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ABSTRACT 

GBdel’s incompleteness theorem asserts that any sufficiently rich, sound, and 
recursively axiomatizable theory is incomplete. We show that, in a quite general 

topological sense, incompleteness is a rather common phenomenon: With respect 
to any reasonable topology the set of true and unprovable statements of such a 

theory is dense and in many cases even corare. 
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1. INTRODUCTION 

Gbdel’s Incompleteness Theorem asserts that any sufficiently rich, sound, 
and recursively axiomatizable theory is incomplete [l, 21. Variants of 
this profound result have been established that reveal many of its sub- 
tleties. A quite general account of this work, due to Godel, Tarski, Rosser, 
Sheperdson, Smullyan, and others, is provided in Smullyan’s recent book 
[3] on “Godel’s Incompleteness Theorems.” While the proofs of this theo- 
rem and its variants are usually constructive, the list of concrete examples 
of true statements known to be independent is quite short. Such con- 
crete examples were first exhibited in [4], providing an intriguing new view 
of a difficult complexity theoretic problem, and by [5], where the more 
classical case of a combinatorial problem was considered with respect to 
Peano arithmetic. 

The intuitive reason for incompleteness can be phrased in several ways. 
In terms of information theory or descriptional complexity, there is an 
informational difference between the set of true statements and the set of 
proofs [6-81. In more classical terms, it is a variant of the liar’s paradox, 
that is, a consequence of diagonalization techniques. From both points of 
view, however, it would seem that independent statements are a rather 
unusual, if not abnormal, occurrence. 

Indeed, this impression is recounted by Solovay [9, p. 3991: “The feeling 
was that Godel’s theorem was of interest only to logicians”; Smorynski 19, 
p. 3991 is quoted as stating: “It is fashionable to deride Gbdel’s theorem 
as artificial, as dependent on a linguistic trick.” 

Motivated by [4], in [lo] a sufficient condition is introduced for a theory 
to have unprovable true statements. This condition can be used to show 
that many common undecidability results have independent instances. For 
example, it is shown that there are infinitely many independent instances 
of the halting problem. As a natural consequence of these considerations, 
we formulated the conjecture that the set of independent statements is very 
large. 

Of course, such a statement needs to be made precise. Measuring large- 
ness in terms of cardinalities does not make sense as all sets concerned 
are enumerable. In this paper, we measure largeness in terms of topology 
showing that for many reasonable topologies the set of these statements is 
not only dense, but even corare. We actually prove a stronger theorem, 
giving a sufficient condition for a topology to have this property and also 
show that this condition is not all restrictive. Thus, in essence, we show 
that for any reasonable topology the set of unprovable and true statements 
is large with respect to that topology. In order to achieve generality, we 
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express our results in recursion theoretic terms. 
The consequences of our result still need to be determined-in the words 

of Chaitin [8, p. 1481: “What is the meaning of Gijdel for daily work in 
mathematics?. . . How common is incompleteness and unprovability? Is 
it a very bizarre pathological case, or is it pervasive and quite common? 
Because if it is, perhaps we should be doing mathematics quite differently.” 
By our results, unprovability is a common phenomenon. 

In some sense, of course, Godel’s theorem indeed depends on a “linguis- 
tic trick,” essentially based on the possibilities to assign names to problems. 
Our results cannot change this. Instead, they show that this linguistic trick 
is widely applicable and inevitable. Hence, they could lead one to conclude 
that the trick is not so exotic and artificial after all. 

To avoid a potential misunderstanding, we stress once again that we 
study independence only in the sense of Godel’s incompleteness theorem. 
There are many other kinds of independent statements-the parallel pos- 
tulate, for instance-which are not derived from that theorem and, thus, 
do not belong to that class. For the relevance of the question treated in 
this paper see the ample discussion in [ll, 121. 

In deriving our results we take an approach common in the theory 
of computation, studying Giidel numbers rather than the problems they 
represent. Making this distinction between names of problems, that is, 
Gijdel numbers and the problems themselves is very important and, indeed, 
necessary as it is undecidable whether two different given names represent 
the same problem. While stated in terms of Gijdel numbers, our results do 
not rely on any specific properties of the given acceptable Giidel numbering, 
but obtain for any acceptable Giidel numbering. 

Our paper is structured as follows. Some notation and basic notions are 
introduced or reviewed in Section 2. In Section 3, we prove two auxiliary 
results which imply that topologies of the kind considered in the sequel 
abound. Section 4 serves two purposes: to introduce a rigorous formu- 
lation of our main question, and to provide the recursion theoretic tools. 
The topological considerations are introduced in Section 5. The main re- 
sults mentioned above are announced in Theorem 5.1, Theorem 5.2, and 
Corollary 5.3. Section 6 contains a few concluding remarks. 

2. BASIC NOTIONS AND NOTATION 

In this section we introduce some notation and review some standard 
notions. 

An alphabet is a finite nonempty set. For this paper, let X be an 
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arbitrary but fixed alphabet. Then X* denotes the set of words over X 
including the empty word E. For a word w E X’, [WI denotes the length of w. 

On X’ we consider the standard order =-c _stand which is defined as follows 
[13]. Let Ix be an arbitrary, but fixed total order on the alphabet X. Then 

x Sand y @ 1x1 < (~1 V (1~1 = IyI A 3u, u, w E X*3a, b E X : 

(x = uaw A y = ubw A a <X b)) 

for z,y E X*. This order coincides with the lexicographic ordering on 
strings of the same length. 

Let P denote the set of all partial recursive functions of X’ into X*. 
Without loss of generality, we assume that the minimization operator ~1 is 
taken with respect to the standard order. For f E P we write f(x) = oc 
when f is undefined at x. Let ((P~)~~x* be an arbitrary but fixed acceptable 
Gijdel numbering of P. As usual, W, denotes the domain of (p,. The 
symbol <i denotes one-one reducibility. For further notation and basic 
facts in recursion theory see [14, 151. 

3. PADDING LEMMATA 

In this section we derive several auxiliary results that allow one to 
relate Gijdel numberings to equivalence relations on X*. They establish 
the effective existence of certain “compatible” pairs of acceptable Gijdel 
numberings and recursive equivalence relations. The main purpose of these 
results is to show that topologies on X* for which our results hold true 
abound, that is, that we are not discussing exceptional situations. 

A binary relation R on X’ is recursive if and only if the binary predicate 
(x, y) E R is recursive. Let q1 be an equivalence relation on X*. Then 
[xl= denotes the equivalence class of x. The index of z is the number of 
equivalence classes. For a bijection f: X’ --f X* , the relation zf defined by 
u -f v H f(u) s f(v) is also an equivalence relation. A Godel numbering 

(+z)zEX* is compatible with E if, for all u, ‘u E X*, u e w implies r& = &, . 
Note that, if E is compatible with an acceptable Godel numbering, then E 
is of infinite index. 

EXAMPLE 3.1. The length equivalence =_len@h defined by u -length v ej 
]uJ = ]‘uJ is a recursive equivalence relation of infinite index. 

LEMMA 3.1. For a recursive equivalence relation of infinite index, there 
are infinitely many acceptable and compatible G6del numberings. 
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PROOF. Let = be a recursive equivalence relation of infinite index on 
X*. The relation = has a recursively enumerable cross-section &, that 
is, a recursively enumerable subset of X* containing exactly one element 
of each equivalence class. Let g: X* + X* be a recursive and injective 
function with g(X*) = Qz and define f: X* -+ X’ by f(w) = pz[g(z) E 
w]. Then f is a recursive and surjective function satisfying f(g(z)) = 5. 
Now define $J~ = ‘pfcz) for all z E X* where ((P~)~~x* is an arbitrary 
acceptable Gijdel numbering. Clearly, (Gi),),ex* is an acceptable Giidel 
numbering. Moreover, u z u implies f(u) = f(v) and, therefore, GU = &. 

From ($~~),ex. one derives infinitely many acceptable Godel number- 
ings that are compatible with E. If t: X* --+ X* is a recursive surjection 
such that tit(%) = &cv) if qclzl = &,. Then (29z)ze~* with d, = &cz) is an 
acceptable Gijdel numbering which is compatible with E. Moreover, there 
are infinitely many different functions t of this kind and each gives rise to 
a distinct Gijdel numbering. q 

To illustrate the last sentence in the proof of Lemma 3.1 consider $J~ = 
Xz.z,&, = Xx.3: + 1 and t(u) = v, t(v) = u, t(z) = TC for all IC # U,V. 
Clearly, t satisfies the above conditions and 6, = $t(u~ = qV # $J~, that is, 

?J # +. 

LEMMA 3.2. Let ($x:)x,x. be an arbitrary acceptable Giidel numbering. 
Then there exist injinitely many recursive equivalence relations of infinite 
index on X* with which ($Z)zE~= is compatible. 

PROOF. We generate a sequence of equivalence relations -_=i for i = 0, 
l,... . The relation --i will differ from the equality in the following way: 
For a fixed word u it has i words different from u which are equivalent 
with U. Otherwise, the relation is just the equality. 

Suppose z-i has been obtained, where ~0 is the equality relation and 
where, for i > 0, distinct words ~1,. . . , ui have been constructed such 
that qu. = $U, = . . = T/J,, and Ei is the equality with u _-i ~1 Zi . . . Ei 
ui added. 

We construct zi+i from Ei recursively by adding one more word ui+i 
such that & = QU,,, and u --i+l ~1 Ei+l '.. Ei+l ui+l. This word 
can be obtained as the set {U 1 $J~ = q!+,} contains an infinite recursively 
enumerable set. 

Clearly, each such equivalence relation is compatible with the Godel 
numbering and the relations are all distinct. 

Moreover, each Ei is recursive. Consider w, w E X* with w # w. If 
u # u # w then ‘U Ei w if and only if u = w; hence v fi w in this 
case. Now suppose that v = u. Run the construction of =i to obtain 
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Ul,..., ui. This takes a finite number of steps. Now v --i w if and only if 
w E {Ui,...,Ui}. 0 

Lemma 3.1 and Lemma 3.2 together imply that there are “many” pairs 

((tizL~~*, -1 where ($J~LEx* is an acceptable Godel numbering and z 
is a compatible recursive equivalence relation. This will allow us to argue 
later that there is an abundance of topologies for which the set of true and 
unprovable statements of a theory is large. 

We conclude this section with another useful example of a recursive 
equivalence different from the length equivalence. 

EXAMPLE 3.2. Choose and fix a E X. For IC E X*, let n,(z) be the 
number of occurrences of a in x. The a-count equivalence Ed,, is defined 
by x E,~, y u n,(x) = n,(y). Suppose, ((P+)~Ex* is an acceptable Godel 
numbering which compatible with Erensth. For x E X*, let $, = (Pact. 
Then, (Y/~)~~x* is an acceptable Gijdel numbering that is compatible with 
ZZ _-n,. The a-count equivalence is a recursive equivalence relation of infinite 
index such that, if IX] > 1, every equivalence class is infinite. 

4. INDEPENDENT STATEMENTS 

Let T be the class of all theories T which are recursively enumerable, 
that is, such that the set of all theorems of T is recursively enumerable, 
consistent, sound, and sufficiently rich. Such a theory T consists of expres- 
sions some of which are sentences and among the latter some are predicates. 
Some sentences are provable (or theorems), and some are true (according to 
some reasonable criterion). Saying that T is recursively enumerable means 
that the set of theorems is recursively enumerable, assuming an appro- 
priate acceptable Godel numbering. Consistency means that there is no 
theorem the negation of which is also a theorem. Soundness means that 
every theorem is true. The theory is sufficiently rich if it contains the (re- 
cursive) arithmetic. The theories of Peano arithmetic and of set theoretic 
arithmetic are examples of theories in T (see [14, pp. 96-981; see [3] for 
additional examples). 

Let T be a theory in T. A predicate H is true for x if H(s) is true in 
T. A set A c X’ is said to be expressible in T (or definable in the language 
of T) if there is a predicate H of T such that, for all x E X*, H(x) is true 
if and only if x E A. A sentence is said to be independent of T if it is 
true, but not provable in T. We write T t- f to denote the fact that f is a 
theorem of T, that is, that there is a proof of f in T. The following basic 
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result is wellknown. 

PROPOSITION 4.1. Let A 5 X’ such that A is expressible in T, but 
not recursively enumerable. Then the sentence “‘x E A” is independent of 
T for some x E A, that is, T y 5 E A” for some x E A. 

Indeed, the set AT = {x ( z E X*,T 1 “x E A”} is recursively enumer- 
able. If T k “z E A” for all x E A then A = AT, but A is not recursively 
enumerable by assumption. 

There are many examples of sets A satisfying the assumptions of Propo- 

sition 4.1; these include the halting problem of Turing machines, the Post 
correspondence problem, and many others.’ 

Recall that a set A 2 X* is said to be productive if there is a recursive 
function f: X* ---f X* such that for every x E X’ with W, G A one has 

f(x) E A \ W,. G' iven such a function f, we say that A is productive via 

Note that GBdel’s incompleteness theorem can be rephrased as follows: 
The set of (Godel numbers of) true arithmetical sentences is productive. 
In other words, for every recursively enumerable set of true arithmetical 
sentences one can effectively find a true arithmetical sentence not in the 
given set (see [14]). It is the main goal of this paper to determine the “size” 
of such sets. 

LEMMA 4.1. Let A be productive via f and expressible in T. Then 
there eflectively exists an element u E A such that T y ‘“u E A”. 

PROOF. Let x be such that W, = {y 1 y E X*, T k “y E A”}. Then 
W, 2 A and f(x) E A \ W,, that is, u = f(x) E A and T y “u E A.” The 
string x and, therefore, also the string u, can be constructed because the 
set of all theorems of T is recursively enumerable. 0 

EXAMPLE 4.1. The set z = {x 1 x E X*, cpz(x) = CO} is productive. 
A set A c X’ is productive if and only if fi: 51 A. Most “natural” 
index classes are productive as they are complete for various levels of the 
arithmetic hierarchy. On the other hand, the set {CJJ 1 x E X*, z is random} 
is not recursively enumerable, but not productive as it is immune (see [15], 
p. 333). 

For every theory T E T and every set A G X* which is expressible 

‘Strictly speaking, these should be called the nonhalting and noncorrespondence 
problems, respectively. 
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in T but not recursively enumerable, let l(A) = {u ( u E A, T y “u E 
A”}. From the above results it follows that I(A) is nonempty and, indeed, 
infinite. In the sequel, we answer the following question: How large is 
I(A)? 

The main problem in addressing this question is to find a mathematical 
way of appreciating the size of I(A) in general, that is, to ensure that 
degenerate, artificial, or nonrepresentative cases do not distort the answer. 

For instance, we have to avoid trivial situations like the following one: 
Consider a theory T E ‘II’ and a productive set A 2 X* which is expressible 
in T. One can find an element u E I(A) effectively and then construct the 
set B = {z 1 x E X*,g(x) E A} where g(z) = u for all z E X*. Thus, if no 
further restrictive assumptions are made, B is expressible in T, B = X’, 
andT y”z~B”foralla:~B. 

To avoid this rather artificial situation, we proceed as follows: We ex- 
hibit a class of sets A, which includes many natural ones, for which I(A) is 
large according to a topological criterion with respect to many differ- 
ent topologies. 

Recall that a set A C: X* is said to be saturated with respect to an 
equivalence relation if A is a union of equivalence classes. 

THEOREM 4.1. Let A C X” be expressible in T and assume that E 
is a recursive equivalence relation on X* which saturates A. If A is not 
recursively enumerable then there exist infinitely many x E A with [xc]= 
& I(A). Moreover, if A is productive, then infinitely many such x can be 
effectively constructed and E is of infinite index. 

PROOF. Let 

Then B is recursively enumerable as T is recursively enumerable and z is 
recursive. Moreover, B 2 A as T is sound and E saturates A. From the 
fact that A is not recursively enumerable it follows that B # A, that is, 
there is an element x E A \ B and, actually, the set A \ B is infinite. We 
claim that [TC]~ C I(A) for any such IC. 

Let u s x. Then u E A as A is saturated by S. If T k “u E A” then 
x E B, a contradiction! 

If, in addition, A is productive then, by Lemma 4.1, infinitely many 
such elements 5 can be constructed. Moreover, as s saturates A, it is of 
infinite index. q 

EXAMPLE 4.2. Let z be a recursive equivalence on X* of infinite index 
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and let (&) be a GGdel numbering which is compatible with = (see Lemma 
3.1). For any ~0 E X*, the set A = {x 1 z E X*, $z(z~) = cm} is productive 
and saturated by =. Actually, every index set which is not recursively 
enumerable is saturated by =. 

The following remark is an immediate consequence of the definitions. It 
will be used below to achieve translations between certain topologies on X”. 

REMARK 4.1. Let - be a recursive equivalence relation on X*, let 
A C X* be saturated by --, and let f: X* -+ X* be a recursive bijection. 
Then the relation =f is a recursive equivalence relation which saturates 
the set f-l(A). Moreover, -_I is of infinite index if and only if = is of 
infinite index. 

EXAMPLE 4.3. There are infinitely many recursive equivalence rela- 
tions of infinite index which saturate ??. Indeed, let z be an arbitrary 
recursive equivalence relation of infinite index which is compatible with 

((PZ)ZEX’. By Lemma 3.2 there are infinitely many such 3. It is well 
known that there is a recursive bijection f: X* --) X* such that f(B) = A 
where A is the set defined in Example 4.2. By Observation 4.1, the relation 
of saturates the set ??. Moreover, if z1 and =’ are two such equivalence 
relations then -1 # =’ implies -+ # =“f . 

5. TOPOLOGICAL ARGUMENTS 

Let r be a topology on X* and let C, be its closure operator. A set 
A C X* is said to be rare with respect to r if, for every x E X* and every 
open neighborhood N, of x, one has N, g C,(A). A subset of X’ is dense 
if its closure is equal to X’. It is corare if its complement is rare. Intuitively, 
the properties of being rare, dense, and corare describe an increasing scale 
for the sizes of subsets of X* with respect to the topology 7. Thus a dense 
set is “larger” than a rare one, and a corare set is “larger” than a dense 
set. 

The topologies considered as examples in the sequel are generated by 
partial orders on X*(see [13, 161). A partial order 5 on X’ defines a 
topology 7~ as follows: For any u E X*, let N,’ = {V 1 21 E X*,ZL 5 v}. 
Then the set {N: ( ‘IL E X’} is the basic system of open neighborhoods for 
7~. The closure operator C,, is given by - _ 

C,<(A)={U(~EX*,~~EA:~IV} _ 
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for A C X* (See 17, p. 57-58). If la and <b are partial orders such 
that <az<b then any set which is dense with respect to ~2,~ is also dense 
with respect to rsb. The topologies to be considered will have the follow- 
ing property: 

CONDITION 5.1 There is a recursive equivalence relation E on X* 
such that, for every x E X* and every open neighborhood N, of x, the set 
{y 1 y E Ix*, N, n [y]= = 0) is finite. 

Condition 5.1 excludes situations in which equivalence classes tend to 
form “clusters;” in such a case, clearly, no meaningful statement about the 
topological size of a set can be made. If, in particular, the equivalence 
relation is compatible with the given Gijdel numbering, then Condition 5.1 
excludes topologies in which equivalent Gijdel numbers form such clusters. 
In this context, the padding lemmata, Lemma 3.1 and Lemma 3.2, guaran- 
tee that this can always be achieved, that is, for every topology satisfying 
Condition 5.1 with respect to an arbitrary given recursive equivalence re- 
lation 3, one can construct infinitely many acceptable Godel numberings 
that are compatible with z. 

Note that, if r is a topology satisfying Condition 5.1 with respect to 
the equality as equivalence relation, then every open set is cofinite. 

EXAMPLE 5.1. The prefix order topology is generated by the Prefix 
order & defined by x sP y H y E xX* for x, y E X*. It satisfies Condition 
5.1 for the length equivalence. 

EXAMPLE 5.2. Let <X be the total order on the alphabet X in- 
troduced before. The masking order 5, is defined as follows. Let x 
= X1..’ xk E X’ and y = ~1.. yl E X” with xi,. . . ,xk, 91,. . . , y1 E X. 
Then x I,, y if and only if k 5 1 and x, 5~ yi for i = 1,. . , k. The rela- 
tion 5 generates the masking order topology which also satisfies Condition 
5.1. for the length equivalence. 

EXAMPLE 5.3. With Lx as before, the lexicographic order <lex is de- 
fined by 

x~~~~~~x~~~vVU,~,WEX’~~,~EX: 

(x=uavAy=ubwAa<x b) 

for x, y E X’. The relation <rex g enerates the lexicographic topology which 

also satisfies Condition 5.1 for the length equivalence. As the lexicographic 
order is a total order, the open sets in the lexicographic topology are pre- 
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cisely the sets of the form N>leX = {V 1 w E X’, u <rex w} for u E X*. For 
x E X*, consider an open neighborhood N, of x, that is, N, = N>lex for 
some u E X* with u Flex x. Let = be an arbitrary equivalence relation on 
X*. For N, n [y], to be empty it is necessary and sufficient that w <rex u 
for all u E [y],. The length equivalence does not satisfy this condition for 

any Y. 
The situation for the standard order on X* is similar to that of the 

lexicographic order. Note, however, that the lexicographic and standard 
orders are quite different. In fact, with 3 the equality, the lexicographic 
topology does not satisfy Condition 5.1. On the other hand, the topology 
generated by the standard order satisfies Condition 5.1, even with respect 
to the equality. 

For further partial orders of interest in this context see [13, 161 where 
the connection between partial orders on X* and classes of codes is inves- 
tigated. 

LEMMA 5.1. Let I be a recursive partial order on X’ and let E be a 
recursive equivalence relation such that the topology r< satisfies Condition 
5.1 with respect to z. Let f: X* + X* be a recursive bijection. Define 

the relation If by x If y u f(x) 5 f(y). Then the topology rsr satisfies 
Condition 5.1 with respect to cf. 

PROOF. For x E X”, let N>’ and N,’ be open neighborhoods of x 
with respect to 75, and 75, respectively. Then 

for all y E X*. 0 

EXAMPLE 5.4. The su@x order topology is generated by the sufix order 
5, defined by x 5, y e y E X*x for x, y E X*. Consider the mapping 
mir: X’ -+ X” given by mir (s) = E, mir (x) = x for x E X, and mir (xy) 
= mir(y)mir(x) for x, y E X*. Then mir is the mirror function and 5, 

= (Ip),ir. Th ere f ore, by Lemma 5.1, the suffix order topology also satisfies 
Condition 5.1 with respect to the length equivalence. 

We now derive our main result. It states, intuitively, that the sets of 
true, but unprovable statements are large with respect to all topologies 
satisfying Condition 5.1. The examples above indicate that the class of 
such topologies is quite large and includes many natural ones. 

THEOREM 5.1. Let 3 be a recursive equivalence relation on X* and 
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let A C X* be a set which is expressible in T, saturated by S, and not 
recursively enumerable. Then the set I(A) is dense in every topology T on 
X* which satisfies Condition 5.1 with respect to E. 

PROOF. By Theorem 4.1 the set S = {z ) z E X”, [z]_= C I(A)} is 
infinite. Consider an element y E X* and an open neighborhood NY of 
y. By Condition 5.1, the set of elements u E X* such that NV n [u]_= = 0 
is finite. Hence, there is an element u E S with NY n [u]= # 0, that is, 
[u]= G I(A) and NY n [IL]= # 0. Thus I(A) is dense. 0 

The assumptions of Theorem 5.1 hold true for all the topologies con- 
sidered so far. In these cases one takes the length equivalence as the equiv- 
alence relation. Hence, if A C X* is expressible in T E ‘P, saturated by 
zre@hr and not recursively enumerable then I(A) is dense with respect 
to the prefix, masking, lexicographic, and suffix topologies as shown by 
Example 5.1, Example 5.2, Example 5.3, and Example 5.4. 

A partial order 5 on X* is said to be length preserving if, for all x, y 
E X*,x 5 y implies 1x1 5 Iy[. Of the partial orders introduced so far, 
only the lexicographic order is not length preserving. Further important 
examples of length preserving partial orders include the infix order <i and 
the embedding order <b [13]. The former is defined by x ii y u y E 
X*xX* for x,y E X*. For the latter, one has x $ if and only if there 
exist n E {1,2,. . .} and xi,. . . ,x, E X” such that x = 51 “‘5, and 
y E X*x1X*x2.. . X*xnX*. The topologies defined by these two relations 
also satisfy Condition 5.1. 

THEOREM 5.2. Suppose that the topology r is generated by a recursive 
and length preserving partial order and that it satisfies Condition 5.1 with 
respect to a recursive equivalence relation E. Let A & X* be a set which is 
expressible in T, saturated by E, and not recursively enumerable. Then the 
set I(A) is corare in r. 

PROOF. Let < be the given recursive and length preserving partial 
order on X*, and consider an element x E X* and an open neighborhood 
N, of x with respect to the topology ~5.. Assume that N, 2 C,, (I(A)). 
Thus, for every y with x 5 y there is a word uY such that y 5 uy and 

uy E I(A) and, therefore, \yj 5 juyj. This means that the set {.z 1 z E X*, 
N, n [z]= = 0} is infinite, contradicting Condition 5.1. 0 

COROLLARY 5.3. Let A 2 X* be a set which is expressible in T, sat- 

urated by Elength, and not recursively enumerable. For any partial order 

IE{lp,I m, <,, <i, <h} the set I(A) is corare with respect to the topol- 

09Y 72. 
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The statement of Corollary 5.3 applies to all of the important undecid- 
able problems like the halting problem, totality problem, emptiness prob- 
lem, and Post correspondence problem in the theory of computation ([15, 
18]), to the Hamiltonian problem in Hamiltonian mechanics [19], and to 
many others. Thus, the set of independent instances of any of these prob- 
lems is large, that is, corare, with respect to any topology generated by a 
recursive and length preserving partial order. 

Our results hold true regardless of how the topology is generated and 
which equivalence relation is used. The topologies generated by partial 
orders and the length equivalence are only convenient examples. 

6. CONCLUDING REMARKS 

Our results prove the largeness of the set of true and unprovable sen- 
tences in a topological sense. They pertain to all productive sets and in- 
clude, as special cases, various types of inseparability [20, 211. By [20], ex- 
amples of inseparable sets in the sense of Smullyan abound-in the Baire 
category sense; this reinforces the interpretation of “largeness” as proved 
above. 
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ence Foundation under Grant NSF-CCR-8957604. Much of it was done 
during visits of the first author at The University of Western Ontario in 

the spring of 1990 and the fall of 1992 and of the second author at the 
University of Bucharest in the fall of 1990. 

REFERENCES 

1 K. GGdel, Uber formal unentscheidbare Satze der Principia Mathematics 
und verwandter Systeme, Monatshefte f. Math. u. P&s. 38:173-198 (1931). 

2 K. Gijdel, Collected Works (S. Feferman, S. W. Dawson, Jr., S. C. Kleene, 
G. H. Moore, R. M. Solovay, and J. van Heijenoort, Eds.) Oxford University 
Press, Oxford, 1986 (Vol. I), 1990 (Vol. II). 

3 R. M. Smullyan, GGdel’s Incompleteness Theorems, Oxford University Press, 
New York, 1992. 

4 J. Hartmanis and J. Hopcroft, Independence results in computer science, 
ACM SIGACT News 8:13-24 (1976). 

5 J. Paris and L. Harrington, A mathematical incompleteness in Peano arith- 
metic, in Handbook of Mathematical Logic (J. Barwise, Ed.) North-Holland, 
Amsterdam, 1977, pp. 113331142. 



76 C. CALUDE, H. JtiRGENSEN, AND M. ZIMAND 

6 C. H. Bennett and M. Gardner, The random number omega bids fair to hold 
the mysteries of the universe, Sci. Amer. 241:2Ck34 (1979). 

7 G. Chaitin, Information, Randomness, and Incompleteness; Papers on Algo- 
rithmic Information Theroy, 2nd ed., World Scientific, Singapore, 1990. 

8 G. Chaitin, Information-Theoretic Incompleteness, World Scientific, Singa- 
pore, 1992. 

9 G. Kolata, Does GGdel’s theorem matter to mathematics? in Harvey Fkied- 

man’s Research on the Foundations of Mathematics L. A. Harrington, M. 
D. Morley, A. Szedrov, S. G. Simpson (Eds.) North-Holland, Amsterdam, 
1985, pp. 399-404. (Reprinted from Science 218:779-780 (1982)). 

10 C. Calude and G. P&n, Independent instances for some undecidable prob- 
lems, RAIRO Znformatique The’orique 17:49-54 (1983). 

11 R. Penrose, The Emperor’s New Mind. Concerning Computers, Minds, and 
the Laws of Physics, Oxford University Press, Oxford, 1989. 

12 R. Penrose, Pr&is of The Emperor’s New Mind. Concerning Computers, 
Minds, and Laws of Physics (together with responses by critics and a reply 
by the author), Behavioural and Brain Sciences 13:643-705 (1990). 

13 H. J. Shyr, Free Monoids and Languages, 2nd ed., Hon Min Book Company, 
Taichung, 1991. 

14 H. Rogers, Theory of Recursive Functions and Effective Computability, 
McGraw-Hill, New York, 1967. 

15 C. Calude, Theories of Computational Complexities, North-Holland, Ams- 
terdam, 1988. 

16 H. Jiirgensen and S. S. Yu: Relations on free monoids, their independent 
sets, and codes, Internat. J. Computer Math. 40:17-46 (1991). 

17 J. L. Kelley, General Topology, D. van Nostrand, Princeton, 1968. 
18 G. Rozenberg and A. Salomaa, Cornerstones of Undecidability, Prentice 

Hall, to appear. 
19 N. C. A. da Costa and F. A. Doria, Undecidability and incompleteness in 

classical mechanics, Internat. J. Theoret. Phys. 30:1041-1073 (1991). 
20 J. Case, Effectivizing inseparability, Z. Math. Logik Grundlag. Math. 37:97- 

lll(1991). 
21 P. Young, Gijdel theorems, exponential difficulty, and undecidability of arith- 

metic theories: An exposition, Proc. Sympos. Pure Math. 42:503-522 (1985). 


