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Abstract: A set L is (m,n)-computable iff there is a mechanism which on input of
n different words produces n conjectures whether these words are in L, respectively,
such that at least m of these conjectures are right. Prior studies dealt with (m,n)-
computable sets in the contexts of recursion theory, complexity theory and the theory
of finite automata. The present work aims to do this with respect to computations by
deterministic pushdown automata (using one common stack while processing all input
words in parallel).

We prove the existence of a deterministic context-free language L which is recognised
by an (1, 1)-DPDA but fails to be recognised by any (m,n)-DPDA, where n ≥ 2 and
m ≥ n/2+1. This answers a question posed by Eli Shamir at LATA 2013. Furthermore,
it is shown that there is a language L such that, for all m,n with m ≤ n/2, L can
be recognised by an (m,n)-DPDA but, for all m,n with 1 ≤ m ≤ n, L cannot be
recognised by (m,n)-DFA.

Key Words: frequency computation, deterministic pushdown automata, context-free
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1 Introduction

During a discussion of the paper [Freivalds et al. 2013] at the conference LATA

2013 in Bilbao, Spain, Eli Shamir asked whether the results on frequency Turing

machines and frequency finite automata hold for pushdown automata as well.
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The difficulty of the question is in the fact that an (n, n)-Turing machine or

an (n, n)-finite automaton can be presented as a Cartesian product of n sepa-

rate Turing machines or finite automata but this construction does not seem to

increase the power of the machine. However, an arbitrary Turing machine can

be simulated by an automaton with 3 pushdown tapes (and allowing some re-

arrangement, even with 2 pushdown tapes [Bārzdiņš 1962]). Hence the possible

definition of a frequency pushdown automaton should avoid the use of several

pushdown stacks in a single automaton.

2 Frequency computation

The notion of frequency computation was introduced by Rose [Rose 1960] as an

attempt to have a deterministic notion of computation with properties similar

to probabilistic algorithms. Let N = {0, 1, 2, . . .} denote the set of all natural

numbers, N+ = N \ {0}. Fix m,n ∈ N, 1 ≤ m ≤ n. The ith component of the

m-tuple (x1, . . . , xm) is denoted by (x1, . . . , xm)i.

A function f : N → N is (m,n)-computable if there exists a computable func-

tion R : Nn → N
n such that for all n-tuples (x1, . . . , xn) ∈ N

n of mutually

distinct natural numbers we have the following property:

card{i : 1 ≤ i ≤ n and (R(x1, . . . , xn))i = f(xi)} ≥ m.

Answering a problem by Myhill, see McNaughton [McNaughton 1961], Trakh-

tenbrot [Trakhtenbrot 1964] proved the following: (1) if 2m > n then every

(m,n)-computable function is computable, (2) if 2m = n, then f can be not com-

putable. Kinber [Kinber 1972, Kinber 1976] extended these results by consider-

ing frequency enumeration of sets and proved that the class of (m,n)-computable

sets equals the class of computable sets if and only if 2m > n.

The notion of frequency computation has been extended to other models

of computation. Frequency computation in polynomial time was discussed in

detail by Hinrichs and Wechsung [Hinrichs and Wechsung 1997]. For resource

bounded computations, the behaviour of frequency computability is completely

different. For example, under any reasonable resource bound, whenever n′−m′ >
n−m, there exist sets which are (m′, n′)-computable, but not (m,n)-computable.

However, scaling down to finite automata, the analogue of Trakhtenbrot’s result

holds again: the class of languages (m,n)-recognisable by deterministic frequency

automata equals the class of regular languages if and only if 2m > n; for 2m ≤ n,

the class of languages (m,n)-recognisable by deterministic frequency automata

is uncountable for a two-letter alphabet, see [Austinat et al. 2005, Kinber 1976].

When restricted to a one-letter alphabet, only regular languages can be (m,n)-

recognised by any finite automaton [Austinat et al. 2005, Kinber 1976].

Frequency computations became increasingly popular after the discovery

of the various links between frequency computation and computation with a
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constant number of queries and were studied in various research articles like

[Ablaev and Freivalds 1986, Austinat et al. 2005, Balodis et al. 2012] as well as

[Beigel et al. 1996, Case et al. 1997, Dëgtev 1981, Freivalds 1991] and further-

more [Harizanov et al. 1992, Kinber et al. 1995, Kummer 1992].

3 Frequency pushdown automata

Let Σ be any finite alphabet, and let Σ∗ be the free monoid generated by Σ.

The binary alphabet {0, 1} is denoted by B; B∞ is the set of binary ω-words,

i.e. infinite sequences of bits. Every subset L ⊆ Σ∗ is said to be a language. The

elements of Σ∗ are called strings ; |x| denotes the length of a string x ∈ Σ∗. By
χL : Σ

∗ → {0, 1} we denote the characteristic function of L.

A deterministic pushdown automaton (DPDA) is a pushdown automaton

which always has at most one choice about how to procede; formally the DPDA

is a 7-tuple M = (Q,Σ, Γ, δ, q0, Z, F ), where Q is a finite set of states, Σ is a

finite set called the input alphabet, Γ is a finite set called the stack alphabet,

q0 ∈ Q is the start state, Z ∈ Γ is the initial stack symbol and F ⊆ Q is the set

of accepting states. Furthermore, δ ⊆ Q × (Σ ∪ {ε})× Γ × Q × Γ ∗, where (for

determinism) it is required that for all q ∈ Q, a ∈ Σ ∪{ε} and A ∈ Γ , there is at

most one element in δ of the form (q, a, A, ·, ·). Furthermore, if (q, ε, A, ·, ·) ∈ δ,

then for all a ∈ Σ, (q, a, A, ·, ·) �∈ δ. An element (p, a, A, q, α) ∈ δ is a transition of

M . Its meaning is that M , in state p ∈ Q, consuming a ∈ Σ∪{ε} from the input

and with A ∈ Γ as the topmost stack symbol, M changes the state to q, pops

A from the stack and pushes α onto the stack (by convention, the last symbol

of α is pushed first onto the stack); here a = ε means that no input symbol is

consumed. Note that we can also consider δ as a function from Q×(Σ∪{ε})×Γ ∗

to Q × Γ ∗, where (q, a, A, p, β) ∈ δ means δ(q, a, Aα) = (p, βα), for all α ∈ Γ ∗.
Here, Aα represents the content of the stack (topmost symbol first), before the

transition and βα represents the content of the stack after the transition. Then,

δ∗(q, w, α) = (p, β), where one repeatedly applies δ, on initial symbol (or ε) of

remaining part of w until the string w is consumed and no further moves are

possible. If w is never consumed by the DPDA, or it keeps on making ε moves

after consuming w, then δ∗(q, w, α) is undefined. More formally, one can define

δ∗ as follows.

Base Case: Suppose A ∈ Γ , α ∈ Γ ∗, w ∈ Σ∗. If δ(q, ε, A) is not defined,

then δ∗(q, ε, Aα) = (q, Aα). For a ∈ Σ, if δ(q, ε, A) and δ(q, a, A) are not defined,

then δ∗(q, aw,A) is not defined. Furthermore, δ∗(q, w, ε) is not defined for any

non-empty string w.

Inductive step: Suppose A ∈ Γ , α ∈ Γ ∗, w ∈ Σ∗, and a ∈ Σ ∪ {ε}. If
δ(q, a, A) = (p, β), then δ∗(q, aw,Aα) = δ∗(p, w, βα).

Note that it is possible that inductive step never ends for some strings (due

to repeated application of ε moves which never empties the stack). In this
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case also we say that δ∗(q, w, α) is undefined. The DPDA accepts a string w

if δ∗(q0, w, Z0) = (qf , α), for some qf ∈ F .

For an (m,n) frequency pushdown automaton, we modify the above definition

allowing n input strings. However, we need to be aware that for the general

case input strings can be of distinct lengths. Our definition closely models the

definition of frequency computation by finite automata [Austinat et al. 2005,

Freivalds et al. 2013, Kinber 1976].

A deterministic (m,n)-frequency automaton ((m,n)-DFA) is a 7-tuple M =

(Q,Σ,#, δ, q0, τ, n), where 1 ≤ m ≤ n, Q is a finite set of states, q0 is the

initial state, Σ is a finite alphabet and # is a symbol not in Σ. The mapping

δ : Q×(Σ∪{#})n → Q is the transition function; the function τ : Q → B
n is the

type of state used for outputs. The type is interpreted as an n-tuple of answers

αi: its i-th component records whether the i-th input string read from the i-th

input up to the current position belongs to the language. For simplicity, we use

the notation M(x1, . . . , xn) to denote the type of the state after reading as input

the strings (x1#
�1 , . . . , xn#

�n).

A language L ⊆ Σ∗ is said to be (m,n)-recognised by an (m,n)-DFA M

if for each n-tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings the tuples

M(x1, . . . , xn) and (χL(x1), . . . , χL(xn)) coincide on at least m components.

To define deterministic (m,n)-frequency pushdown automata (with only one

pushdown stack) the transition function δ can be extended to n-tuples. A de-

terministic (m,n)-frequency pushdown automaton ((m,n)-DPDA) is a 9-tuple

M = (Q,Σ,#, Γ, δ, q0, τ, Z, F ), where # �∈ Σ and (Q, (Σ∪{#})n, Γ, δ, q0, τ, Z, F )

is a DPDA.

For n ≥ 1, let x = (x1, . . . , xn) ∈ (Σ∗)n be an n-tuple of strings. We define

|x| = max{|xi| : 1 ≤ i ≤ n} and let, more formally, M work on the padded

input tuple (x1#
�1 , . . . , xn#

�n), where �i = |x| − |xi| for all i = 1, . . . , n. Then

the output of M is defined to be the type τ(q) if δ∗(q0, (x1#
�1 , . . . , xn#

�n), Z) =

(q, β) for some β; M(x1, . . . , xn) is undefined if δ∗(q0, (x1#
�1 , . . . , xn#

�n), Z) is

undefined.

We point out that the (m,n)-DPDA contains only one pushdown stack which

is used to process all n inputs in parallel.

A language L ⊆ Σ∗ is said to recognised by an (m,n)-DPDA M if for each n-

tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings, M(x1, . . . , xn) is defined

and coincides with (χL(x1), . . . , χL(xn)) on at least m components.

4 Basic Facts about the Inclusion Structure

We start with the following obvious facts. Kinber [Kinber 1976] noted the basic

properties for frequency computation with finite automata.
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Proposition1. If L is recognised by an (m,n)-DPDA then L is also recognised

by an (m,n+1)-DPDA and, in the case that m,n > 1, also by an (m−1, n−1)-

DPDA.

Austinat, Diekert, Hertrampf and Petersen [Austinat et al. 2005] as well as Kin-

ber [Kinber 1976] showed that there is a continuum of sets which is recognisable

by a (1, 2)-DFA. Such a (1, 2)-DFA is of course also a (1, 2)-DPDA. Thus one

gets the following proposition.

Proposition2. There exists a continuum of languages that are recognisable by

an (1, 2)-DPDA.

Kinber [Kinber 1975, Kinber 1976] and in particular Dëgtev [Dëgtev 1981] gave

criteria for proving non-inclusions and one important notion is that of an (m,n)-

admissible set [Dëgtev 1981].

Definition 3. A set V ⊆ {0, 1}k of vectors is called (m,n)-admissible iff k ≥ n

and for every projection of V onto n coordinates there is a vector (b1, . . . , bn)

which coincides with every member of the projection in at least m coordinates.

An example is the set {000, 111, 100, 010, 001}which is (1, 3)-admissible and not

(1, 2)-admissible; furthermore, the set

{00000, 11111, 00001, 00010, 00100, 01000, 10000}

is (2, 5)-admissible and (1, 3)-admissible but not (2, 4)-admissible and not (1, 2)-

admissible. Note that one can always assume, without loss of generality, that

one vector in V consists only of zeroes; the reason is that a set V ⊆ {0, 1}k is

(m,n)-admissible iff W = {(b1 ⊕ c1, . . . , bk ⊕ ck) : (b1, . . . , bk) ∈ V } is (m,n)-ad-

missible, where (c1, . . . , ck) is a fixed vector in {0, 1}k and ⊕ is the exclusive or;

if (c1, . . . , ck) ∈ V then (0, . . . , 0) ∈ W .

A language L is called (m,n)-verbose if a machine (say DFA or DPDA or TM)

reads n inputs (w1, . . . , wn) in parallel and produces m vectors (b1, . . . , bn) such

that one of them satisfies χL(w1) = b1, . . . , χL(wn) = bn; Tantau [Tantau 2002]

showed that for each (m,n), (h, k) the following statements are equivalent:

– There is a language L for which some DFA witnesses that L is (m,n)-verbose

but no DFA witnesses that L is (h, k)-verbose.

– There is a language L for which some TM witnesses that L is (m,n)-verbose

but no TM witnesses that L is (h, k)-verbose.

– There is a language L for which some DFA witnesses that L is (m,n)-verbose

but no TM witnesses that L is (h, k)-verbose.
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Tantau’s techniques to show the non-inclusions can also be adjusted to the world

of DPDA and the following result is parallel to the construction of a set which

is (m,n)-verbose as witnessed by a DFA but not (h, k)-verbose as witnessed by

a Turing machine [Tantau 2002, Theorems 10-12].

Proposition4. For all m,n, h, k with 1 ≤ m ≤ n/2 and 1 ≤ h ≤ k, if there

is a set V ⊆ {0, 1}k which is (m − t, n − 2t)-admissible for all t with t < m

and n − 2t ≤ k, but not (h, k)-admissible, then there is a language L which is

recognised by an (m,n)-DFA and not recognised by any (h, k)-DPDA.

Proof. Assume that m,n, h, k, V are given as stated in the proposition. Without

loss of generality the vector 0k is in V .

One defines Σ = {1, 2, . . . , |V | + k} and let v1, . . . , v|V | be the vectors in

V . Furthermore, one defines inductively an ω-word a0a1 . . . ∈ {1, . . . , |V |}ω as

follows: For each �, one considers the �’s (h, k)-DPDA and its output (b1, . . . , bk)

on the k-tuple (w1, . . . , wk) with wj = a0a1 . . . a�−1 · (|V | + j). By assumption

there is one vector va ∈ V such that (b1, . . . , bk) differs from va in at least

k − h + 1 coordinates. Now one chooses a� = a for the least such a and defines

that χL(a0a1 . . . a�−1 · (|V |+ j)) = va(j) for j = 1, . . . , k. In summary,

L = {a0a1 . . . a�−1 · (|V |+ j) : va�
(j) = 1}.

So L is based on the inductively defined ω-word a0a1 . . . ∈ {1, . . . , |V |}ω and L

is defined in such a way that no (h, k)-DPDA recognises L.

Next we construct an (m,n)-DFA which recognises L. The (m,n)-DFA reads

in parallel words w1, . . . , wn. Whenever the (m,n)-DFA detects that there is a

pair (i, j) of coordinates such that it has not yet assigned answers to wi, wj and

either wi /∈ {1, . . . , |V |}∗ · {|V | + 1, . . . , |V | + k} or the first digit where wi, wj

differ is from {1, . . . , |V |} for both inputs then the (m,n)-DFA assigns the value

0 to both coordinates and at least one is right, as it cannot be that both vectors

are of the form a0a1 . . . a�−1 · {|V |+ 1, . . . , |V |+ k} for some � ∈ ω.

Whenever the (m,n)-DFA detects that there is a pair (i, j) such that the

(m,n)-DFA has not yet assigned answers for wi, wj and the first digit where

wi, wj differ is for wi a value |V |+ b and for wj a value a ∈ {1, . . . , |V |} and b is

also the last digit of wi then the (m,n)-DFA assigns to wi the value va(b) and

to wj the value 0. In the case that the 0 for wj is incorrect, wj is a member of

L and wi is of the form a0 . . . a�−1 · (|V | + b) for some � and a� = a and thus

χL(wi) = va�
(b). Again at least one of the two guesses is correct.

Let t be the number of pairs which will be processed and for whose mem-

bers will be assigned answers as above until all inputs are read completely. The

remaining n− 2t inputs are taken from the set

ã0ã1 . . . ã�−1 · {|V |+ 1, . . . , |V |+ k},
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for some � ∈ ω and ã0ã1 . . . ã�−1 ∈ {1, . . . , |V |}∗. Note that by this construction

there are at most k of these inputs. If t ≥ m then the (m,n)-DFA assigns just

0 for these remaining inputs, as there are already t correct answers. If t < m

then the projection of V onto the corresponding coordinates is (m − t, n− 2t)-

admissible and one can find values for the remaining coordinates which coincide

with the projections on m− t coordinates; furthermore, m− t of the coordinates

must be 0, as 0m is among the projected vectors. In the case that there is an

�′ < � such that ã�′ �= a�′ then the m−t zeroes are correct and so the (m,n)-DFA

provides in total at least m correct answers. In the case that there is no such �′

then the projections of va�
onto the corresponding coordinates coincide with χL

on these coordinates and thus, by the (m − t, n− 2t)-admissibility of V , out of

the chosen answers, at least m− t are correct so that the overall correct answers

are at least m again. Thus the (m,n)-DFA described above recognises L. 
�

Note that the above diagonalisation can also be carried out for diagonalising

against (h, k)-TM in place of (h, k)-DPDA. Thus the separation obtained is

quite general. The following example provides some separations based on this

method.

Example 5. The set

{0000, 1111, 0001, 0010, 0100, 1000}

is (1, 3)-admissible but not (2, 4)-admissible; thus this set witnesses that there is

a language L which is recognised by an (1, 3)-DFA and a (2, 5)-DFA but L is not

recognised by a (2, 4)-DPDA. The set

{02n, 12n, 0i102n−i−1 : i ∈ {1, . . . , 2n}}

is (m−t, 2m+1−2t)-admissible for all m, t with 2m+1−2t < 2n but not (n, 2n)-

admissible. Thus this set witnesses that there is a language L which is recognised

by a (m, 2m+1)-DFA for all m but L is not recognised by a (n, 2n)-DPDA. The

set

{12k+h} ∪ {v ∈ {0, 1}2k+h : v has at most h+ 1 times a 1}
is (m− t, 2m+h+1−2t)-admissible for all m, t with 2m+h+1−2t≤ 2k+h via

the vector 0m+h+1−t1m−t but not (k, 2k+ h)-admissible. Thus this set witnesses

that there is a language L which is recognised by a (m, 2m+ 1+ h)-DFA for all

m but L is not recognised by a (k, 2k + h)-DPDA.

The next result does not directly follow from Proposition 4; instead, it needs

some adjustment of the proof method in order to obtain the desired separation.

Proposition6. For every m,n, k with 1 ≤ k ≤ n − m and 2m ≤ n there is a

language L recognisable by a (m,n)-DFA but not by an (1, k)-DPDA.
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Proof. Assume that n ≥ m + k and m ≤ n/2 and V = {0, 1}k. Then one

can modify the (m,n)-DFA from Proposition 4 such that on n distinct in-

puts, it computes as follows. The DFA internally brings the strings into length-

lexicographic order; so let w1, . . . , wn denote the inputs ordered in this way. Note

that max{m+ 1, i + k} ≤ j ≤ n by the assumptions. Next for each i such that

1 ≤ i ≤ m and j = i+n−m, the DFA decides as follows the outputs for wi and

wj .

– If wi, wj first differ on a symbol which is in {1, . . . , |V |} for both wi and wj

or if one of wi, wj is not from the set {1, . . . , |V |}∗ · {|V | + 1, . . . , |V | + k}
then output 0 for both wi and wj .

– Otherwise wi is of the form ã0ã1 . . . ã�−1 · (|V |+ b) and wj ∈ ã0ã1 . . . ã�−1ã� ·
{1, . . . , |V |+ k}+ for some � and b and ã0, . . . , ã� ∈ {1, . . . , |V |}. In this case

output wa�
(b) for wi and 0 for wj .

In each of the above cases at least one of the answers is correct. The remaining

outputs for wm+1, . . . , wn−m can be set to 0. By the above case analysis, at least

m of the output bits are correct. 
�

The following corollary is a special case of this proposition; it is also directly

implied from Tantau’s results [Tantau 2002].

Corollary 7. For every k there is a language recognised by a (1, k+1)-DFA but

not by an (1, k)-DPDA.

5 Shamir’s Question

Shamir asked at LATA 2013 whether there is a deterministic context-free non-

regular language L such that, for all m > 1, L is not recognised by a (m,m)-

DPDA. The next result shows that this is the case. Indeed, it shows that there

is a deterministic context-free language L which is thus recognised by a (1, 1)-

DPDA but fails to do so for many (m,n)-DPDA where n ≥ 2 and m is “near

to” n.

Note that the following implication is known for frequency computation

[Dëgtev 1981] and also true for DFAs as stated now: If n ≤ k and every (m,n)-

admissible subset V ⊆ {0, 1}k is (h, k)-admissible then every set recognised by

an (m,n)-DFA is also recognised by a (h, k)-DFA. The corresponding state-

ment is disproven for DPDAs by the next result, as every (1, 1)-admissible set

V ⊆ {0, 1}2 consists only of one vector and is therefore (2, 2)-admissible. Recall

that a set is recognised by a (1, 1)-DPDA iff it is deterministic context-free.

Theorem 8. The deterministic context-free language L = {0i1j2k : i + k = j}
is not recognisable by any (m,n)-DPDA for any m,n with n/2 + 1 ≤ m ≤ n.
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Proof. It is easy to verify that L can be recognised by a DPDA. Intuitively, the

DPDA can first push the 0’s. When 1’s are read, it can pull out the corresponding

number of 0’s. Then the remaining 1’s can again by pushed onto the stack, and

on reading 2’s they can be pulled out. Formally, the following DPDA recognises

L.

Q = {q0, q1, q2, q3, q4, q5, q6},
Σ = {0, 1, 2},
Γ = {0, 1, Z0},
F = {q0, q3, q6}.

The transition function δ is defined as follows:

δ(q0, 0, Z0) = (q1, 0Z0),

δ(q0, 1, Z0) = (q4, 1Z0),

δ(q1, 0, 0) = (q1, 00),

δ(q1, 1, 0) = (q2, ε),

δ(q2, 1, 0) = (q2, ε),

δ(q2, ε, Z0) = (q3, Z0),

δ(q3, 1, Z0) = (q4, 1Z0),

δ(q4, 1, 1) = (q4, 11),

δ(q4, 2, 1) = (q5, ε),

δ(q5, 2, 1) = (q5, ε),

δ(q5, ε, Z0) = (q6, ε).

Assume by way of contradiction that there are m,n and a (m,n)-DPDA M

recognising L with n/2 + 1 ≤ m ≤ n. The languages

Lb1,...,bn = {(u1, . . . , un) : M(u1, . . . , un) = (b1, . . . , bn)}
are all context-free languages of convoluted tuples. Furthermore, there is a con-

stant c which is a common pumping constant for all these languages.

Next consider the working of M on inputs (u1, . . . , un) with

uh = 02ch14cn24cn−2ch;

all uh are in L and have the same length 8cn. Due to the pumping lemma, each

uh can be split into words vh, wh, xh, yh, zh such that all vh have the same length,

all wh have the same length, all xh have the same length, all yh have the same

length, all zh have the same length,

|whxhyh| ≤ c, |whyh| ≥ 1

and the tuple (ũ1, . . . , ũn) of all ũh = vhwhwhxhyhyhzh is in Lb1,...,bn for the

output (b1, . . . , bn) of M on (u1, . . . , un), that is,

M(u1, . . . , un) = M(ũ1, . . . , ũn).
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Note that the border from the 0 part to the 1 part as well as the border from the

1 part to the 2 part in uh and uh+1 differ by 2c, which is more than the pumping

constant c. So, if the length of the vh is below 2cn, then, for all h except at

most one, either whxhyh ∈ 0+ or whxhyh ∈ 1+. Similarly, if the length of vh is

at least 2cn then for all h except at most one of them, either whxhyh ∈ 1+ or

whxhyh ∈ 2+.

It follows that for all h except at most one, the number of digits of one type

in ũh differs from that in uh while the number of digits of the other two types

are the same, thus the constraint that there are as many 1 as 0 and 2 combined

gets destroyed. So uh /∈ L for all but at most one h.

By the assumption that M is a (m,n)-DPDA recognising L, at least n/2+1

of the bits b1, . . . , bn are 1 due to M(u1, . . . , un) = (b1, . . . , bn) and at least

n/2 of those bits are 0 due to M(ũ1, . . . , ũn) = (b1, . . . , bn). These requirements

contradict each other, thus there cannot be an (m,n)-DPDA recognising L when

m ≥ n/2 + 1. 
�

6 Relating DPDAs and DFAs

One could ask whether, in general, there is a closer relation between regularity

and recognisability by an (m,n)-DPDA. If 2m ≤ n then there are uncount-

ably many sets which are recognisable by a (m,n)-DFA [Austinat et al. 2005,

Kinber 1976]. So the question would be more precisely phrased as follows: does

there exist a pair (m,n) with 1 < m ≤ n such that there exist sets which are

recognisable by an (m,n)-DPDA but not recognisable by a (m,n)-DFA? The

answer is affirmative, as the next theorem shows.

Theorem 9. There exists a language L recognisable by an (m, 2m)-DPDA for

each m > 0, but not recognisable by any (1,m)-DFA for every m > 0.

Proof. Let Σ = {0, 1, 2}. Let M j
i denote the i-th DFA using j + 1 inputs. For

any n, let sn =
∑

〈i′,j′〉<n(j
′ + 1).

A sequence of words w0, w1, . . . in {0, 1}∗ will be defined below. Let vk =

w02w12 . . . wk2. The following properties will be satisfied:

– L ⊆ {vk : k ∈ N};
– For any n = 〈i, j〉, M j

i fails to (1, j + 1)-recognise the set L on input

(vsn , vsn+1, . . . , vsn+j);

– For k ∈ N, vk ∈ L iff wk has equal number of 0’s and 1’s.

For n = 〈i, j〉, we suppose that we have defined w0, w1, . . . , wsn−1. Then, we

define wsn , wsn+1, . . . , wsn+j as follows. Suppose the pumping constant for M j
i
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is h > 2. Then, initially select wr, r ∈ {sn, sn+1, . . . , sn + j}, as wr = 0h!+h1h.

Suppose that

M j
i (vsn , vsn+1, . . . , vsn+j) = (bsn , . . . , bsn+j).

If br is 1, then we leave wr unchanged. Otherwise, we change wr to wr1
h! by

pumping in the last part 1h of wr; this pumping does not change the behaviour

of M j
i on the input words. Thus all answers of M j

i are made false.

Next we consider recognition of L by an (m, 2m)-DPDA. Suppose the 2m

input strings are (x1, x2, . . . , x2m). The algorithm is as follows: The DPDA dis-

tinguishes inputs for which it has settled to an answer and those which are not

yet settled. All the not yet settled ones will agree on the input read so far and

can therefore be treated by using the same stack. The stack is used to count

whether the most recent run of {0, 1}∗ (after the last 2 or the start of the input)

has the same number of 0 and 1. Furthermore, whenever the DPDA settles a

pair of inputs by assigning answers, one of them has to be correct. The settling

(after reading each new input bit of each word) is done as follows:

– If there are xi, xj which are not yet settled and are discovered to differ on a

bit, then both will get the answer 0 assigned.

At least one of the answers is correct as at least one of xi, xj differs from all

members of L (which are prefixes of each other);

– If there are xi, xj which are not yet settled such that xi turns out to be a

proper prefix of xj , then the DPDA checks using its memory/stack whether

xi ∈ {0, 1, 2}∗ · {2w2} for a word w ∈ {0, 1}∗ having as many 0 as 1; if so it

settles with 1 for xi and 0 for xj else it settles with 0 for both xi and xj .

If xj ∈ L, then xi is a prefix of xj and xi ∈ L iff xi ∈ {0, 1, 2}∗ · {2w2} for

a word w ∈ {0, 1}∗ having as many 0 as 1. Hence, if the answer for xj is

incorrect, then the answer for xi is correct. It follows that at least one of the

answers is correct.

Note that settling as above is done for as many pairs as possible after reading a

new input symbol for each word.

As all inputs are distinct, for each input xi there is an xj such that the pair

xi, xj gets eventually settled. Furthermore, at any time, all the not yet settled

inputs have not shown any disagreement and therefore the DPDA can use its

stack in order to check whether the current run of 0 and 1 has both digits in the

same quantity; thus whenever an input string ends which has not been settled

previously, then the information about whether it ends with 2w2 such that w

has as many 0 as 1 is available. 
�

Corollary 10. For all m,n such that 1 ≤ m ≤ n/2, there exists a language L

recognisable by an (m,n)-DPDA but not by an (m,n)-DFA.
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7 Conclusion

Frequency computation for Turing machines or finite automata permits trivial

inclusions in the sense that when L is recognised by an (m,n)-DFA and a (h, k)-

DFA then it is also recognised by a (m + h, n + k)-DFA. The corresponding

statement for DPDA does not hold; the main reason is that the stack manage-

ment for the combined DPDA does not allow to simulate both stacks of the two

original pushdown automata. This fact permitted to show that there is a lan-

guage L which is recognised by a (1, 1)-DPDA but not by a (2, 2)-DPDA. This

shows that also the inclusion problem in general – for which (m,n), (h, k) is ev-

ery language recognised by a (m,n)-DPDA also recognised by a (h, k)-DPDA –

is different from that for DFA and that in the original frequency computation;

it is also different from the inclusion problem in complexity theory.

An interesting question is whether this difference is limited to comparing

(1, n) with (h, k) for h ≥ 2 or whether it is a more fundamental difference. So

one might ask whether there is, for example, a language which can be recognised

by a (2, n)-DPDA for all n ≥ 2 or at least for almost all n but not by a (3,m)-

DPDA for any m. Thus the language would be solved at two instances using

one stack, but not at three. So far, the construction of such a language is open.

Furthermore, in frequency computation by finite automata, one can observe that

languages recognised by (1, n)-DFAs with n ≥ 2 have the following property: the

ratio h/k of the maximal h for which they are recognised by an (h, k)-DFA goes

to 1/2 for k → ∞. The reason is that for k → ∞, the maximal h where all

(1, n)-admissible sets V ⊆ {0, 1}k are (h, k)-admissible satisfies this property

[Kummer and Stephan 1995a, Kummer and Stephan 1995b]. However, for the

case of DPDAs, the situation might be different, as the common stack might

have to make one choice which falls into one of the constantly many cases and

would then allow only for a frequency which is approximately the share (k/c, k)

for all k. Studies in this direction would also certainly be fruitful.

It is easy to show that if L is recognised by an (m,n)-DPDA and H is regular,

then also L∩H and L∪H are recognised by (m,n)-DPDAs. This holds as one can

run the DFA for H in parallel with a (m,n)-DPDA and correspondingly update

the outputs. It would be interesting to consider which other closure properties

are satisfies by languages recognised by (m,n)-DPDA.
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