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Abstract. We study automata-theoretic properties of distances and
quasi-distances between words. We show that every additive distance
is finite. We also show that every additive quasi-distance is regularity-
preserving, that is, the neighborhood of any radius of a regular language
with respect to an additive quasi-distance is regular. As an application
we present a simple algorithm that constructs a metric (fault-tolerant)
lexical analyzer for any given lexical analyzer and desired radius (fault-
tolerance index).

1 Introduction

You are frustrated when you type a UNIX command incorrectly and cannot find
what the correct spelling is. You may be wondering why the system does not
give any suggestions on what command you might want to type. Those questions
concern the concepts of distances between words and neighborhoods of languages
with respect to a distance and a radius.

Much work has been done in spell checking and correction, and other online
dictionary applications using various methods [5,7,8,9]. Here, we study some
automata-theoretic properties of different measurements of distances between
words.

Let Σ be a finite alphabet. By the neighborhood of a word w ∈ Σ∗ of radius
α with respect to a distance measure δ, we mean the set of all words u that
have the distance measure δ(u,w) at most α. We denote this neighborhood by
E({w}, δ, α). Naturally, the neighborhood of a language L of a radius α with
respect to δ, denoted E(L, δ, α), is the union of E({w}, δ, α) for all words w ∈ L.
A distance δ is said to be finite if E({w}, δ, α) is finite for all w ∈ Σ∗ and
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α ≥ 0. Informally, δ is said to be additive if its measurement distributes over
concatenation, and regularity-preserving if E(R, δ, α) is regular for every regular
language R and radius α ≥ 0.

In this paper, we prove that every additive distance is finite. We also show,
as our main result, that every additive distance (or quasi-distance) is regularity-
preserving. Examples of various additive and non-additive distance measures are
also given in the paper.

As an application of the main result, we construct a very simple algorithm
that transforms a given lexical analyzer to a metric (fault-tolerant) lexical ana-
lyzer for an arbitrary radius (fault-tolerance index).

The paper is organized as follows: In the next section we introduce the basic
notation. In Section 3, we define distances and quasi-distances. Our main results
concerning finite, additive, and regularity-preserving distance measures are pre-
sented in Section 4. In the last section we define metric lexical analyzers and
describe a simple algorithm that constructs a metric lexical analyzer for a given
lexical analyzer and desired radius.

2 Preliminaries

We assume that the reader is familiar with the basics of formal languages and
finite automata in particular, cf. [4,10,11]. Here we introduce the notation we
will use in the later sections.

The symbol Σ denotes a finite alphabet and Σ∗ the set of finite words over
Σ. The empty word is denoted by λ and the length of a word w ∈ Σ∗ by |w|.
The shuffle of words u, v ∈ Σ∗,

ω(u, v) ⊆ Σ∗

is the set of all words x1y1x2 . . . xmym such that u = x1 · · ·xm, v = y1 · · · ym,
xi, yi ∈ Σ∗, i = 1, . . . ,m, m > 0. The catenation of languages S, T ⊆ Σ∗ is
denoted by ST .

A deterministic finite automaton (DFA) is a five-tuple A = (Q,Σ, γ, s, F )
where Q is the finite set of states, Σ is the finite alphabet, s ∈ Q is the initial
state, F ⊆ Q is the set of final states, and γ : Q×Σ → Q is the state-transition
function. If A is defined as above except that γ is a function Q × Σ → P(Q)
then we say that A is a nondeterministic finite automaton (NFA). (Here P(Q)
is the set of subsets of Q.)

The state-transition relation γ of an NFA is extended in the natural way to
a function γ̂ : Q×Σ∗ → P(Q). We denote also γ̂ simply by γ and the language
accepted by A is L(A) = {w ∈ Σ∗ | γ(s, w) ∩ F �= ∅}.

3 Distances and Quasi-distances

We want to measure the distance between distinct words of Σ∗. Let S be a set.
We say that a function δ : S×S → [0,∞) is a distance if it satisfies the following
three conditions:
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(D1) δ(x, y) = 0 iff x = y, for all x, y ∈ S,
(D2) δ(x, y) = δ(y, x), for all x, y ∈ S,
(D3) δ(x, z) ≤ δ(x, y) + δ(y, z), for all x, y, z ∈ S.
Condition (D3) is called the triangle-inequality. A function δ : S × S → [0,∞)
that satisfies (D2) and (D3) and the weaker condition

(D1’) δ(x, x) = 0, for all x ∈ S,
is called a quasi-distance on S. A quasi-distance allows the possibility that
δ(x, y) = 0, for x �= y.

Note that if δ is a quasi-distance on S we can define an equivalence rela-
tion ∼δ on S by setting x ∼δ y iff δ(x, y) = 0. Then the mapping δ′ defined
by δ′([x]∼δ

, [y]∼δ
) = δ(x, y) is a distance on S/ ∼δ. (Since δ satisfies the con-

dition (D3) it follows that the value of δ′([x]∼δ
, [y]∼δ

) does not depend on the
representatives x and y.)

Let δ be a (quasi-) distance on S, K ⊆ S and α ≥ 0. The neighborhood of K
of radius α (with respect to δ) is

E(K, δ, α) = {x ∈ S | (∃y ∈ K) δ(x, y) ≤ α}.

A natural distance between words of the same length is the so called Hamming
distance. Since we need to compare also words of different lengths, there is more
than one natural way to extend Hamming distance.

Let # be a symbol not appearing in Σ and put Γ = Σ ∪ {#}. For a, b ∈ Γ
define

∆(a, b) =
{
1, if a �= b,
0, if a = b.

Define ∆n : Γn × Γn → IN by setting

∆n(x1 · · ·xn, y1 · · · yn) =
n∑

i=1

∆(xi, yi).

The prefix-Hamming distance δpH on Σ∗ is defined as follows. Let u, v ∈ Σ∗.
Then

δpH(u, v) =
{
∆|v|(u#k, v), if k = |v| − |u| ≥ 0,
∆|u|(u, v#k), if k = |u| − |v| > 0.

The prefix-Hamming distance counts the number of distinct symbols in the first
min{|u|, |v|} positions of the words u and v and adds to the result the length of
the remaining suffix. It is easy to verify that δpH satisfies the triangle-inequality
and, thus, it is a distance. On the other hand, this distance is not very useful
from a practical point of view because inserting or deleting one letter can change
the distance of given words by an arbitrary amount (depending on the length of
the words).

A better extension is the function which considers all possible ways to pad
both words and then takes the minimum of the obtained distances. Let u, v ∈ Σ∗.
Then we define
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δH(u, v) = min{∆k(x, y) |
k ≥ max{|u|, |v|}, x ∈ ω(u,#k−|u|), y ∈ ω(v,#k−|v|)}. (1)

Notice that for all u, v ∈ Σ∗, δH(u, v) ≤ max{|u|, |v|}, and δH(u, v) =
min{∆|uv|(x, y) | x ∈ ω(u,#|v|), y ∈ ω(v,#|u|)}.

In general, δH(u, v) �= ∆max{|u|,|v|}(x, y), for every x ∈ ω(u,#max{|u|,|v|}−|u|),
y ∈ ω(v,#max{|u|,|v|}−|v|). For example, take u = abab, v = baba and observe that
ω(u,#0) = {u}, ω(v,#0) = {v}, ∆4(u, v) = 4 > δH(u, v) = ∆5(u#,#v) = 2.

It is convenient to look at (1) as a process. Consider changing a word into
another word by means of the following three types of edit steps ([6]): a) insert—
insert a character into a word, b) delete—delete a character from a word, c)
replace—replace one character with a different character. Edit steps can be ap-
plied in any order. For example, to change the word abab into baba we can use rule
c) (replace) four times and we get bbab, baab, babb, baba. We can be more efficient
by deleting the first character of abab to get bab, then insert a at the end, so with
only two edit steps we obtain baba. As we have seen below, δH(abab, baba) = 2;
it can be obtained by first constructing the extended words abab# and #baba
and then computing their ∆5 distance. In fact, we have:

Lemma 1. For all words u, v, δH(u, v) coincides with the minimal number of
edit steps necessary to change u into v.1

Corollary 1. The function δH satisfies (D1)–(D3).

The function δH is a distance by Corollary 1; as it extends Hamming’s dis-
tance it is appropriate to call it the shuffle-Hamming distance.

An immediate property of the shuffle-Hamming distance follows: insertions
and deletions of the special symbol # do not count.

Lemma 2. For all u, v ∈ Σ∗, and i ≥ 0, δH(u, v) = δH(ū, v̄), for all ū ∈
ω(u,#i), v̄ ∈ ω(v,#i).

Other possible distances can be obtained by varying edit steps (e.g., allowing
adjacent characters in one word to be interchanged while copied to the other
word) or by assigning cost functions to edit steps (e.g., capturing the idea that
the cost of replacing a character is less than the combined costs of deletion and
insertion). See [2] for more examples of discrete distances.

4 Neighborhoods of Regular Languages

Let L be a regular language over Σ. We are interested in the following question:
Which conditions the distance δ should satisfy in order to guarantee that all the
1 This number is called the edit-distance in [3], pp 325–326; it has been suggested by
Ulam [12].
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languages E(L, δ, α), α ≥ 0, are regular? We say that a distance δ is regularity-
preserving if E(L, δ, α) is a regular language for all regular languages L and
α ≥ 0.

It is fairly straightforward to construct examples of distances on Σ∗ that are
not regularity-preserving. Here is such an example.

Example 1. Let Σ = {a, b}. Construct the distance δ by

δ(u, v) =



0, if u = v,
1/2, if u = anbn, v = ambm, for some n,m ≥ 0, n �= m,
1, otherwise,

and notice that E({ab}, δ, 1/2) = {anbn | n ≥ 0}. ��
Clearly we need to impose some additional conditions on the distance δ. Note

that the distance in Example 1 has the property that for n ≥ 0 and α ≥ 1/2,
the inequality δ(u, anbn) ≤ α has infinitely many solutions. Hence, the following
finiteness requirement seems to be a suitable candidate to guarantee that a
distance is regularity-preserving.

We say that a (quasi-) distance δ on Σ∗ is finite if for all w ∈ Σ∗ and α ≥ 0,
the set E({w}, δ, α) is finite.

Both the shuffle-Hamming distance and the prefix-Hamming distance con-
sidered above are clearly finite. The following example shows that finiteness of
a distance δ is, unfortunately, not sufficient to guarantee that δ is regularity-
preserving.

Example 2. Let Σ = {a, b, c}. By slightly modifying the prefix-Hamming dis-
tance δpH we construct a finite distance δ on Σ∗ that is not regularity-preserving.

For u, v ∈ Σ∗ we define

δ(u, v) =
{
3/2, if u = anban, v = ancan, n ≥ 0, or vice versa,
δpH(u, v), otherwise.

Clearly δ satisfies the conditions (D1) and (D2), so in order to show that it is
a distance it is sufficient to verify the triangle-inequality. Assuming that (D3)
does not hold, we must have x, y, z ∈ Σ∗ such that

δ(x, z) > δ(x, y) + δ(y, z). (2)

Since for all u, v ∈ Σ∗, δ(u, v) ≥ δpH(u, v) and δpH is a distance, it follows that
if (2) holds, then necessarily δ(x, z) �= δpH(x, z), that is, x = anban, z = ancan,
n ≥ 0, or vice versa. Thus δ(x, z) = 3/2, and (2) implies that δ(x, y) = 0 or
δ(y, z) = 0. Both possibilities directly yield a contradiction.

Also, δ is finite since for any α ≥ 2 and w ∈ Σ∗ we have E({w}, δ, α) =
E({w}, δpH, α).

To see that δ is not regularity-preserving choose L = a∗ba∗. Then

E(L, δ, 3/2) − E(L, δ, 1) = {ancan | n ≥ 0},
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which implies that at least one of the languages E(L, δ, 3/2) and E(L, δ, 1) is not
regular. ��

The above example shows that we need to look for stronger restrictions for
regularity-preserving distances. Since elements of Σ∗ have a unique decompo-
sition into subwords (of given length) it is perhaps reasonable to assume that
the distances should “respect” such decompositions. Thus we say that a (quasi-)
distance δ on Σ∗ is additive if always when w = w1w2 (w1, w2 ∈ Σ∗) we have
for all α ≥ 0,

E({w}, δ, α) =
⋃

β1+β2=α

E({w1}, δ, β1)E({w2}, δ, β2). (3)

First we observe that an additive distance is always finite. Note that an
additive quasi-distance δ need not be finite. If, for some b ∈ Σ, δ(b, λ) = 0, then
any δ-neighborhood is necessarily infinite.

Lemma 3. Every additive distance is finite.

Proof. Let δ be an additive distance on Σ∗. By (3), for any w = b1 · · · bk, bi ∈
Σ, i = 1, . . . , k, E({w}, δ, α) is contained in the catenation of the languages
E({b1}, δ, α), . . . , E({bk}, δ, α). Thus, it is sufficient to show that E({b}, δ, α) is
finite for b ∈ Σ and α ≥ 0.

Let u = c1 · · · cm, ci ∈ Σ, be an arbitrary word of Σ∗. The additivity condi-
tion implies that u ∈ E({b}, δ, α) iff there exists i ∈ {1, . . . ,m} such that

δ(b, ci) +
∑

j∈{1,...,m}, j 
=i

δ(λ, cj) ≤ α. (4)

There exist only a finite number of words u = c1 · · · cm that satisfy the above
inequality. ��

Both the prefix-Hamming distance and the shuffle-Hamming distance are
additive.

Proposition 1. The distances δpH and δH defined on an alphabet Σ are addi-
tive.

Proof. We show that δH is additive as the proof for the distance δpH is simpler.
Let w = w1w2 be an arbitrary decomposition of a word w ∈ Σ∗. We show

that for every u ∈ Σ∗,

u ∈ E({w1w2}, δH, α) iff u ∈
⋃

β1+β2=α

E({w1}, δH, β1)E({w2}, δH, β2).

Assume δH(u,w1w2) ≤ α. As edit steps (in the process of changing a word
into another word) can be applied in any order, we can start the process of
changing u into w1w2 in such a way to obtain first w1 from a prefix u1 of
u, and then w2 (from the remaining suffix u2 of u). Consequently, δH(u1, w1) +
δH(u2, w2) = δH(u,w1w2) ≤ α. Conversely, if ui ∈ E({wi}, δH, βi), i = 1, 2, β1+
β2 ≤ α, then we have δH(u1u2, w1w2) ≤ δH(u1, w1) + δH(u2, w2) ≤ α. ��
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From Example 2 we know that a finite distance need not preserve regularity.
Below we show that, on the other hand, additivity is a sufficient condition to
guarantee that even a quasi-distance preserves regularity. Note that, as observed
above, an additive quasi-distance need not be finite. First we prove the following
lemma.

Lemma 4. Assume that δ is an additive quasi-distance on Σ∗.

(i) For each b ∈ Σ and α ≥ 0, E(b, δ, α) is regular.
(ii) Let b ∈ Σ and α ≥ 0 be fixed. There exists an integer k and numbers

0 = α1 < . . . < αk = α such that

E(b, δ, αi), i = 1, . . . , k,

are all the distinct neighborhoods of b having radius at most α.

Proof. (i) Let u = c1 · · · cm, m ≥ 0, ci ∈ Σ, i = 1, . . . ,m. As in the proof of
Lemma 3 it follows that u ∈ E(b, δ, α) iff the inequality (4) holds. (Note that, in
contrast to Lemma 3, δ is now only a quasi-distance, so this does not imply the
finiteness of the neighborhood.)

Denote
Θ = {d ∈ Σ | δ(d, λ) = 0}.

Let Ψ be the set of finite multisets of elements of Σ,

{ci, cj1 , . . . , cjr
}

such that δ(λ, cjl
) �= 0, l = 1, . . . , r and

δ(b, ci) +
r∑

l=1

δ(λ, cjl
) ≤ α.

Then u = c1 · · · cm satisfies the inequality (4) iff u is the shuffle of a sequence
obtained by listing the elements of a multiset belonging to Ψ (in arbitrary order)
and a word in Θ∗. The shuffle of a finite language and a regular language is always
regular.

(ii) In the construction above the elements of the multisets belonging to Ψ
completely determine the neighborhoods of radius at most α around b. Thus as
the radii αs, s = 1, . . . , k, we can simply take all the (distinct) sums δ(b, ci) +∑r

l=1 δ(λ, cjl
) where the multiset {ci, cj1 , . . . , cjr} belongs to Ψ . (Note that Ψ is

a finite collection of multisets.) ��
The above construction implies that Lemma 4 (ii) can be written in the

following stronger form:

Corollary 2. Assume that δ is an additive quasi-distance on Σ∗ and let b ∈ Σ
and α ≥ 0 be fixed. Then we can write

E(b, δ, α) = R1 ∪ . . . ∪Rk

where Ri = {w ∈ Σ∗ | δ(b, w) = αi}, i = 1, . . . , k, is regular.
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Proof. Without loss of generality we can assume that the numbers αi in Lemma 4
(ii) are chosen so that there exists wi ∈ Σ∗ with δ(b, wi) = αi, i = 1, . . . , k. Let
Ri, i = 1, . . . , k, be as above. By Lemma 4 (ii), Ri = E(b, δ, αi) − E(b, δ, αi−1),
i = 2, . . . , k, and R1 = E(b, δ, 0). By Lemma 4 (i), these sets are regular. ��

Now we are ready to prove the main result of this section.

Theorem 1. Assume that δ is an additive quasi-distance on Σ∗ and let L ⊆ Σ∗

be regular. Then E(L, δ, α) is regular for all α ≥ 0.

Proof. Let α ≥ 0 be fixed and let A = (Q,Σ, γ, s, F ) be a DFA such that
L = L(A). Without loss of generality we can assume that the initial state s is
not reachable from any other state.

By Corollary 2, for each b ∈ Σ we can write

E(b, δ, α) = Rb
1 ∪ . . . ∪Rb

k(b),

where
Rb

j = {w ∈ Σ∗ | δ(w, b) = αb
j}, 0 ≤ αb

j ≤ α,
is regular, j = 1, . . . , k(b). Denote D′ = {αb

j | b ∈ Σ, 1 ≤ j ≤ k(b)} and

D = {β ≤ α | β = β1 + . . .+ βr, βi ∈ D′, 1 ≤ i ≤ r}.
We construct an NFA B = (QB , Σ, γB , sB , FB) such that

L(B) = E(L(A), δ, α).

Choose QB = Q×D, sB = (s, 0) and

FB =
{
F ×D ∪ {sB} if λ ∈ E(L(A), δ, α)
F ×D otherwise.

The transition relation γB is defined as follows. Let q ∈ Q, β ∈ D and b ∈ Σ.
Then

(q′, β + αb
j) ∈ γB((q, β), b) (5)

for every q′ ∈ γ(q,Rb
j), 1 ≤ j ≤ k(b), such that β + αb

j ≤ α. (Here γ(q,Rb
j) =

{γ(q, v) | v ∈ Rb
j}.) Since Rb

j is regular, the set γ(q,Rb
j) (⊆ Q) can even be

effectively determined.
Let w = b1 · · · bm, m ≥ 1, bi ∈ Σ, i = 1, . . . ,m. Since δ is additive

w ∈ E(L(A), δ, α) iff (∃u ∈ L(A)) such that

u ∈
⋃

β1+...+βm=α

E(b1, δ, β1) · · ·E(bm, δ, βm). (6)

In the transitions (5), on input b the first component of the states of B simulates
the computation of A on an arbitrary (nondeterministically chosen) word of v ∈
Rb

j , and in the second component we correspondingly increment the distance by
αb

j = δ(b, v). By observation (6), some sequence of the nondeterministic choices
on input w = b1 · · · bm leads to an accepting state of FB iff w is in E(L(A), δ, α).
By the choice of the set FB , the NFA B accepts λ if and only if λ ∈ E(L(A), δ, α).

��
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5 A Metric Lexical Analyzer

The major difference between a lexical analyzer and a (traditionally-defined)
finite automaton is that, in a lexical analyzer, each final state is linked to an
action (or a set of actions). Because of this difference, the algorithms that are
designed for finite automata may not directly apply to lexical analyzers. The
equivalence of two final states in a deterministic lexical analyzer requires that
not only the states are equivalent in the sense of a DFA, but also that they have
the same action (or actions).

There are many other features which are associated with certain types of
lexical analyzers. For example, some lexical analyzers assume that each input
word has an end-of-word symbol. Also, many practical lexical analyzers are im-
plemented using a data structure called trie [1]. However, those features are not
considered to be common or essential to general lexical analyzers.

A lexical analyzer can be considered as a special type of Moore machine [4]
with all nonfinal states having the empty output (action).

For notational convenience, we formally define a lexical analyzer to be a
7-tuple

A = (Q,Σ, Γ, γ, s, F, τ)

where (Q,Σ, γ, s, F ) is a finite automaton; Γ is a set of actions; and, τ : F → Γ
is an action-function. Whether A is deterministic or nondeterministic depends
on whether its underlying finite automaton is a DFA or an NFA.

Let A = (Q,Σ, Γ, γ, s, F, τ) be a deterministic (nondeterministic) lexical an-
alyzer. Denote by L(A) the set of all words recognized by the underlying finite
automaton (Q,Σ, γ, s, F ). For w ∈ L(A), denote by τ̂(w) the action τ(γ̂(s, w))
(the set of actions {τ(f) | f ∈ F ∩ γ̂(s, w)}). We simply write τ(w) instead of
τ̂(w) if there is no confusion. The above definition implies that if w ∈ L(A) and
the (an) accepting path for w goes through several final states, only the action
associated to the last final state is activated.

A simple lexical analyzer Au is shown in Figure 1.

B: Execute csh C:Execute lsA: Execute cd

35

6

0 1 2

4

c d

s

h

l

s

Actions:

A

B

C

Fig. 1. A lexical analyzer Au
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Let A = (Q,Σ, Γ, γ, s, F, τ) be a lexical analyzer, δ a regularity-preserving
distance and α ≥ 0 a radius. A lexical analyzer A′ = (Q′, Σ, Γ ′, γ′, s′, F ′, τ ′) is
called a metric lexical analyzer of A with respect to δ and α if

(M1) L(A′) = E(L(A), δ, α), and
(M2) for each w ∈ L(A), τ ′(w) = τ(w).

The proof of Theorem 1 gives a general guideline for constructing a metric
lexical analyzer from a given lexical analyzer, an additive quasi-distance, and a
radius. In the following, however, we consider only the shuffle-Hamming distance
δH. The idea below can be easily generalized to all additive quasi-distances.

Construction: A Deterministic Metric Lexical Analyzer
Given: A deterministic lexical analyzer (DLA) A = (Q,Σ, Γ, γ, s, F, τ) and an
integer k > 0.
Result: A deterministic metric lexical analyzer (DMLA)

A′ = (Q′, Σ, Γ ′, γ′, s′, F ′, τ ′)

of A with radius k.
Construction steps:

i) Construct a nondeterministic lexical analyzer (NLA)

A′′ = (Q′′, Σ, Γ ′′, γ′′, s′′, F ′′, τ ′′)

such that
Q′′ = Q× {0, . . . , k},
Γ ′′ = Γ ∪ {ẽ | e ∈ Γ},
s′′ = (s, 0),
F ′′ = {(f, i) | f ∈ F & i = 0, . . . , k},

γ′′ :




(q, i) ∈ γ′′((p, i), a), for i = 0, . . . , k, if q = γ(p, a),
(q, i+ 1) ∈ γ′′((p, i), b), for i < k and b ∈ Σ, b �= a if q = γ(p, a),
(q, i+ 1) ∈ γ′′((q, i), a), for all a ∈ Σ and (q, i) ∈ Q′′ where i < k,
(q, i+ 1) ∈ γ′′((p, i), λ), for i < k if q = γ(p, a), for some a ∈ Σ,

τ ′′ :
{
τ ′′((f, 0)) = τ(f), for f ∈ F,
τ ′′((f, i)) = ẽ, for f ∈ F and i = 1, . . . , k, if τ(f) = e.

ii) Reduce A′′ by deleting those states that are not reachable from s′′ or that
cannot reach a final state.

iii) Construct A′ using the subset construction method [4] such that Q′, γ′, s′,
and F ′ are defined as in a standard subset construction, except that if a
new state r ∈ Q′ contains both (q, i) and (q, j) for some q ∈ Q and i < j
then delete (q, j) from r; Γ ′ ⊆ P(Γ ′′), and τ ′(f ′) = τ(f) if (f, 0) ∈ f ′, for
some (f, 0) ∈ F ′′, or τ ′(f ′) = {τ ′′(f ′′) | f ′′ ∈ f ′ & f ′′ ∈ F ′′}, otherwise.

iv) Simplify A′ by merging all the equivalent states (that have the same actions
if they are final states).
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Note that the above construction uses two copies of the original set of actions
(Γ ∪ {ẽ | e ∈ Γ}) in order to guarantee that the property (M2) holds.

A nondeterministic metric lexical analyzer A′′
u of Au with radius 1 is

constructed following Step i) and Step ii) and shown in Figure 2, where
Γ ′′ = {A,B,C, Ã, B̃, C̃} and τ ′′((2, 0)) = A, τ ′′((2, 1)) = Ã, τ ′′((4, 0)) = B,
τ ′′((4, 1)) = B̃, τ ′′((6, 0)) = C, τ ′′((6, 1)) = C̃. We use [̂ a1 · · · at] to denote all
letters in Σ − {a1, . . . , at}, and · to denote all letters in Σ.

1,0 2,0
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5,1

6,1

0,0

1,1 2,1

5,0

6,0
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c d
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s
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h

h

d

s
[^l]

s

s

[^h]

[^s]

λ
λ

λ

λ

λ
λ

. . .

.

.

.
l

0,1
c

l

.

Fig. 2. A nondeterministic metric lexical analyzer A′′
u

The resulting DMLA A′ for A is shown in the following table, where t1, . . .,
t6 are terminating states which have no transitions:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
c 1 5 t1 X 10 X X X t2 X X X X 16 t5 X X 18 X X 18 18
d 17 2 t1 X 9 t1 t1 t1 t2 X X X X 16 t5 X t1 t1 t1 X t1 t1
h 21 6 t3 t2 8 t2 t2 t2 t2 t2 t2 t2 t2 t4 t4 X X X X X t2 X
l 13 7 t1 X 10 X X X t2 X X X X 15 t5 X X 19 X X 19 19
s 20 4 3 X 10 12 12 11 t2 X X X X 14 t5 t5 12 11 12 t5 11 11
ˆ 21 5 t1 X 10 X X X t2 X X X X t5 t5 X X X X X X X

A Ã Ã Ã Ã Ã B Ã B̃ C̃ Ã C C̃ C̃ Ã C̃

τ ′ B̃ B̃ B̃ C̃

C̃

τ ′(t1) = {Ã}, τ ′(t2) = {B̃}, τ ′(t3) = {Ã, B̃}, τ ′(t4) = {B̃, C̃}, τ ′(t5) = {C̃},
τ ′(t6) = {Ã, C̃}.
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