P E never makes an incorrect prediction and the number of correct predictions can be made 
arbitrarily large by repeating E enough times.
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Fig. 1. QRNG setup proposed in [3]; the values 1
2 , 12 (in blue) correspond to the outcome probabilities. (For interpretation of the colours in the figure(s), 

the reader is referred to the web version of this article.)

Fig. 2. Blueprint for a new QRNG; the values 1
4 , 1

2 , 1
4 (in blue) correspond to the outcome probabilities of setups prepared in the state |ψ〉 = |±1〉.

If P E is not k, 〈 〉-correct for all k, then we cannot exclude the possibility that any correct prediction P E makes is simply 
due to chance. Hence, we say that the outcome x of a single trial of the experiment E performed with parameter λ is 
predictable (with certainty) if there exist an extractor 〈 〉 and a predictor P E which is k, 〈 〉-correct for all k, and P E (〈λ〉) = x.

Consider an experiment E performed in dimension n ≥ 3 Hilbert space in which a quantum system is prepared in a state 
|ψ〉 and a value indefinite observable Pφ is measured producing a single bit x.

Theorem 5 ([8,9]). Assume the epr and Eigenstate principles. Let x be an infinite sequence obtained by measuring a quantum value 
indefinite observable in C2 in an infinite repetition of the experiment E. Then no single bit xi can be predicted.

4. A QNRG based on localised value indefiniteness

A blueprint for a QRNG based on Theorem 2 was proposed in [3] using a generalised beam splitter and a physical re-
alisation with superconducting transmon qutrits was given in [30]. As Theorems 1 and 2 are true only in Hilbert spaces of 
dimension n ≥ 3, any QRNG based on them produces sequences over alphabets with at least three elements. As a conse-
quence, a QRNG using the classical beam splitter is not certified by these theorems.

The QRNG operates in a succession of events of the form “preparation, measurement, reset”, iterated indefinitely many times in an 
algorithmic fashion, [3]. Let x = x1x2 . . . denote the infinite sequence produced by concatenating the consecutive outputs of 
infinitely many events as described above.

From Theorem 2 a system prepared on an arbitrary state |ψ〉 must have a definite value associated to the operator Pψ . 
Hence, for spin-1 particles prepared in the state Sz = 0, this operator is value definite. As the possible outcomes of an 
observable O correspond to the eigenvalues o of the projectors that describe the spectral decomposition O  = ∑

o oPo , we 
deduce that the state |Sz = 0〉 is an eigenstate of the projector Sx = 0, i.e. |0〉 〈0|, with eigenvalue 0; so, the probability of 
obtaining this outcome is 0. For this reason, Sx = ±1 are the only results we need to consider for now. Furthermore, we 
have that 〈Sz|Sx〉 = 〈0|±1〉 = 1√

2
; so, by the previous results, it is not possible to assign a definite value to Sx = ±1.

To date, this QRNG is the only example of a random generator provably better than any PRNG.
An experimental study [4] of the realisation [30] of this QRNG has used various tests to compare it with arguably the best 

PRNGs. While the analysis failed to observe a strong advantage of the quantum random sequences due to incomputability, 
the results are informative: some of the test results are ambiguous and require further study, others highlight difficulties that 
can guide the development of future tests of algorithmic randomness and incomputability, and, more importantly, ideas for 
improvement of the design of QRNG based on Theorem 2 have emerged. One such idea, developed in the following section, 
is to eliminate the problematic branch Sx = 0 in Fig. 1 which has probability zero. Why problematic? In standard measure-
theoretic formulation of probability [27] it is possible for a non-empty event to have probability zero, hence, events of 
probability zero are not necessarily impossible.

5. A new QRNG based on localised value indefiniteness

To address the above problem we propose a new QRNG setup, based on the blueprint, with a different state preparation, 
see Fig. 2.
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5.1. A generalised spin observable

The property spin (S) is the intrinsic angular momentum characteristic of elementary particles. By deriving the spin state 
operator Sx we can control the effect of the preparation state |Sz〉 on the outcome probabilities. We refer to the eigenvalue 
s of S2 as the spin (quantum) number [36,41]. For a spin-1 particle, the eigenvalues of Sz are 1, 0, −1, thus introducing an 
orthonormal Cartesian standard basis {|1〉 , |0〉 , |−1〉} defined by Sz |m〉 = h̄m |m〉 it follows that

Sz = h̄

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ .

From S± |m〉 = √
s(s + 1) − m(m ± 1) |m ± 1〉 we obtain the raising and lowering operators for s = 1

S+ |m〉 = h̄
√

2 − m(m + 1) |m + 1〉 ,

S− |m〉 = h̄
√

2 − m(m − 1) |m − 1〉 .

Consequently, we have

S+ =
⎛
⎝ 〈1| S+ |1〉 〈1| S+ |0〉 〈1| S+ |−1〉

〈0| S+ |1〉 〈0| S+ |0〉 〈0| S+ |−1〉
〈−1| S+ |1〉 〈−1| S+ |0〉 〈−1| S+ |−1〉

⎞
⎠ = √

2h̄

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ ,

S− =
⎛
⎝ 〈1| S− |1〉 〈1| S− |0〉 〈1| S− |−1〉

〈0| S− |1〉 〈0| S− |0〉 〈0| S− |−1〉
〈−1| S− |1〉 〈−1| S− |0〉 〈−1| S− |−1〉

⎞
⎠ = √

2h̄

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠ .

Furthermore, since S± = Sx ± i S y, we get Sx = 1
2 (S+ + S−) and S y = 1

2i (S− − S+), it follows that

Sx = 1√
2

h̄

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , S y = 1√

2
h̄

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ .

Thus, the generalised Pauli matrices for a spin-1 particle are given by S = (Sx, S y, Sz) = h̄σσσ :

σx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , σy = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , σz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ .

We can now consider the description of spin states that point in arbitrary directions specified by the unit vector 
u = (ux, u y, uz) = (sin θ cosφ, sin θ sin φ, cos θ), where θ, φ are the polar and azimuthal angles; we then define the spin 
observable operator S as a triplet of operators S = (Sx, S y, Sz) = h̄σσσ . Then, by adopting units in which h̄ is numerically 
equal to unity, in order to reduce the amount of numerical clutter, we obtain the generalised spin observable operator that 
describes the measurement context:

S(θ,φ) = u · S =

⎛
⎜⎜⎝

uz
ux−iu y√

2
0

ux+iu y√
2

0 ux−iu y√
2

0 ux+iu y√
2

−uz

⎞
⎟⎟⎠ ,

that is,

S(θ,φ) =

⎛
⎜⎜⎝

cos(θ)
e−iφ sin(θ)√

2
0

eiφ sin(θ)√
2

0 e−iφ sin(θ)√
2

0 eiφ sin(θ)√
2

− cos(θ)

⎞
⎟⎟⎠ .

Note that Sz is given by S(0, 0) and Sx by S( π , 0).
2



JID:TCS AID:12591 /FLA Doctopic: Theory of natural computing [m3G; v1.292; Prn:28/08/2020; 15:42] P.7 (1-11)

J.M. Agüero Trejo, C.S. Calude / Theoretical Computer Science ••• (••••) •••–••• 7
5.2. State preparation and outcome probabilities

By considering the orthonormal Cartesian standard basis |1〉 = (1, 0, 0), |0〉 = (0, 1, 0) and |−1〉 = (0, 0, 1) we can obtain 
the eigenvalues {−1, 0, 1} of Sx by solving the equation

det(Sx − Iλ) =

∣∣∣∣∣∣∣
−λ 1√

2
0

1√
2

−λ 1√
2

0 1√
2

−λ

∣∣∣∣∣∣∣ = 0,

that is, −λ(λ2 − 1
2 ) + 1

2 λ = 0. Consequently we have:

Sx |Sx : 1〉 = |Sx : 1〉 =⇒ |Sx : +1〉 = 1
2 (1, 

√
2, 1),

Sx |Sx : 0〉 = 0 =⇒ |Sx : 0〉 = 1√
2
(1, 0, −1),

Sx |Sx : −1〉 = − |Sx : −1〉 =⇒ |Sx : +1〉 = 1
2 (1, −√

2, 1).

We are now able to form the unitary matrix Ux corresponding to the spin state operator Sx

Ux = 1

2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠ .

The fact that Ux can be decomposed into two-dimensional transformations [24] enables the physical realisation of the 
unitary operator by a lossless beam splitter [38,43] leading to the implementation of a QRNG, as in [30], with the new 
outcome probabilities. For simplicity we adopt the following convention:

|1x〉 = |Sx : +1〉 = 1
2 |1〉 + 1√

2
|0〉 + 1

2 |−1〉,

|0x〉 = |Sx : 0〉 = 1√
2

|1〉 − 1√
2

|−1〉,

|−1x〉 = |Sx : +1〉 = 1
2 |1〉 − 1√

2
|0〉 + 1

2 |−1〉.

Consider the probability distribution 1
4 , 12 , 14 . We can identify a possible corresponding state preparation |ψ〉 by solving 

the following system of equations:

| 1
2 x + 1√

2
y + 1

2 z| = 1
2 ,

| 1√
2

x − 1√
2

z| = 1√
2

,

| 1
2 x − 1√

2
y + 1

2 z| = 1
2 ,

where x = 〈1|ψ〉 , y = 〈0|ψ〉 , z = 〈−1|ψ〉. Setting y = 0, z = 1 − x satisfies such constrains and provides |1〉 , |−1〉 and |+〉−|−〉√
2

as preparation state candidates. Since |1〉 and |−1〉 are eigenstates of Sz they represent a natural choice for our QRNG 
construction. We ensure the validity of these states by first noting that

〈1x|1〉 = 1
2 , 〈1x|−1〉 = 1

2 ,
〈0x|1〉 = 1√

2
, 〈0x|−1〉 = −1√

2
,

〈−1x|1〉 = 1
2 , 〈−1x|−1〉 = 1

2 .

Thus, for |ψ〉 = |±1〉 we have

〈1x|ψ〉 = 1

2
, 〈0x|ψ〉 = ± 1√

2
, 〈−1x|ψ〉 = 1

2
.

Hence, by the third postulate of quantum mechanics, we obtain the following probabilities:

p(Sx,1) = | 〈1x|ψ〉 |2 = 1
4 ,

p(Sx,0) = | 〈0x|ψ〉 |2 = 1
2 ,

p(Sx,−1) = | 〈−1x|ψ〉 |2 = 1
4 .

From these results it is clear that the preparation states |1〉 and |−1〉 for obtaining the outcome probabilities 1
4 , 12 , 14

satisfy the requirements of Theorem 2. Furthermore, as only the preparation state |Sz〉 is modified, the unitary matrix Ux
remains unaltered. Thus, enabling the physical realisation of this QRNG.
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In what follows by QRNG will mean the QRNG constructed in this section.

6. Ternary quantum random sequences

In this section we study the main properties of quantum random sequences produced by the proposed QRNG: 3-bi-
immunity, unpredictability and Borel normality.

6.1. Ternary 3-bi-immunity

Theorem 4 holds true also for ternary quantum random sequences, but a stronger result is true. Informally, a sequence 
x ∈ Aω

b is b-bi-immune if for every a ∈ Ab , no algorithm can generate infinitely many pairs (i, xi = a) or (i, xi �= a). Formally, 
following [20], we say that a sequence x ∈ Aω

b is b-bi-immune if for every a ∈ Ab the support x−1(a) = {i ∈ N | xi = a} is 
bi-immune in the sense of computability theory [39], i.e. the set and its complement contain no infinite computable subset. 
Obviously, b-bi-immunity is stronger than bi-immunity which is stronger than incomputability.

Consider a ternary sequence x = x1x2 . . . ∈ Aω
3 generated by the QRNG. Then, for every a ∈ A3 the set x−1(a) = {i ∈

N | xi = a} and its complement contain no infinite computable subset because otherwise a definite value would need to 
be assigned to the observables corresponding to the measurement outputs contradicting the construction of the QRNG 
(Theorem 2). We have:

Theorem 6. Assume the Eigenstate and epr principles. Then, every sequence generated by the QRNG is 3-bi-immune.

It is seen that the particular dimension 3 plays no role, so a stronger form of Theorem 4 is true:

Theorem 7. Assume the Eigenstate and epr principles. An infinite repetition of the experiment measuring a quantum value indefinite 
observable in Cb always generates a b-bi-immune sequence x ∈ Aω

b .

6.2. Ternary unpredictability

It is easy to check that the proof of Theorem 5 works not only for the binary case, but for an arbitrary alphabet Ab , 
b ≥ 2. In particular we have

Theorem 8. Assume the epr and Eigenstate principles. Let x be an infinite sequence obtained by measuring a quantum value indefinite 
observable in Cb in an infinite repetition of the experiment E. Then no single bit xi can be predicted.

Corollary 1. Assume the epr and Eigenstate principles. Then, no single digit of every sequence x ∈ Aω
3 generated by the QRNG can be 

predicted.

7. Binary quantum random sequences

As in most applications one needs binary random strings, in this section we propose an algorithm to transform ternary 
sequences into binary ones and, as in Section 6, we study their bi-immunity, unpredictability and Borel normality.

7.1. From ternary to binary sequences

We give a simple algorithm to transform a ternary sequence into a binary sequence. The method is an alphabetic mor-
phism ϕ : A3 → A2

ϕ(a) =

⎧⎪⎨
⎪⎩

0, if a = 0,

1, if a = 1,

0 if a = 2,

(1)

which can be extended sequentially for strings, y(n) = ϕ(x(n)) = ϕ(x1)ϕ(x2) . . . ϕ(xn) and sequences y = ϕ(x) = ϕ(x1)ϕ(x2)

. . . ϕ(xn) . . . .

7.2. Binary 2-bi-immunity

To prove 2-bi-immunity we use Theorem 6 and the following:

Theorem 9 ([20]). Consider b ≥ 3 and an alphabetic morphism ϕ of Ab onto Ab−1 . Then for every b-bi-immune sequence x ∈ Aω
b , the 

sequence ϕ(x) ∈ Aω is (b − 1)-bi-immune.
b−1
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Corollary 2. The alphabetic morphism ϕ defined by (1) converts a 3-bi-immune sequence into a 2-bi-immune sequence.

7.3. Binary unpredictability

Theorem 10. Assume the epr and Eigenstate principles. Let y = ϕ(x), where x ∈ Aω
3 is a ternary sequence generated by the QRNG and 

ϕ is the alphabetic morphism defined in (1). Then, no single bit of y ∈ Aω
2 can be predicted.

Proof. Let y be a sequence as in the statement above. Fix an extractor 〈 〉, and assume for the sake of contradiction that 
there exists a predictor P E for y which is k, 〈 〉-correct for all k ≥ 1. Since P E never makes an incorrect prediction, each of its 
predictions is correct with certainty, so the algorithm P E correctly and deterministically predicts the bits of y, contradicting 
Corollary 2. A more physical explanation of this mathematical conclusion comes from the epr principle: P E predictions 
correspond to a value definite property of the system measured, i.e. the QRNG, which contradicts Theorem 4. �
7.4. Uniform distribution and Borel normality

Recall that for b ≥ 2, Ab = {0, 1, 2, . . . , b − 1}. Fix now an integer m > 1 and consider the alphabet Am
b = {a1, . . . , abm }

of all strings x ∈ A∗
b with |x|b = m, ordered lexicographically. A string x ∈ A∗

b will be denoted by xm when we emphasise 
that it belongs to (Am

b )∗ . Take for example A2 = {0, 1}, m = 2, A2
2 = {00, 01, 10, 11}; the string x = 0010101110 ∈ A∗

2 will be 
denoted by x2 = (00)(10)(10)(11)(10) when considered in A2

2. Clearly, |x|2 = 10 and |x2|4 = 5. In the same way a sequence 
x ∈ Aω

b will be written as xm when considered in (Am
b )ω .

Let x ∈ Aω
3 and consider the random variable Xn(x) = xn on the probability space (Aω

3 , B(Aω
3 ), P3), where P3 is 

the probability distribution of the QRNG. For simplicity we will write Xn instead of Xn(x) unless clarity suffers. Then 
X1, X2, . . . , Xn, . . . is sequence of random variables mapping the sequence x to real-valued independent measurement out-
comes, hence, it is a sequence of independent random variables with P3(Xi = 1) = 1

2 and P3(Xi = 0) = P3(Xi = 2) = 1
4 . 

If x ∈ Aω
3 , then y = ϕ(x) = ϕ(x1)ϕ(x2) · · · ∈ Aω

2 , so we can consider the random variable Yi(y) = yi . Since the ran-
dom variables Xi correspond to independent events, we have that P3(Yi = 1) = P3(Xi = 1) = 1

2 and the expected value 
E3(Yi = 0) = P3(Xi = 0) +P3(Xi = 2) = 1

2 . Note that Yi takes values in A2 with equal probabilities and E(Yi) = 0 ·P (Yi =
0) + 1 · P (Yi = 1) = 1

2 . Thus Y1, Y2, . . . , Yn, . . . is an independent and identically distributed (i.i.d.) sequence of random 
variables with uniform distribution, i.e. in the Lebesgue probability space (Aω

2 , B(Aω
2 ), P ).

Is every sequence y Borel normal? To answer this question let’s recall the definition of Borel normality. Let Ni(x) be the 
number of occurrences of i ∈ Ab in the string x ∈ A∗

b and for every u ∈ Am
b let Nm

u (xm) be the number of occurrences of 
u in the string xm ∈ (Am

b )∗ . In the example above N1
0(x) = N1

1(x) = 5 and N2
11(x2) = 1, N2

10(x2) = 3, N2
01(x2) = 0. There are 

strings x ∈ A∗
b for which xm does not exist for some, even all, m (for example when m is prime), but for all m and x ∈ Aω

b
the sequence xm exists.

Recall that for x ∈ Aω
b and n ≥ 1, x(n) = x1x2 . . . xn ∈ A∗

b . The sequence x is called m-Borel normal (m ≥ 1) in case for 
every u ∈ (Am

b )∗ one has:

lim
n→∞

Nm
u (xm(� n

m �))
� n

m � = 1

bm
.

The sequence x ∈ Aω
b is called Borel normal if it is Borel m-normal, for every natural m ≥ 1. In particular, a sequence x is 

Borel 1-normal when for every a ∈ Ab we have:

lim
n→∞

Na(x(n))

n
= 1

b
.

We can generalise this construction of the i.i.d. random variables (Yi) by considering bit strings of arbitrary length m ≥ 1
and then use the Strong Law of Large Numbers [14] to get that with probability one every bit sequence produced by the QRNG is 
Borel normal. However, this result gives no new information as Borel Law of Large Numbers [15] states that with probability 
one every bit sequence is Borel normal. To get more insight we turn to a finite version of Borel normality [18] to analyse 
this property for prefixes of an arbitrary bit sequence produced via the ternary sequence generated by the QRNG.

For every ε > 0 and integer m > 1 we say that a string x ∈ A∗
2 is Borel normal with accuracy (m, ε) if∣∣∣∣∣ Nm

u (xm(� |x|2
m �))

� |x|2
m � − 2−m

∣∣∣∣∣ ≤ ε, (2)

for each u ∈ Am
2 and 1 ≤ m ≤ log2 log2 |x|2.

It is useful to consider as ε a computable function of |x|2 converging to zero when |x|2 to infinity. For example, in [18,19]

the accuracy is 
√

log2 |x|2
|x|2 and in [4] it is 1

log2 |x|2 . Almost all algorithmic random strings of any length are Borel normal with 
these accuracies [18,19]. Furthermore, if all prefixes of a bit sequence are Borel normal, then the sequence itself is also Borel normal.
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Lemma 1.
Let x ∈ Aω

2 be a ternary sequence generated by the QRNG and let y = ϕ(x). Then for every m > 1, the probability that y(m) is Borel 

normal with accuracy 
(

m,

√
log2 |x|2

|x|2

)
is at least 1 − 1√

log2 m
.

Proof. Using [19, Lemma 5.43] we deduce that for every m > 1,

#

{
z ∈ Am

2 | z is not Borel normal with accuracy

(
m,

√
log2 |x|2

|x|2

)}

≤ 2m√
log2 m

,

hence the probability that y(m) is Borel normal with accuracy 
(

m,

√
log2 |x|2

|x|2

)
is greater or equal to

1 − 1√
log2 m

. � (3)

We note that the probability (3) increases with m but this is not enough to deduce that y = ϕ(x) is Borel normal: we 
only get Borel normality with probability one. With larger and larger probabilities the prefixes of y are Borel normal, a 
property which is useful for practical purposes – when only finitely many bits of y can be computed – and this property 
can be tested (and it was tested in [21,35,4]).

8. Conclusions

We have proposed a new ternary QRNG based on measuring located value indefinite observables and proved that every 
sequence generated is maximally unpredictable, 3-bi-immune (a stronger form of bi-immunity), and its prefixes are Borel 
normal. The ternary quantum random digits produced by the QRNG are algorithmically transformed into quantum random 
bits using an alphabetic morphism which preserves all the above properties. One important question remains to be studied: 
how various forms of measurement error affect the properties of the quantum random bits obtained with this QRNG, 
see [1,2,34]. The QRNG proposed in this paper will be realised physically with qutrits with a method similar to the one 
used in [30] and the quality of randomness of samples of strings of length 232 will be tested in comparison with strings 
of pseudo-random bits, produced by the best available pseudo-random number generators, using various methods including 
those in [4].

One referee asked the following interesting question. Suppose a randomness test rejects the hypothesis of randomness 
for many long strings of quantum random bits generated by the proposed QRNG. Does this fact refute the corresponding 
physical theory on which the QRNG is based on? Such an approach may be attractive to physicists, because it is somewhat 
cheaper than other sophisticated precision experiments designed to test the validity of quantum mechanics. Tentatively 
the answer is negative. First, theoretically, that is, ignoring a whole host of possibly erroneous hypotheses entering the 
empirical interpretation, every test of randomness applies to finitely many, admittedly, very long, strings of quantum random 
bits, so it does not prove non-randomness, which is an asymptotic property of the infinite sequences quantum random 
bits. Second, following [31], we would check for a bug in the QRNG implementation and/or some questionable/flawed 
assumptions implicitly made in its construction. Third, if no issues were found with the implementation and the test is 
failed in many cases on a large variety of very long strings obtained with different QRNGs based on the same theory, then 
the theoretical assumptions made in Section 3 would be scrutinised.
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