
Math. Struct. in Comp. Science (2010), vol. 21, pp. 1–7. c© Cambridge University Press 2010
doi:10.1017/S0960129510000344

A note on accelerated Turing machines1

C R I S T I A N S. C A L U D E† and L U D W I G S T A I G E R‡2

†Department of Computer Science, The University of Auckland,3
Private Bag 92019, Auckland, New Zealand4
Email: cristian@cs.auckland.ac.nz5
‡Martin-Luther-Universität Halle-Wittenberg,6
Institut für Informatik, D - 06099 Halle, Germany7
Email: staiger@informatik.uni-halle.de8

Received 22 April 2009; revised 10 June 20109

In this paper we prove that any Turing machine that uses only a finite computational space10
for every input cannot solve an uncomputable problem even when it runs in accelerated11
mode. We also propose two ways to define the language accepted by an accelerated Turing12
machine. Accordingly, the classes of languages accepted by accelerated Turing machines13
are the closure under Boolean operations of the sets Σ1 and Σ2.14

1. Accelerated Turing machines15

‘Acceleration’ was first discussed by Weyl (Weyl 1949) in 1927 (and independently by16
Blake (Blake 1926) and Russell (Russell 1936)) in the form of the potential realisation of17
a process in which each step takes half of the time of the previous step. Copeland (2002)18
and Stewart (1991) applied this idea to Turing computations. An accelerated Turing19
machine (sometimes called a Zeno machine) is a Turing machine that takes 2−n units20
of time (say seconds) to perform its nth step; we assume that steps are in some sense21
identical except for the time taken for their execution. Such a machine can run an infinite22
number of steps in one unit of time. Accelerated Turing machines have been studied23
by various authors including Barrow (Barrow 2005), Boolos and Jeffrey (Boolos and24
Jeffrey 1980), Calude and Păun (Calude and Păun 2004), Ord (Ord 2002), Potgieter25
(Potgieter 2006), Shagrir (Shagrir 2005; 2004) and Svozil (Svozil 1998).26

The main feature of an accelerated Turing machine is its ability to compute an infinite27
sequence of steps in a finite time, thus allowing it to solve uncomputable problems.28
For example, the following (informal) accelerated Turing machine can solve the halting29
problem of an arbitrarily given Turing machine T and input w in finite time:30

begin program31
write 0 on the first position of the output tape;32
set i = 1;33
begin loop simulate the first i steps of T on w;34

if T(w) has halted, then write 1 on the35
first position of the output tape;36
i = i + 1;37

end loop38
end program39

C. S. Calude and L. Staiger 2

By inspecting the first position of the output tape we need one unit of time to run40
the above machine in order to decide whether T(w) stops or not. Note that Svozil41
(Svozil 1998) proved that the halting problem for accelerated Turing machines is not42
decidable by any accelerated Turing machine. Relativistic computation offers a physical43
model for acceleration (Hogarth 1992; Etesi and Németi 2002; Andréka et al. 2006).44

But are accelerated Turing machines physically possible? This is a challenging prob-45
lem discussed by various authors (Floridi 2004). In this paper we contribute a small46
result to this discussion by examining the computational space required by an (acceler-47
ated) Turing machine running an infinite computation: is it finite or not? This question48
was posed by Fearnley to the first author (Fearnley 2008).49

2. Is the space used by an accelerated Turing Machine always finite?50

Let us start with the following informal example:51

set i=0;52
begin loop i=i+1;53
end loop54

It is clear that the accelerated Turing machine executing the above set of instructions55
needs an infinite computational space. Is this just an accident or does it indicate a more56
general situation?57

Before being tempted to give a hasty answer, let us note that the computation is58
infinite for the following set of instructions, but requires only a finite amount of space:59

set i=1;60
while (i > 0) do i=1;61
end while62

In order to answer the above question, we fix a formal model of a Turing machine and63
state a few general facts. We assume familiarity with the basics of Turing computability64
as in, for example, Sipser (2006) and Wagner and Wechsung (1986).65

Let M = (X, Γ, S, s0, sa, !, δ) be a Turing machine in which X is the input alphabet,66
Γ ⊃ X is the working tape alphabet, S is the set of states, s0 is the initial state, sa is the67
accept state, ! ∈ Γ \ X is the blank symbol† and δ is the (partial) transition function. We68
assume that the Turing machine has one input read-only tape (on which the input has69
initially been written) and k, k " 1 working tapes. If we need an output tape (for writing70
the results of computations), we use working tape k. The machine starts its processing71
in state s0 by scanning the first symbol of the input word.72

A configuration of the Turing machine with k working tapes on input x is a 2k + 2-73
tuple (i, s, u1, v1, . . . , uk, vk) where i, 0 # i # |x| + 1 denotes the position of the head on74
the input tape, s is the current state and uj ∈ Γ∗ and vj ∈ Γ∗, uj /∈ ! · Γ∗, vj /∈ Γ∗ · ! are75
the contents of the working tape j, 1 # j # k to the left or right, respectively, of the head76
position.77

† We explicitly exclude the blank symbol from the input alphabet.

A note on accelerated Turing machines 3

The successor configuration κ′ of a configuration κ is derived in the usual way for78
multi-tape Turing machines (cf. Balcázar et al. (1995) and Wagner and Wechsung (1986)).79

The computation of M on x started in s0 is a sequence of configurations starting with80
κ0 = (1, s0, ε, . . . , ε), each of which is a successor of its predecessor.81

A word x is accepted by M if the computation of M started in s0 on x stops in sa. The82
language accepted by M is the set of words accepted by M.83

Let M = (X, Γ, S, s0, sa, !, δ) be a Turing machine and x be an input word. We define84
the computational space used by M on x, spaceM(x), to be the (finite or infinite) number85
of cells used by M during its computation on x (or, with input x); a cell used once is86
counted as used. Obviously, if spaceM(x) is finite, the computation process as described87
above can have only a finite number of different configurations. This observation will88
be crucial for our further considerations.89

The function timeM(x) denotes the number of steps executed by M on input x (see90
Balcázar et al. (1995) and Wagner and Wechsung (1986)). We use M(x) < ∞ to denote91
the fact that M stops on x. Care should be taken not to confuse our space function92
spaceM with the space complexity usually used in complexity theory (Wagner and Wech-93
sung 1986), which is defined by94

sM(x) =
{

spaceM(x) if M(x) < ∞
∞ otherwise .

(1)

Clearly, spaceM(x) < ∞ whenever M(x) < ∞, and M(x) = ∞ if and only if timeM(x) =95
∞ if and only if sM(x) = ∞.96

The halting problem for a particular Turing machine M is the problem of deciding given x97
whether M(x) < ∞. It is well known that the halting problem for most Turing machines98
M is undecidable.99

Following the argument of Balcázar et al. (1995, Lemma 2.25), one could prove that if100
for a computable function f : N → N we have spaceM(x) # f (|x|) whenever M halts101
on x, then the halting problem for this particular machine M is decidable. We show that102
the computable upper bound for spaceM requirement can be dropped.103

However, we start with a more general result.104

Theorem 1. There is a uniformly effective procedure that transforms every Turing105
machine M into a machine DM that accepts the same inputs as M and has the property106
that DM halts on all inputs x such that spaceM(x) < ∞.107

Proof. The machine DM works as follows. It runs the machine M on input x and108
simultaneously keeps track of a list of all configurations the machine M has run through.109

Three cases are possible:110

(1) If M stops, then DM stops too, and accepts x if and only if M accepts x.111
(2) As soon as one configuration appears twice in the list, DM stops and rejects the input.112
(3) If M does not stop and no configuration is repeated, then DM runs indefinitely.113

To prove the assertion, it suffices to note that, since M is a deterministic machine, if114
spaceM(x) < ∞ and the computation is infinite, then necessarily one configuration is115

C. S. Calude and L. Staiger 4

repeated and thus the sequence of configurations is eventually periodic; in particular,116
no new configuration will appear.117

The same idea can be used to prove the following result.118

Theorem 2. If for every x, spaceM(x) < ∞, then the halting problem for M is decidable.119

Proof. Bearing in mind the proof of Theorem 1, we construct an observer Turing120
machine OM that lists all configurations of M generated by the computation M(x) and121
continues as follows:122

(1) If M stops on x, then OM stops too and declares M(x) < ∞.123
(2) If M does not stop on x, then on the first repetition in the list of configurations124

generated by M(x) the machine OM stops and declares that M(x) = ∞.125

Corollary 3. If the halting problem for M is undecidable, then {x ∈ X∗ : spaceM(x) =126
∞} '= !.127

Corollary 4. The set {(M, x) : M is a Turing machine, x ∈ X∗, spaceM(x) < ∞} is128
computably enumerable but not computable.129

As Corollary 4 shows, our decidability result (Theorem 2) for Turing machines using130
only a finite amount of space does not allow us to solve the general halting problem:131
given a pair (M, x), decide whether the machine M halts on x. Following a suggestion132
of one of the referees, we mention that the following weaker versions of this problem133
are decidable.134

Theorem 5. Let f : N → N be a computable function. Then there is a Turing135
machine D that, given a pair (M, x), decides whether the machine M halts on x in space136
spaceM(x) # f (|x|).137

If, moreover, f is space constructible and f (n) " log2 n, then this decision procedure138
runs in space† bounded by spaceD(x) = sD(x) # f (|x|).139

Here, as usual, a function f : N → N is said to be space constructible if there is a Turing140
machine Mf that maps the binary expansion bin(n) of n to the binary expansion of f (n)141
using space sMf (bin(n)) # |bin(f (n))| # log2(f (n)) + 1 only.142

A Turing machine M running in ‘accelerated mode’ is denoted by AM. In other words,143
M and AM have the same description, but M runs in normal mode, that is, each instruc-144
tion is executed in a fixed unit of time, while AM runs in an accelerated mode. Observe145
that M(x) = ∞ if and only if timeM(x) = ∞ if and only if timeAM (x) = 1. The function146
timeM classically counts the number of steps executed by M, while timeAM measures the147
length of a time interval; with the assumption that each step takes precisely one unit of148
time, these functions become essentially equivalent.149

There is a similarity between computational time and space, but this parallel is not150
perfect. For example, it is not true that an accelerated Turing machine that uses un-151
bounded space has to use an infinite amount of space for some input (as appears to be152

† See Equation (1) for the function sD .

A note on accelerated Turing machines 5

claimed in Ord (2002, page 24)). The reason is that the space used by the machine on153
every input x can be finite, although it grows indefinitely with |x|.154

Let χM : X∗ → {0, 1} be the function defined by155

χM(x) =
{

1 if M(x) < ∞
0 otherwise.

This function can always be computed by an accelerated Turing machine AM′ in finite156
time†. If the computational space is finite for every input, then acceleration does not157
add computational power.158

Corollary 6. Let AM be an accelerated Turing machine with spaceAM
(x) < ∞ for all159

inputs x. Then the function χM is Turing computable. The Turing machine computing160
χM is not necessarily M.161

3. Computational power162

How can we use accelerated Turing machines to cross the Turing barrier, more precisely,163
to accept languages other than computably enumerable ones? A proposal based on164
physical considerations to use accelerated Turing machines with an oracle provided165
by another accelerated Turing machine was made in (Wiedermann and van Leeuwen166
2002). Here we pursue a different approach dating back to the late 1970s in which167
infinite acceptance processes for Turing machines were considered (Cohen and Gold168
1978; Landweber 1969; Staiger and Wagner 1977).169

These processes consider acceptance conditions based on the set of states occurring170
or occurring infinitely often during the computation process. To this end, we pair the171
machine M with one or two observer machines M′ and M′′. There are two ways to172
observe the computation of M and, consequently, decide its output:173

(1) The output is based on the set of states occurring during the computation:174
The machine M′ simply collects the (finite) set of states Sx occurring during M’s175
computation process on input x.176

(2) The output is based on the set of states occurring infinitely often during the177
computation:178
During the computation of M on x, the first observer machine M′ writes into cell179
i of its output tape successively (a symbol denoting) the set of states Sx(i, t) the180
machine M runs through starting from step i up to step t. Thus, after finishing its181
work, cell i contains (a symbol denoting) the set of states M has run through starting182
from moment i on. This sequence of sets is non-increasing, so the second observer183
machine M′′ can compute its limit Sx.184

In both cases, the input word x is accepted according to whether Sx satisfies a previously185
given condition, which is described below.186

The processes considered here may or may not stop after finitely many steps. To187
treat both cases in a uniform way, we assume in the first case that the last state is188

† AM′ is not necessarily equal to AM .

C. S. Calude and L. Staiger 6

repeated indefinitely. In this way, we do not need to test whether the computation of M189
eventually stops or not, so we avoid paradoxes like the Thompson lamp (Svozil 2009).190

A detailed account of such acceptance processes is given in the survey papers En-191
gelfriet and Hoogeboom (1993) and Staiger (1997). We use ran(M, x) and in(M, x) to192
denote the set of states Sx of M occurring and occurring infinitely often, respectively, in193
the computation process on input x. For an accelerated Turing machine M = (X, Γ, S, s0,194
sa, !, δ) and a subset T ⊆ 2S, we define the following languages:195

ATran(M,S) = {x : ran(M, x) ∈ T } (2)

ATin(M,S) = {x : in(M, x) ∈ T }. (3)

Let Σ1, Π1, Π2 and Σ2 be the first classes of the arithmetical hierarchy of languages196
(Rogers 1967; Wagner and Wechsung 1986). In particular, Σ1 is the class of computably197
enumerable languages and Π1 is the class of their complements. We use Bool(M) to198
denote the closure of a set of sets M under Boolean operations.199

From Staiger (1986), we have the following results.200

Theorem 7. For the classes of accepted languages, the following identities hold true:201

{ATran(M,S) : M = (X, Γ, S, s0, !, δ) an ATM } = Bool(Σ1)
{ATin(M,S) : M = (X, Γ, S, s0, !, δ) an ATM } = Bool(Σ2).

Acknowledgment202

We thank L. Fearnley for posing the problem discussed in this note, P. Potgieter for203
illuminating discussions, and the anonymous referees for excellent critical comments.204
This work was done during L. Staiger’s visit to CDMTCS in January 2009. An early205
version of this paper was presented at the Workshop on Hypercomputation, Ponta Delgada,206
Portugal in September 2009.207

References208

Andréka, H., Németi, I., Németi, P., Madarász, J. X. and Székely, G. (2006) Logic and Relativity209
Theory, Course Notes.210

Balcázar, J. L., Dı́az, J. and Gabarró, L. (1995) Structural Complexity I, Second revised edition,211
Springer-Verlag.212

Barrow, J. (2005) The Infinite Book. A Short Guide to the Boundless, Timeless and the Endless, Jonathan213
Cape.214

Blake, R. M. (1926) The paradox of temporal process. J. Philos. 23 645–654.215
Boolos, G. and Jeffrey, R. C. (1980) Computability and Logic, Cambridge University Press.216
Calude, C. S. and Păun, G. (2004) Bio-steps beyond Turing. Biosystems 77 (1-3) 175–194.217
Cohen, R. S. and Gold, A. Y. (1978) ω-computations on Turing machines. Theoret. Comput. Sci. 6218

1–23.219
Copeland, B. (2002) Accelerating Turing machines. Minds and Machines 12 (2) 281–300.220
Engelfriet, J. and Hoogeboom, H. J. (1993) X-automata on ω-words. Theoret. Comput. Sci. 110 (1)221

1–51.222

A note on accelerated Turing machines 7

Etesi, G. and Németi, I. (2002) Non-Turing computations via Malament–Hogarth space-times.223
International Journal of Theoretical Physics 41 341–370.224

Fearnley, L. (2008) Email to (and discussions with) C. Calude, 3 December 2008.225
Hogarth, M. (1992) Does general relativity allow an observer to view eternity in a finite time?226

Foundations of Physics Letters 5 173–181.227
Floridi, L. (ed.) (2004) The Blackwell Guide to the Philosophy of Computing and Information, Blackwell.228
Landweber, L. H. (1969) Decision problems for ω-automata. Math. Syst. Theory 3 (4) 376–384.229
Ord, T. (2002) Hypercomputation: Computing More than the Turing Machine. Honours Thesis,230

Computer Science Department, University of Melbourne (Available at arxiv.org/ftp/math/231
papers/0209/0209332.pdf.)232

Potgieter, P. H. (2006) Zeno machines and hypercomputation. Theoretical Computer Science 358 23–233
33. (Available at arXiv:cs.CC/0412022.)234

Rogers, H. (1967) Theory of Recursive Functions and Effective Computability, McGraw Hill.235
Russell, B. (1936) The limits of empiricism, Proc. Aristotelian Soc. 36 131–150.236
Shagrir, O. (2004) Super-tasks, accelerating Turing machines and uncomputability. Theoretical237

Computer Science 317 105–114.238
Shagrir, O. (2005) Accelerating Turing machines. In: Stadler, F. and Stroltzner, M. (eds.) Time and239

History (Papers of the 28th International Wittgenstein Symposium), Austrian Ludwig Wittgenstein240
Society 276–278.241

Sipser, M. (2006) Introduction to the Theory of Computation, second edition, PWS .242
Staiger, L. (1986) ω-computations on Turing machines and the accepted languages. In: Lovász, L.243

and Szemerédi, E. (eds.) Coll. Math. Soc. Janos Bolyai 44 393–403.244
Staiger, L. (1997) ω-languages. In: Rozenberg, G. and Salomaa, A. (eds.) (1997) Handbook of Formal245

Languages 3, Springer-Verlag 339–387.246
Staiger, L. and Wagner, K. (1977) Rekursive Folgenmengen I (in German). Zeitschr. Math. Logik u.247

Grundl. Mathematik 24 (6) 523–538.248
A preliminary version appeared as: Wagner, K. and Staiger, L. (1977) Recursive ω-languages.249
In: Karpiński, M. (ed.) Proc. Fundamentals of Computation Theory ’77. Springer-Verlag Lecture250
Notes in Computer Science 56 532–537.251

Stewart, I. (1991) Deciding the undecidable. Nature 352 664–665.252
Svozil, K. (1998) The Church–Turing thesis as a guiding principle for physics. In: Calude, C.,253

Casti, J. and Dinneen, M. (eds.) Unconventional Models of Computation, Springer-Verlag 371–385.254
Svozil, K. (2009) On the Brightness of the Thomson Lamp. A Prolegomenon to Quantum255

Recursion Theory. CDMTCS Research Report 360.256
Wagner, K. and Wechsung, G. (1986) Computational Complexity, Deutscher Verlag der257

Wissenschaften.258
Weyl, H. (1949) Philosophy of Mathematics and Natural Science, Princeton University Press.259
Wiedermann, J. and van Leeuwen, J. (2002) Relativistic computers and non-uniform complexity260

theory. In: Calude, C. S., Dinneen, M. J. and Peper, F. (eds.) Unconventional Models of261
Computation. Springer-Verlag Lecture Notes in Computer Science 2509 278–298.262

