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Despite rapid recent progress towards the development of quantum computers capable of
providing computational advantages over classical computers, it seems likely that such

computers will, initially at least, be required to run in a hybrid quantum-classical regime.

This realization has led to interest in hybrid quantum-classical algorithms allowing, for ex-

ample, quantum computers to solve large problems despite having very limited numbers of
qubits. Here we propose a hybrid paradigm for quantum annealers with the goal of mitigating

a di®erent limitation of such devices: the need to embed problem instances within the (often

highly restricted) connectivity graph of the annealer. This embedding process can be costly to

perform and may destroy any computational speedup. In order to solve many practical
problems, it is moreover necessary to perform many, often related, such embeddings. We will

show how, for such problems, a raw speedup that is negated by the embedding time can

nonetheless be exploited to give a real speedup. As a proof-of-concept example we present an
in-depth case study of a simple problem based on the maximum-weight independent set

problem. Although we do not observe a quantum speedup experimentally, the advantage of

the hybrid approach is robustly veri¯ed, showing how a potential quantum speedup may be

exploited and encouraging further e®orts to apply the approach to problems of more practical
interest.
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1. Introduction

Quantum computation has the potential to revolutionize computer science, and as a

consequence has, since its inception, received a great deal of attention from the-

orists and experimentalists alike. Although much progress has been made through

the concerted e®orts of the community, we are still some distance from being

able to build su±ciently large-scale universal quantum computers to realize this

potential.1,2

More recently, however, signi¯cant progress has been made in the development of

special-purpose quantum computers. This has been driven by the realization that by

dropping the requirement of being able to e±ciently simulate arbitrary computations

and relaxing some of the constraints that make large-scale universal quantum com-

puting di±cult (e.g. the ability to apply gates to arbitrary pairs of, possibly non-

adjacent, qubits), such devices can be more easily engineered and scaled. The

expectation is that with this approach one may be able to exploit some of the

capabilities of quantum computation — even if its full abilities are for now beyond

our reach — to obtain lesser, but nevertheless practical, advantages in practical

applications. Quantum annealers, which solve particular optimization problems,

exemplify this approach, and signi¯cant progress has been made in recent years

towards engineering such moderately large-scale devices.3,4 This approach has been

pursued particularly zealously by D-Wave, which has developed quantum annealers

with upwards of 2000 qubits (e.g. the D-Wave 2000QTM machine5), that are thus of

su±cient size to tackle problems for which their performance can meaningfully be

compared to classical computational approaches.

In this paradigm, however, it is nontrivial to compare the performance of quantum

solutions to classical ones, since the focus is on obtaining practical gains in domains

where heuristics tend to be at the core of the best classical approaches. Indeed, this

issue is at the heart of recent debate surrounding the performance of D-Wave

machines.6,7 In particular, instead of focusing on asymptotic analyses, one must

compare the performance of classical and quantum devices empirically. But per-

forming benchmarks fairly is di±cult, especially when there is often debate as to

which classical algorithm should be taken for comparison.8–11 This is further com-

plicated by the crucial realization that such special-purpose quantum devices are

operated in a fundamentally di®erent way to the classical ones with which they are

often compared: typically, they operate in conjunction with a nontrivial pipeline of

classical pre- and post-processing whose contribution is far from negligible on the

performance of the device, and may even be the di®erence between obtaining a

quantum speedup or not. Note that such pre- and post-processing costs may also arise

when generic classical solvers (e.g. Integer Programming or SAT solvers) are used for

optimization problems, and although such solvers may not be the fastest classical

algorithms for a given problem they are nonetheless of much practical interest and,

when compared to quantum annealers, this processing pipeline should similarly be

taken into account.

A. A. Abbott et al.
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In this paper, motivated by the need to take into account the cost of classical

processing in benchmarking quantum annealers, we propose a hybrid quantum-

classical approach for developing algorithms that can mitigate the cost of this

processing. In particular, we focus on D-Wave's quantum annealers, where this

processing involves a costly classical \embedding" stage that maps an arbitrary

problem instance into one compatible with D-Wave's limited connectivity con-

straints. This embedding is generally very time-consuming, and experimental

studies indicate that its quality can have strong e®ects on performance.12 Indeed,

hybrid approaches themselves have previously been used to reduce the cost and size

of these embeddings.13 We formulate a hybrid approach that can mitigate this cost

on problems where many related embeddings must be performed by modifying the

problem pipeline to reuse or modify embeddings already performed, thereby

allowing any potential advantage to be accessed more directly.14 A similar type of

approach has previously been suggested as a theoretical means to exploiting Gro-

ver's algorithm,15 and di®ers from recent hybrid approaches for quantum anneal-

ing 16–20 and computing21,22 that instead aim to provide quantum advantages in

situations where far fewer qubits are available than would be needed to execute a

complete quantum algorithm for the problem in question.23–25 Research thus far has

focused on using quantum annealing to solve problems for which only a single

embedding is required. The hybrid approach we propose therefore draws attention

to the fact that problems to which it can be applied — which require many

embedding steps — are more promising candidates for observing practical quantum

speedups, and hence serves also to help in guiding the search for problems suitable

for quantum annealing.

Having outlined this hybrid computing approach, we then present a hybrid

algorithm that is based around a D-Wave solution to the maximum-weight inde-

pendent set (MWIS) problem. Although the problem this algorithm solves, called the

dynamically-weighted MWIS (DWMWIS) problem, perhaps has limited independent

interest and represents a rather simple application of our more general approach, it

serves as a strong proof-of-concept for more complex algorithms, and we reinforce this

by implementing it experimentally on a D-Wave 2X machine.26 The results of the

experiment show a large improvement of the hybrid algorithm over a standard

quantum annealing approach, in which the embedding process is naively repeated

many times. We further compare the hybrid algorithm to a standard classical algo-

rithm. Although we do not observe an overall speedup using the hybrid algorithm,

the scaling behavior of this approach compares favorably to that of the classical

algorithm, leaving open the possibility of future speedups for this problem.

The outline of this paper is as follows. In Sec. 2 we present an overview of

(D-Wave's approach to) quantum annealing and benchmarking such devices. In

doing so, we are deliberately thorough and pedagogical, since unfair or poor bench-

marking has been the source of much misunderstanding regarding quantum speed-

ups, and is crucial to the approach we outline. In Sec. 3 we present, in a general

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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setting, our hybrid paradigm. In Sec. 4 we provide an illustrative case study, applying

our approach to the dynamically-weighted maximum-weight independent set prob-

lem and compare its performance on a D-Wave 2X machine to the standard quantum

annealing pipeline. Finally, in Sec. 5 we present our conclusions.

2. D-Wave's Quantum Annealing Framework

2.1. Quantum annealing

Quantum annealing is a ¯nite temperature implementation of adiabatic quantum

computing,27 in which the optimization problem to be solved is encoded into a

Hamiltonian Hp (the quantum operator corresponding to the system's energy) such

that the ground state(s) of Hp correspond(s) precisely to the solution(s) to the

problem (of which there may be several). The computer is initially prepared in the

ground state of a Hamiltonian Hi, which is then slowly evolved into the target

Hamiltonian Hp. This computation can be described by the time-dependent

Hamiltonian HðtÞ ¼ AðtÞHi þBðtÞHp for 0 � t � T , where Að0Þ ¼ BðT Þ ¼ 1 and

AðT Þ ¼ Bð0Þ ¼ 0. T is called the annealing time and the functions A and B deter-

mine the annealing schedule (for details on D-Wave's schedule, see Refs. 3 and 28).

If the computation is performed su±ciently slowly, the Adiabatic Theorem

guarantees that the system will remain in a ground state of Hp throughout the

computation and the ¯nal state will thus correspond to an optimal solution to the

problem at hand.27 In the ideal adiabatic limit, the time required for such a com-

putation scales as the inverse square of the minimum spectral gapa [i.e. the minimum

di®erence between the ground and ¯rst excited states of HðtÞ]. However, in the ¯nite

temperature regime of quantum annealing, a tradeo® must be found between

evolving the system su±ciently slowly and avoiding the perturbing e®ect of the

environment. As a consequence, the ¯nal state is only a correct solution with a

certain probability, and the (hence probabilistic) computation must be repeated

many times to obtain the desired solution (or a su±ciently close approximation

thereof).3,30

2.2. Quadratic unconstrained Boolean optimization

Although the adiabatic computational model is quantum universal,31 the recent

success of quantum annealing has come about by focusing on implementing speci¯c

types of Hamiltonians that are simpler to engineer and control, despite the fact they

might not be capable of e±ciently simulating arbitrary quantum circuits. In par-

ticular, D-Wave's devices can be modeled by a two-dimensional Ising spin glass

Hamiltonian, and it is thus capable of solving the Ising spin minimization problem, a

well-known NP-hard optimization problem.32,3 This problem is equivalent, via a

aDetermining the minimum spectral gap, and thus the time required for computation, is unfortunately

itself a computationally di±cult problem.29

A. A. Abbott et al.
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simple mapping of spin values (�1) to bits (0 or 1), to the Quadratic Unconstrained

Boolean Optimization (QUBOÞ problem.33 In this paper we will use this formulation,

as it will allow us to represent in detail a little more compactly the algorithms.

The QUBO problem is the task of ¯nding the input x� that minimizes a quadratic

objective function of the form fðxÞ ¼ xTQx, where x ¼ ðx1; . . . ;xnÞ is a vector of n

binary variables and Q is an upper-triangular n� n matrix of real numbers:

x� ¼ argmin
x

xTQx ¼ argmin
x

X
i�j

xiQði;jÞxj; where xi 2 f0; 1g: ð1Þ

Note that arbitrary quadratic objective functions g can be converted to this form.

Since x2
i ¼ xi for xi ¼ 0 or 1, linear terms of g can be encoded as the diagonal entries

of a Q for f. Furthermore, any constant terms in g can be ignored since they do not

a®ect the objective minimization with respect to x.

In the quantum annealing model of the QUBO problem, each xi corresponds to a

qubit while Q de¯nes the problem Hamiltonian Hp. Speci¯cally, the nonzero o®-

diagonal terms Qði;jÞ, i < j, correspond to couplings between qubits xi and xj, while

the diagonal terms Qði;iÞ are related to the local ¯eld applied to each qubit. For a

given QUBO problem Q, these couplings may be conveniently represented as a graph

GL ¼ ðVL;ELÞ representing the interaction between qubits, where VL ¼ f1; . . . ;ng is

the set of qubits and EL ¼ ffi; jgjQði;jÞ 6¼ 0; i < jg are the edges representing the

couplings between qubits. For reasons that will soon be apparent, we will refer to

such a graph for a given QUBO problem as the logical graph, and the set of qubits of

the QUBO problem is represented over the logical qubits.

2.3. Hardware constraints and embeddings

In practice, it remains exceedingly di±cult to control interactions between qubits

that are not physically near to one another, and as a result it is not possible to

implement directly any instance of the QUBO problem: this would require directly

coupling arbitrary pairs of qubits, which is currently infeasible. Instead, the couplings

possible on a quantum annealer are speci¯ed by a graph GP ¼ ðVP ;EP Þ, where VP is

the set of qubits on the device, and an edge fi; jg 2 EP signi¯es that qubits i and j

can be physically coupled. The graph GP is called the physical graph, and the qubits

VP are the physical qubits.33,34

The physical graphs implemented on D-Wave's existing devices are Chimera

graphs �k, which are k� k grids of K4;4 graphs, with connections between adjacent

\blocks" as shown in Fig. 1.b Speci¯cally, each qubit is coupled with four other qubits

b It is possible to de¯ne a more general family of n�m� L Chimera graphs that are n�m grids of KL;L

graphs, as in Ref. 35. However, all devices to date have been square grids ofK4;4 graphs and, hance, in order

to talk more precisely about scaling behavior, we adopt the convention of ¯xing L ¼ 4 and n ¼ m.29,9 This

is further justi¯ed by noting that increasing L involves increasing the density of qubit couplings, which is

technically much more di±cult than increasing the grid size.

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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in the same K4;4 block and two qubits in adjacent blocks (except for qubits in blocks

on the edge of the grid, which are coupled to a single other block). See Ref. 36 for a

more formal de¯nition of the Chimera graph structure.

The Chimera graph is, crucially, relatively sparse and quasi-two-dimensional, with

qubits separated by paths of length no longer than 2k. Although the speci¯c choice of

hardware graph is an engineering decision and may conceivably be changed in future

devices, any alternative physical graph is likely to have similar properties since the

tradeo® between connectivity and practicability is a core feature (and intrinsic

limitation) of the current approach to quantum annealing.34,37,c It is therefore es-

sential to take into account these limitations of the hardware graph in any approach

to solving problems with quantum annealers.

Since the logical graph GL for a QUBO problem instance Q will not, in general, be

a subgraph of the physical graph GP ¼ �k, the problem instance on GL must be

mapped to an equivalent one on GP . This process involves two steps: ¯rst, GL must

be embedded in GP , and second the weights of the QUBO problem (i.e. the nonzero

entries in Q) must be adjusted so that valid solutions on GP are mapped to valid

solutions on GL.

c Indeed, D-Wave recently announced that future devices will have a di®erent physical graph, the

\Pegasus" graph.38

. . .

... . . .
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Fig. 1. A portion of a Chimera graph, showing fourK4;4 blocks. In general, the graph �k consists of a k� k

grid of such blocks, with connections between adjacent blocks as shown.
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The embedding stage amounts to ¯nding a minor embedding of GL ¼ ðVL;ELÞ
into GP ¼ ðVP ;EP Þ,33,39 i.e. an embedding function f : VL ! 2VP such that

(1) the sets of vertices ffðvÞjv 2 VLg are disjoint;

(2) for all v 2 VL, there is a subset of edges E 0 � EP such that G 0 ¼ ðfðvÞ;E 0Þ is

connected;

(3) if fu; vg 2 EL, then there exist u 0; v 0 2 VP such that u 0 2 fðuÞ, v 0 2 fðvÞ and

fu 0; v 0g is an edge in EP .

Typically, this involves mapping each logical qubit to \chains" or \blocks" of

physical qubits. In general, a QUBO instance using n logical qubits will require up to

Oðn2Þ physical qubits since the smallest Chimera graph in which the complete graph

K4k can be embedded in is �k, requiring 4kðkþ 1Þ physical qubits.29,37 The embed-

ding thus already entails, in general, a quadratic increase in problem size which needs

to be taken into account when benchmarking quantum annealers.

The problem of ¯nding a minor embedding is itself computationally di±cult.33

Of course, if one has su±ciently many physical qubits to embed Kn then any n-qubit

logical graph can trivially be embedded into the physical graph. However, this trivial

embedding is generally rather wasteful since qubits are precious resources as the

practical limits of quantum annealing are still constantly being pushed. Perhaps more

importantly, as more physical qubits are required the amount of time needed to ¯nd a

(su±ciently good) solution increases, so even when such a naive embedding exists

there may be a signi¯cant advantage in looking for smaller embeddings (the feasi-

bility of a problem may even depend on it). The embedding process may thus, in light

of its computational di±culty, contribute signi¯cantly to the time required to solve a

problem in practice. Currently, the standard approach to ¯nding such an embedding

is to use heuristic algorithms (see e.g. Ref. 40).

The second stage, which ensures that the validity of solutions is preserved,

involves deciding on how to share the weights associated with each logical qubit v

between the physical qubits fðvÞ it is mapped to. Since the weights must all fall

within a ¯nite ranged and there is a limited analog precision with which the weights

can be set, this process can e®ectively amplify the relative e®ects of such errors and

thus decrease the probability of ¯nding the correct solution.29,33,41–43 This stage thus

further exempli¯es the need to avoid unnecessarily large embeddings, but does not

have the same intrinsic computational cost as the embedding process itself.

2.4. Benchmarking quantum annealers

Although from a theoretical perspective it is expected that general purpose quantum

computers will provide a computational advantage over classical algorithms, there

has been much debate over whether or not quantum annealing provides any such

dPhysically, the quantum annealer requires that the QUBO weights satisfy jQði;jÞj � 1 for all i and j. An

arbitrary problem speci¯ed by Q must thus be scaled to satisfy this constraint.

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing

1950042-7

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

U
C

K
L

A
N

D
 o

n 
10

/1
7/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



speedup in practice.8,14,34 Much of this debate has stemmed from the disagreement

over what exactly constitutes a quantum \speedup" and, indeed, how to determine if

there is one.8 In this paper we will focus primarily on the runtime performance in

investigating whether a quantum speedup is present, rather than the (empirically

estimated) scaling performance of quantum algorithms.

One of the key points complicating this issue is the fact that even in the standard

circuit model of quantum computation, it is not generally believed that an expo-

nential speedup is possible for NP-hard problems such as the QUBO problem.44

Leading quantum algorithms instead typically provide a quadratic or low-order

polynomial speedup.45 In practice, heuristic algorithms are generally used to solve

such optimization problems and the probabilistic nature of quantum annealing

means that it is also best viewed in this light.8,29 This means that, rather than the

theoretical algorithmic analysis, empirical measures are essential in benchmarking

quantum annealing against classical approaches.

2.4.1. Measuring the processing time

Good benchmarking will, ¯rst of all, need to make use of fair and comprehensive

metrics to determine the running times of both classical and quantum algorithms for

a problem. In particular, these need to properly take into account not only the \wall-

time" of di®erent stages of the quantum algorithm, but also its probabilistic nature.

To understand how this can be done, we ¯rst need to outline the di®erent stages of

the quantum annealing process29:

(1) Programming: The problem instance is loaded onto the annealing chip (QPU),

which takes the time tprog.

(2) Annealing: The quantum annealing process is performed and then the physical

qubits are measured to obtain a solution; this takes the timee ta.

(3) Repetition: Step (2) is performed k times to obtain k potential solutions.

The quantum processing time (QPT) is thus

tproc ¼ tprog þ k ta:

For any given run of a quantum annealer, there is a nonzero probability of obtaining

a correct solution to the problem at hand, which depends on both the annealing time

ta and the number of repetitions k. Moreover, for any speci¯c problem instance, the

optimal values of these parameters are not known a priori, so the performance of a

quantum annealing algorithm will be determined by the optimal values of these

parameters for the hardest problems of a given size n.8 On D-Wave 2X (and earlier)

devices, however, the minimal annealing time of 20�s has repeatedly been found to

eNote that this is sometimes referred to as the \wall clock time" in the literature. For simplicity, we choose

to englobe all times associated with an annealing cycle (e.g. readout and inter-sample thermalization times)

along with the annealing time per se into ta.

A. A. Abbott et al.
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be longer than the optimal time8,29,46,47 [indeed, on the newer D-Wave 2000Q devices

the minimal annealing time has been reduced to 5�s (Ref. 48)].

A relatively fair and robust way to measure the quantum processing time is the

\time to solution" (TTS) metric,8,49 which is based on the expected number of

repetitions needed to obtain a valid solution with probability p (one typically takes

p ¼ 0:99).f If the probability per annealing sample of obtaining a solution is s (which

can be estimated empirically), then this is calculated as

kp ¼
logð1� pÞ
logð1� sÞ ; ð2Þ

and the quantum processing time is thus calculated with this k as tproc ¼ tprog þ kp ta.

Throughout the rest of the paper we will ¯x p ¼ 0:99 as is typically done, and thus

consider k99.

In practice, unfortunately, even for moderate problem sizes, quantum annealing

(and, indeed, classical annealing) simply does not ¯nd a correct solution to many

problem instances.8,49,50 Thus, although no worst-case running time for such pro-

blems can be calculated, it is often instructive to look at the QPT for restricted

classes of problems of particular interest or of limited di±culty. In particular, several

authors have applied this to di±culty \quantiles", calculating the QPT for, say, the

75% of problems that can be solved the quickest. Investigating how the QPT scales

with problem di±culty in this way permits some comparison with classical algo-

rithms where it would otherwise be di±cult or even impossible.8,49

Existing investigations have primarily focused on comparing directly the QPT

with the processing time of a classical algorithm in order to look for what we call a

\raw quantum speedup". However, it is essential to realize that the time used by the

QPU and measured by the QPT refers only to a subset of the processing required to

solve a given problem instance using a quantum annealer. Speci¯cally, a complete

quantum algorithm for a problem instance P involves, as a minimum requirement,

the following steps:

(1) Conversion: The problem instance P must be converted into a QUBO instance

QðP Þ, typically via a polynomial-time reduction taking the time tconv.

(2) Embedding: The QUBO problem QðP Þ must be embedded into the Chimera

hardware graph taking the time tembed.

(3) Pre-processing: The embedded problem is pre-processed, which involves calcu-

lating (appropriately scaled) weights for the embedded QUBO problem, taking

the time tpre.

(4) Quantum processing: The annealing process is performed on the QPU, taking the

time tproc.

f It is possible to generalize the TTS method to a time-to-target (TTT) method,9 where one is interested in
the expected time to obtain a solution that is su±ciently good with respect to some (perhaps problem-

dependent) measure. Although this approach is likely to be very useful in benchmarking larger practical

problems, we focus on the TTS approach here (which can be seen as a speci¯c case of TTT).

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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(5) Post-processing: The samples are post-processed to choose the best candidate

solution, check its validity and perform any other post-processing methods to

improve the solution quality,29,41,g taking the time tpost. The QUBO solution

must ¯nally be converted back to a solution for the original problem P .

The total processing time is thush

TQ ¼ tconv þ tembed þ tpre þ tproc þ tpost: ð3Þ
The realization that these other steps must be included in the analysis is em-

phasized by the fact that in practical problems the embedding time often dominates

the time used by the annealer itself. Previous investigations have largely avoided this

by focusing on arti¯cial problems \planted" in the Chimera graph so that no

embedding is necessary.6,8,46,49,50 Although ¯nding a raw speedup in such situations

is clearly a necessary condition for a quantum speedup, it does not guarantee that any

corresponding speedup will carry over into practical problems.

It is therefore the time TQ which should be used in a fair comparison with classical

algorithms. Note that this still makes use of the TTS approach discussed above,

except one must now take into account the tradeo® between the quality of an

embedding and the time spent ¯nding it in order to determine the optimal annealing

parameters.

2.4.2. Comparing classical and quantum algorithms

To properly benchmark quantum annealing against classical algorithms it is neces-

sary not only to have fair measures of the cost of obtaining a solution, but one must

also compare fairly the quantum annealer to a suitable classical algorithm.

Ideally, the performance of a quantum annealer should be compared against the

best classical algorithm for the problem being solved. In practice, such an algorithm is

rarely, if ever, known, especially for problems where heuristics dominate, and certain

algorithms may perform better on certain subsets of problems. The best one can do in

practice, then, is to look for a \potential quantum speedup"8 by comparing against

the best available classical algorithm for the problem at hand.

Often, however, quantum annealers are also tested against speci¯c classical

algorithms of interest; a speedup in such benchmarking has been termed a \limited

speedup" in Ref. 8. Such studies are important since a limited speedup is, of course,

a necessary condition for a real quantum speedup to be present. This type of

gOn D-Wave's annealer, for example, a local search may optimally be performed to improve the solution

quality. The k repetitions that are performed in the quantum processing step are broken into ¯xed
\batches" of k=b samples (where b depends on the problem but not on k) and batches are post-processed in

parallel with the annealing of the following one; this justi¯es the consideration of this post-processing as

contributing towards the constant overhead tpost, as only the post-processing of the ¯nal batch contributes

to TQ. Note that such post-processing already constitutes a form of hybrid quantum-classical approach.
hAs a convention, we will use lower case letters t for the timings of subtasks, and upper case T s to denote

overall times of computation.

A. A. Abbott et al.
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benchmarking has often been used e.g. to compare quantum annealing to simulated

annealing or simulated quantum annealing,6,49–51 and such comparisons have the

extra bene¯t of comparing similar use cases— i.e. generic optimization solvers rather

than algorithms tailored to a particular problem and which might require signi¯cant

development time. Nonetheless, care should be made in interpreting the results when

benchmarking in this way, since much of the controversy regarding potential speedup

with quantum annealing has arisen when \limited" speedups are claimed to have

more general relevance.

Finally, it is important to make sure the performance measures for both quantum

and classical algorithms are compatible. That is, the classical processing time TC

should be calculated using a TTS metric as for TQ (if the classical algorithm is

deterministic, this simply reduces to the computation time), and should include all

aspects of the classical computation, including pre- and post-processing and reading

input. Note that by including the cost of embedding in the quantum and classical

processing times, we make sure that what we calculate is a function of the problem

size n and not the number of physical qubits.

3. Hybrid Quantum-Classical Computing

As we discussed in the previous section, most of the e®ort in determining whether or

not quantum annealing can, in practice, provide a computational speedup has fo-

cused purely on determining the existence of a raw quantum speedup, which does not

take into account the associated classical processing that is inseparable from a

quantum annealer. Such a raw speedup is certainly a necessary condition for practical

quantum computational gains, and its study is therefore well justi¯ed. However, even

if there is a raw speedup there are many reasons why this might not translate into a

practical quantum speedup.

A practical speedup is possible for a problem if we are able to give a quantum

algorithm such that TQ < TC , where (we recall) TC is the classical processing time

for the best available classical algorithm for the problem. From the de¯nition of

TQ in (3), it is clear that even if tproc < TC , the conversion, embedding and pre/

post-processing may provide obstructions to obtaining a practical speedup. In

practical terms, the pre- and post-processing tend to add relatively minor (or con-

trollable) overheads, but the conversion and embedding costs pose more fundamental

problems.

The conversion stage can be problematic for two reasons. First, if the conversion is

slow, tconv may be su±ciently large to negate any speedup. However, asymptotically

tconv should be polynomial in the problem size n, and, in practice for problems

suitable for annealing, tconv seems to be relatively small compared to tproc and thus

has negligible impact on the ability to ¯nd an absolute speedup.

More importantly though is the fact that the QUBO instance resulting from the

conversion may be signi¯cantly larger than the original problem instance, and thus it

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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can be too large to solve with current quantum annealers. For example, Ref. 35

studies the QUBO formulation of the well-known Broadcast Time Problem obtained

through a reduction from Integer Programming. For instances of this problem on

graphs with less than 20 vertices, the corresponding QUBO formulation required up

to 1000 binary variables (and thus logical qubits) which, especially once the problem

is embedded in the physical graph, is beyond the reach of current quantum annealing

hardware.

The computational cost of embedding the QUBO instance in the hardware graph

is, in absolute terms, even more of an obstruction to successful applications of

quantum annealing in its current state. As mentioned earlier, when using standard

heuristic algorithms the embedding time tembed is generally (at best) comparable to

tproc (and, indeed, TC) and often much longer. Like the issues associated with the

conversion, if su±ciently many qubits are available (i.e. quadratic in the QUBO

problem size) and can reliably be annealed, then this embedding can be done quickly

and this problem could be neglected. However, this is certainly not the current

situation, and ways to mitigate the dominant e®ect of tembed will be needed if

quantum annealing is to be successfully applied in its current state or imminent

future.

These di±culties in turning a raw quantum speedup into a practical advantage

have led to signi¯cant interest in \hybrid quantum-classical" approaches (also called

\quassical" computations by Allen, see Ref. 14): hopefully, combining quantum

annealing with classical algorithms may allow otherwise inaccessible speedups to be

exploited.i Several such hybrid approaches have aimed to overcome the resource

limitation arising from the fact that practical problems typically require more qubits

than are available on existing devices (as a result of the expansion in number of

variables during the conversion stage discussed above).17,18 Such proposals instead

provide algorithms that utilize quantum annealing on smaller, more manageable

subproblems before combining the results classically into a solution for the larger

problem at hand. Other hybrid approaches have aimed to combine quantum

annealing with classical annealing and optimization techniques, in particular by

using quantum annealing to perform local optimizations and classical techniques to

guide the global search direction.19,20 These approaches aim to make the most of both

quantum advantages (e.g. tunneling) and classical ones (the ability to read and copy

intermediate states).

3.1. Hybrid computing to mitigate minor-embedding costs

Although hybrid approaches have also looked at improving the robustness and

quality of embeddings,54 to the best of our knowledge such approaches have not been

iWe note that hybrid approaches have also been proposed (explicitly and implicitly) in other models of
quantum computation. For example, measurement-based computation can be seen a hybrid approach: one

starts with a quantum state and performs iterative rounds of quantum measurements and classical

computations determining future measurements.52,53

A. A. Abbott et al.
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used to try and mitigate the cost of performing the embedding itself, which, we recall,

is often prohibitive to any speedup. In this paper we propose a general hybrid ap-

proach to tackle precisely this problem. In particular, we aim to show how a raw

speedup that is negated by the embedding time (i.e. in particular when tproc < TC but

TQ > TC) can nonetheless be exploited to give a practical speedup to certain

computational problems.

Our approach is motivated by another hybrid quantum-classical algorithmic

proposal which predates the rise of quantum annealing and was introduced with the

aim of exploiting Grover's algorithm — the well-known black-box algorithm for

quantum unordered database search55 — in practical applications.15 The motivation

in this case was the realization that, although Grover's algorithm o®ers a provable

quantum speedup, it applies in rather arti¯cial scenarios: it assumes the existence of

an unsorted quantum database, when generally a more practical database design

would allow for even better speedups, and in most conceivable practical scenarios a

costly pre-processing step is needed to prepare the database which immediately

negates the quantum speedup. The authors showed, however, that some more

complex practical problems can be approached by solving a large number of instances

of unstructured database searches on a single database — precisely the problem that

Grover's algorithm is applicable to. Speci¯cally, they looked at practical problems in

computer graphics, such as intersection detection in ray-tracing algorithms.j The

need to run Grover's algorithm many times to solve such problems means that

the cost of preparing and pre-processing the database can be averaged out over all the

runs, thus allowing the theoretical quantum speedup to be recovered. An important

aspect of the hybrid approach of Ref. 15 is that it is not just an algorithmic paradigm

for using a quantum computer, but it is also concerned with determining for which

problems we should try and use the quantum computer to solve.

Although their hybrid approach applies to a very di®erent situation than that of

quantum annealing, there are some clear similarities between the prohibitive costs of

preparing the database for Grover's algorithm and that of performing the embedding

prior to annealing. We thus suggest adopting an analogous approach of using a

quantum annealer to solve more complex problems that require solving sets of related

(sub)problems whose potential quantum speedup is hidden behind the cost of the

embedding required to solve the (sub)problem. In particular, it might be easier to

observe (and thus take advantage of) a quantum speedup by looking at algorithms

that require a large number of calls to a quantum annealer as a subroutine, rather

than trying to observe a speedup for solving an individual problem instance on an

annealer (e.g. a single instance of an NP-complete problem such as the Independent

Set problem via a reduction to a single QUBO instance) as previous attempts to use

quantum annealing have done.

jHere, one must determine the intersections between large numbers of a priori unordered three-dimen-

sional objects, which can be rephrased as a search for an initially unknown number of items in an unordered

database.

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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The crucial condition for a problem to be amenable to this hybrid approach is that

the repeated calls to the quantum annealer should be made with the same logical graph

embedding, or permit an e±cient method to construct the embedding for one call from

the previous ones. If this condition is satis¯ed, the cost of the embedding, tembed, can

thus be spread out over several calls, allowing a raw quantum speedup to be

exploited. There are several conceivable ways by which such a scenario could natu-

rally occur in realistic algorithmic problems, and we will discuss and analyze an

example in detail in the following sections. Perhaps, the most trivial would be that

where all (or most) solutions to a highly-degenerate problem are required to be found,

rather than simply a single one. Although such a scenario is clearly suitable for

quantum annealing, given its intrinsic ability to randomly sample solutions, there are

other, perhaps more subtle, situations where this hybrid approach could be applied.

For example, one may need to solve a large number of instances of a problem,

P1; . . . ;Pm, where the instances Pi di®er in some parameters, but where the

embedding is independent of these parameters (e.g. if they are encoded in the weights

rather than couplings of the logical graph), or if the logical graphs Gi of each instance

Pi di®er only slightly and are all subgraphs of a single logical graph G that can be

embedded.k These examples are certainly not de¯nitive, and other situations suitable

for this hybrid approach are bound to be uncovered.

In order to see how this hybrid approach can help exploit a quantum speedup, we

will consider the particularly simple case with the following general description of a

quantum annealing algorithm based on the hybrid approach described above (a more

precise analysis would necessarily depend in part on the algorithm in question): some

initial classical processing is performed, the embedding of a logical graph into the

physical graph is computed, m instances of a QUBO problem are solved on a

quantum annealer, with some classical pre- and post-processing occurring between

instances, and some ¯nal classical computation is optionally performed. We em-

phasize, however, that the same approach can be applied to cases where the

embedding is reused in a less trivial manner, so long as the cost to go from the

embedding of one subproblem to the next is small. Indeed, a key part of the chal-

lenge— and future research— is ¯nding suitable problems or criteria for which this is

the case; here, our goal is to simply outline the underlying paradigm.

More formally, let us call the overall problem the hybrid algorithm solves as R,

and the m problem instances that must be solved to do so as P1; . . . ;Pm. Recall that

the time to solve a single instance Pi on an annealer is TQðPiÞ; as we noted earlier this

is, in practical situations, generally dominated by the cost of the embedding and the

quantum processing, so TQðPiÞ can be approximated, for simplicity, as

TQðPiÞ ¼ tconvðPiÞ þ tembedðPiÞ þ tpreðPiÞ þ tprocðPiÞ þ tpostðPiÞ
� tembedðPiÞ þ tprocðPiÞ;

kOf course, one would want G to be not much larger than the Gi, otherwise the embedding of G is unlikely

to allow one to compute the good embeddings of the Gi.

A. A. Abbott et al.
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where we have explicitly included the dependence on the problem instance. The

hybrid algorithm will thus take the time

THðRÞ � t1ðRÞ þ tembedðP1Þ þ
X
i

ðtprocðPiÞ þ t2ðPiÞÞ

� t1ðRÞ þ tembedðP1Þ þ
X
i

tprocðPiÞ; ð4Þ

where t1ðRÞ encapsulates any initial and ¯nal classical processing associated with

combining the solutions Pi, and t2ðPiÞ is the classical calculation associated with each

iteration, which we have assumed to be small compared to tprocðPiÞ since this should
simply encompass minor pre- and post-processing between annealing runs, and thus

be negligible if the problem is amenable to the hybrid approach.l Note that we have

made use of the assumption that tembedðP1Þ � tembedðPiÞ for i > 1, which is a criterion

on the suitability of a problem for this hybrid approach.

We note immediately that a standard approach with a quantum annealer,

performing the embedding for each instance Pi, would take the time

TstdðRÞ � t1ðRÞ þ
X
i

ðtembedðPiÞ þ tprocðPiÞÞ:

In practice, one could envisage exploiting classical parallelism to reduce the cost of

performing the embedding m times by a constant factor. For simplicity, we will

assume that such parallelism is not used, and as long as m is large enough the same

conclusions hold. Thus, since in practice tembed is comparable to, if not larger, than

tproc, we already have

THðRÞ � TstdðRÞ:
Although this conclusion may seem somewhat trivial, it is important in that it shows

already how annealing can provide much larger practical gains for such complex

algorithmic problems. Indeed, one may view this result as emphasizing the need to

choose problems that allow the classical overheads of quantum annealing to be

negated. Thus far, the focus has been on traditional algorithmic problems that are

di±cult to subdivide; by using quantum annealing in more complex algorithms, this

hybrid paradigm allows the real performance of a quantum annealer to be more

directly accessed.

More importantly, it may allow a raw quantum speedup to be exploited practically.

To see this, let us consider the case when the best classical algorithm can solve a

lMore precisely, one expects the annealing time to be exponential in general, and if an exponential amount

of classical processing is also required, it seems likely that no speedup will be possible. This condition could
nonetheless be relaxed to obtain an advantage with the hybrid approach, as long as a raw speedup is still

present when the annealing and processing times are combined (i.e. tproc þ t2), but negated by the

embedding if the annealer is used in the standard, more naive, way; however, we make this assumption to

simplify our analysis.

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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single instance Pi in time TCðPiÞ.m We are interested, in particular, in the case when a

raw quantum speedup [i.e. tprocðPiÞ < TCðPiÞ] is negated by the embedding [i.e.

TQðPiÞ > TCðPiÞ]. Although the standard classical approach to solving R is to use the

classical algorithm to solve each Pi, and would thus take time t1ðRÞ þP
iTCðPiÞ, we

should not assume this is the best classical approach to solving R, and for a fair

comparison the hybrid approach should be benchmarked against the best-known

classical algorithm for R.

It is, of course, possible that for certain problems, a much more e±cient classical

algorithm exists for solving R whenm is large enough (e.g. there might be an e±cient

way to map solutions of Pi to Pj). Such problems are thus not suitable for such a

hybrid approach, and so are not of particular interest to us. Nonetheless, in general a

classical algorithm for R may be more intelligent than the standard approach as

certain, necessarily minor,n parts of the computation are likely to be common to

solving several Pi. Speci¯cally, we can thus rewrite TCðPiÞ ¼ t3ðPiÞ þ t4ðPiÞ, where t3
is small compared to t4. The best classical algorithm can then, rather generally, be

considered to take the time

T best
C ðRÞ ¼ t5ðRÞ þ t3ðP1Þ þ

X
i

t4ðPiÞ ¼ t6ðRÞ þ
X
i

t4ðPiÞ;

where t6ðRÞ ¼ t5ðRÞ þ t3ðP1Þ and t5ðRÞ encapsulates any additional global proces-

sing [in analogy to t1ðRÞ for the quantum approaches]. Crucially, unless the raw

quantum speedup is small, we will also have tprocðPiÞ < t4ðPiÞ.
It is thus easy to see that

for large enough m ði.e. number of Pis to be solvedÞ; we have THðRÞ <
T best
C ðRÞ;

and thus the raw quantum speedup will translate into an absolute speedup for the

hybrid algorithm. The precise value ofm for which such a speedup is obtained will, of

course, depend on the problem instances themselves, since the runtime can in practice

depend heavily on this. Moreover, although m depends on the problem R (it may, for

example, scale with the problem size, or be ¯xed), this analysis shows that there are

problems for which this hybrid approach can turn a raw quantum speedup into a

practical one.

It is important to reiterate that the quantum (and, if applicable, classical) times

should be calculated using the TTS metric for each problem instance in order to

correctly take into account the probabilistic nature of the quantum (and, potentially,

classical) algorithms, just as when benchmarking the performance of an annealer on

individual problem instances. The performance of the overall hybrid algorithm is thus

itself probabilistic and assessed in a similar fashion.

mWe emphasize that since we are interested in practical, not only asymptotic, gains, we cannot easily

assume that TCðPiÞ ¼ TCðPjÞ for i 6¼ j.
n If not, then again the problem is not suitable for the hybrid approach, as a much more e±cient classical

algorithmic approach exists.

A. A. Abbott et al.
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Finally, we reiterate that such a hybrid approach can, of course, only provide a

quantum speedup if a raw quantum speedup exists. The existence of such speedups

for practical problems remains heavily debated, but the purpose of the hybrid

approach is to exploit such an advantage when or if it is present.

4. Case Study: Dynamically-Weighted Maximum-Weight
Independent Set

To illustrate the proposed hybrid approach, we discuss in detail a concrete example

both from theoretical and experimental viewpoints. We ¯rst present the problem,

which is intended as a proof-of-concept example rather than the one of any particular

practical application, before discussing an experimental implementation on a

D-Wave quantum annealer and analyzing the results of this experiment.

Our problem is based on a variant of the well-known independent set problem, the

MWIS problem. More precisely, we consider the question of solving many instances of

this problem with di®erent (dynamically assigned) weights on the same graph.

4.1. Maximum-weight independent set

Recall that an independent set V 0 of vertices of a graph G ¼ ðV ;EÞ is a set V 0 � V

such that for all fu; vg 2 E we have fu; vgµ6 V 0.

MWIS Problem:

Input: A graph G ¼ ðV ;EÞ with positive vertex weights w : V ! Rþ.
Task: Find an independent set V 0 � V that maximizes

P
v2V 0wðvÞ over

all independent sets of G.

Note that the number of vertices in a maximum-weight independent set may be

less than in its maximum independent set. For example, consider the weighted graph

shown in Fig. 2(a). The vertices fv2; v4g have a total weight of 9, while the larger set

fv0; v1; v3g has only a total weight of 8.

The general MWIS problem is NP-hard since it encompasses, by restriction, the

well-studied nonweighted version.56 One should note, however, that for graphs of

2

3

3 18

v0

v1

v3 v4v2

(a)

v0 v1 v2 v3 v4

v0 -2 0 12 0 0
v1 0 -3 12 0 0
v2 0 0 -8 12 0
v3 0 0 0 -3 12
v4 0 0 0 0 -1

(b)

Fig. 2. An example of (a) a vertex-weighted graph and (b) its MWIS QUBO matrix (cf. Sec. 4.3).
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bounded tree width, the MWIS problem is polynomial-time solvable using standard

dynamic programming techniques (see Ref. 57).

We ¯nish the presentation of the MWIS problem by mentioning an important

application of it that was studied in Refs. 58 and 59. Hence, although the example we

presented is intended simply as a proof-of-concept, it is not far removed from the

computational problems of interest. Suppose we have a wireless network consisting of

several nodes and each node has a certain amount of data it needs to transfer. The

problem consists in ¯nding the set of nodes that should be given permission to

transfer so that the total amount of data output is maximized under the condition

that none of the transmissions can interfere with each other. If the vertices of the

graph G ¼ ðV ;EÞ are devices in the network, the weight associated with each node

represents the amount of data it needs to transfer and each edge in E codes the

potential interference between its two endpoints (so that only one of them can be

transferring at a given time), then ¯nding the optimal schedule for transmission is

equivalent to ¯nding the maximum-weight independent set of G.

4.2. Dynamically-weighted MWIS

Although the MWIS can be readily transformed into a QUBO problem (as we show

below), by itself it is not directly suitable for the hybrid approach we proposed.

However, a simple variation that we propose here is indeed suitable.

Consider the network scheduling problem presented in the previous subsection.

Suppose that each node in the network now has multiple messages it needs to send

with various sizes, but the underlying structure of the graph remains the same (i.e.

the same set of devices with unchanged potential interference), but the weight as-

sociated with each node will now change over time. Finding the optimal transmission

schedule over time in this network is the same as ¯nding the maximum-weight in-

dependent set of the graph with multiple weight functions.

Formally, we have the following problem:

DWMWIS Problem:

Input: A graph G ¼ ðV ;EÞ with a set of weight functions W ¼ fw1;w2; . . . ;wmg
where wi : V ! Rþ for 1 � i � m.

Task: Find independent sets Vi � V that maximize
P

v2Vi
wiðvÞ for each

1 � i � m.

This problem is to solve the MWIS problem on G for each of the m weight

assignments wi 2 W.

For m ¼ 1 we obtain again the MWIS problem, but for larger m the problem is

suitable for our hybrid approach.

4.3. Quantum solution

We now provide a QUBO formulation for the MWIS Problem. Fix an input graph

G ¼ ðV ;EÞ with positive vertex weights w : V ! Rþ. Let W ¼ maxfwðvÞjv 2 V g

A. A. Abbott et al.
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and let S > W be a \penalty weight". We build a QUBOmatrix of dimension n ¼ jV j
such that

Qði;jÞ ¼
0; if i > j or fi; jg 62 E;

�wðviÞ; if i ¼ j;

S; if i < j and fi; jg 2 E:

8<
: ð5Þ

Theorem 1. The QUBO formulation given in (5) solves the MWIS Problem.

Proof. Let x be a Boolean vector corresponding to an optimal solution to the QUBO

formulation (5). Let DðxÞ ¼ fvijxi ¼ 1g be the vertices selected by x.

If DðxÞ is an independent set then �x� ¼ �xTQx is its weighted sum. For two

di®erent solutions x1 and x2, which correspond to independent sets, the smallest

value of xT
1Qx1 and xT

2Qx2 is better.

Now assume DðxÞ is not an independent set. We will show that the objective

function corresponding to DðxÞ can be improved. Indeed, since DðxÞ is not inde-

pendent there must be two vertices vi and vj in DðxÞ such that fvi; vjg is an edge

in the graph. Let x1 ¼ x but set xi ¼ 0, i.e. Dðx1Þ ¼ DðxÞnfig. We have

xT
1Qx1 < xTQx�W þ wðviÞ � xTQx. (Note that the second inequality is saturated

if and only if vi is a pendant vertex attached to vj.) We can repeat this process on

improving x to x1 until we get an independent set. Thus the optimal value of QUBO

holds for some independent set. By the conclusion of the second paragraph of this

proof, we know that a maximum-weight independent set corresponds to x�.

In Fig. 2(b) we give the QUBO matrix for the example in Fig. 2(a) with penalty

entries35,60 P ¼ 12 > W ¼ 8. It is easy to see that with x ¼ ð0; 0; 1; 0; 1Þ we have the
minimum value x� ¼ xTQx ¼ �9. The maximum total weight is thus indeed

�x� ¼ 9, as expected.

As a sanity check of the practicality of this solution on real quantum annealing

machines, we implemented it on a D-Wave 2X device. For this example it is easy to

see that the graph in Fig. 2(a) is a subgraph of K4;4, hence a trivial embedding is

possible.o The algorithm gave the expected optimal answer of fv2; v4g approximately

two-thirds of the time, and the nonoptimal answer of fv0; v1; v3g one-third of the

time; occasionally other results, such as fv2g or fv0; v1; v4g, were obtained, although
such occasional incorrect solutions are not unexpected for quantum annealers.

Further details of the implementation, including source code, are available online

in Ref. 61.

In order to adapt the MWIS solution above to the DWMWIS problem, note that

the locations of the nonzero entries of the QUBO formulation (5) depend only on the

structure of the graph and not on the weight function w. Thus, in order to solve the

DWMWIS problem, for each weight assignment wi the same embedding of the graph

oWe took, for example, the embedding ½v0 ! 0; v1 ! 1; v2 ! 4; v3 ! 2; v4 ! 7	 into the ¯rst bipartite

block of the Chimera graph shown in Fig. 1.
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into the D-Wave physical graph can be used, meaning that a hybrid algorithm based

around the MWIS solution above can readily be implemented.

More speci¯cally, following the hybrid algorithm described in Sec. 3.1 for instances

P1; . . . ;Pm (where each Pi uses weight function wi), we perform the embedding once

[entailing a time tembedðP1Þ] and then solve the MWIS problem for each weight

assignment wi [taking the times tprocðPiÞ] using the QUBO solution outlined above.

Note that the iteration times t2ðPiÞ, 1 � i � m, in Eq. (4) thus correspond to the time

to read in and alter the coupling weights in the QUBO matrix.

4.4. Classical baseline

The main objective of studying the DWMWIS example in detail is to exhibit ex-

perimentally the advantage that the hybrid approach can provide over a standard

annealing-based approach. Nonetheless, it is helpful to further compare this to the

performance of a classical baseline algorithm, even if we do not necessarily expect to

see an absolute quantum speedup from the hybrid algorithm.

As we discussed in detail in Sec. 2.4.2, one should ideally compare the hybrid

algorithm against the best available classical algorithm for the same problem.

However, since our primary concern is not to show an absolute quantum speedup,

and studying more closely the performance of various classical algorithms for the

DWMWIS problem is somewhat beyond the scope of this paper, we will use a generic

classical algorithm based on a Binary Integer Programming (BIP) formulation of the

MWIS problem for illustrative purposes. Both quantum annealing and BIP can be

seen as types of generic optimization solvers. By using such a baseline, we also mimic

how an engineer would map a new hard problem to a well-tuned optimization solver

(a SAT-solver or IP-solver being two natural generic choices). This process mimics

the D-Wave model of requiring a polynomial-time reduction to the Ising/QUBO

problem, which the quantum hardware solves, and allows us to compare similar

approaches, even if for certain problem instances their very genericity may make

them suboptimal.

To this end, for a given input graph G ¼ ðV ;EÞ with positive vertex weights

w : V ! Rþ, we construct a BIP instance with n ¼ jV j binary variables as follows.

To each vertex vi in G we associate the binary variable xi, and for notational

simplicity we will denote the collection of variables xi by a binary vector

x ¼ ðx0;x1; . . . ;xn�1Þ. We thus have the BIP problem instance:

maximize
X
vi2V

wðviÞxi

subject to xi þ xj � 1 for all fvi; vjg 2 E:
ð6Þ

Each constraint in (6) enforces the property that no adjacent vertices are chosen

in the independent set while the objective function ensures an independent set with

maximum sum value is chosen. Assuming we have the binary vector x which yields

A. A. Abbott et al.
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the optimal value of objective function (6), we take DðxÞ ¼ fvijxi ¼ 1g to be the set

of vertices selected as the maximum-weight independent set.

Theorem 2. The BIP formulation given in (6) solves the MWIS problem.

Proof. First, we show that DðxÞ is an independent set if and only if all the

constraints in (6) are satis¯ed. This is indeed the case as if all the constraints are

satis¯ed, then for each fvi; vjg in E, at most one of them is in DðxÞ by its de¯nition.

On the other hand, if any one of the constraints is not satis¯ed, then it means vi and

vj are both chosen, thus DðxÞ is not an independent set.

Now, let x be a binary vector corresponding to an optimal solution of BIP

formulation (6). Let DðxÞ ¼ fvijxi ¼ 1g be the vertices selected by x. Since x is the

optimal solution, we already have all the constraints of (6) satis¯ed and DðxÞ is

therefore a valid independent set. The objective function will ensure that the selected

independent set has the maximum value sum.

The classical baselinep we use in the analysis presented in the remainder of this

section is based on an implementation of the BIP formulation in SageMath,62 which

has a well-developed and optimized Mixed Integer Programming library. Note that

this is an exact solver for BIP problems, whereas an annealer can also be used to ¯nd

good approximate solutions. However, since we are using the TTS metric we thus

treat the quantum annealer as an exact solver too, thereby ensuring a fair compar-

ison. (If a TTT metric — see footnote f — were instead considered one would need,

for fairness, to compare the annealer to a classical approximation algorithm.).

To ensure that a fair comparison with the hybrid algorithm is possible, we for-

mulate the classical algorithm for the overall DWMWIS problem such that the set of

constraints in the BIP formulation is only computed once (cf. the discussion in

Sec. 3.1). This is possible since (in analogy with the need to only perform the

embedding once in the quantum solution) the changing weights do not change

the constraints of the BIP formulation, and we make use of this to reuse parts of the

computation where possible. Note that the Sage environment contains a simple

Python front-end interface to one of the many (Mixed) IP-solvers which are often

written, optimized and compiled from C. We used the default GNU GLPK as the

back-end library but many popular commercial solvers like COIN-OR, CPLEX or

GUROBI could be equally used. For our small input instances, the classical solver

choice would not matter much; the scaling behavior would be the same for our chosen

illustrative NP-hard problem.

4.5. Experimental framework

To study experimentally the performance of the hybrid DWMIWS algorithm, we

compare the performance of three algorithms on a selection DWMWIS problem

pOur local Linux machine, running Fedora 25 OS, consisted of an Intel Haswell i7 4.0GHz (over-clocked to

4.5GHz) with 32-GB DDR3 2400-MHz RAM.
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instances: the \standard" quantum algorithm, in which the embedding is re-

performed for each weight assignment; the hybrid DWMWIS algorithm; and the

classical BIP-based algorithm described above.

To this end we analyze the algorithms on a range of di®erent graphs, initially

choosing 156 graphs from a variety of common graph families with between two and

126 vertices (the initial testing of which suggested that most of them should be placed

within the capabilities of the quantum annealer we used). These graphs, including the

so-called common graphs in SageMath62 with no more than 126 vertices and repre-

sentatives from several well-known families of graphs, are natural and well-studied

examples spanning a range of sizes and with varying properties with which we need to

test the performance of our hybrid algorithm. Moreover, they were also used in

Refs. 63 and 64 to study other quantum annealing algorithms, allowing our results to

be comparable to those. The full list of graphs and some of their basic properties

(order, size) can be found in the summary of results in Appendix A. Each graph was

used to generate a single DWMWIS problem instance with m ¼ 100 weight assign-

ments, each randomly generated as °oating point numbers rounded to two decimal

places within the range ½0:0; 1:0Þ using the default pseudo-random generator in

Python.q Although the choice m of number of weight assignments is somewhat ar-

bitrary, our choice was made by the need to balance the ability to solve su±ciently

large problems to be able to negate the embedding time against the limited access we

had to the quantum annealer. The problem instances were generated as standard

adjacency list representations using SageMath62 with random weights assigned.

The hybrid DWMWIS algorithm outlined in Sec. 4.3 was implemented on a

D-Wave 2X quantum annealer with 1098 active physical qubits.26 Note that this is

signi¯cantly more qubits than are needed to embed any of the graphs we consider.

However, as we will see, for the larger graphs we considered D-Wave already

struggled to ¯nd optimal solutions making further analysis impossible; indeed, this is

why we did not initially select larger graphs for analysis despite the ability to embed

them into the hardware graph. The same procedure is used for the \standard"

quantum algorithm, except the cost of the embedding is incurred for each weight

assignment (as per Sec. 3.1). Full details of the implementations, data and results (i.e.

source code, problem instances and outputs) are available online in Ref. 61.

Since we are primarily interested in negating the impact of the embedding process

in general applications, we made use of D-Wave's heuristic embedding algorithm65 to

embed each logical graph in the physical graph. While specialized embedding algo-

rithms may be more e®ective in certain scenarios, the overall hybrid approach would

still be applicable, and by adopting a generic algorithm our results have wider rele-

vance. Each graph was embedded 10 times to estimate tembed for each problem

qThis choice of weight distribution was made for simplicity, but one would expect similar behavior for
other distributions. In practice, using the full range of possible weights leads to better quantum annealing

performance, so other distributions might require rescaling to optimize performance, adding additional

technical — but not fundamental — complications.
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instance. Unfortunately, due to the large number of samples often required to be run

for each problem and restrictions on access to the annealer, we were unable to per-

form a full analysis with each embedding (recall the embedding is nondeterministic)

and instead performed the analysis for a single such embedding. This introduces a

potential systematic error since the embedding generally a®ects the solution quality

to some degree; we will discuss this further in the analysis that follows. The orders of

the embeddings we used (i.e. the number of physical qubits required), which are

useful in understanding the performance of the quantum annealer on individual

problems, as well as the maximum chain length required in embedding are also given

in Appendix A. With the embeddings obtained, the couplings between the physical

qubits were determined using the default approach of evenly distributing the logical

couplings along chains provided by the D-Wave solver API.

Operational parameters for the D-Wave 2X device were determined via an initial

testing round (see Refs. 66 and 67 for further information on D-Wave timing para-

meters). In line with previous researches46,29,8,47 (cf. Sec. 2.4.1) we found the minimal

annealing time of 20�s to be optimal for all the graphs considered. The programming

thermalization time, which speci¯es how long the quantum processor is allowed to

relax thermally after being programmed with a QUBO problem instance, was chosen

as its default value of 1000�s, as this was seen to produce satisfactory results.

Between anneals, the processor must similarly be allowed to thermalize, and the

default 50�s delay was used. Reading out the result of each anneal takes 309�s on

the D-Wave 2X device, so this readout time (and to a lesser extent the thermaliza-

tion) dominated the actual annealing time. With minor additional low-level pro-

cessing taken into account, each annealing \sample" has a ¯xed time of 380.2�s.

Although the actual annealing time of 20�s was a minor part of each annealing cycle,

this is likely to change in the future as larger problems necessitating longer annealing

times become accessible. Moreover, future generations of the machine could have

shorter relaxation periods and faster readout times (at least relative to the annealing

time, if not in absolute terms) as the physical engineering of the processor is better

developed.29,48

Finally, our tests were run with D-Wave's post-processing optimization enabled.

While this adds a small overhead in time, this is well within the spirit of hybrid

quantum-classical computing, and allowed us to solve more problems. This post-

processing method processes small batches of samples while the next batch is being

processed.68 This ensures that it only contributes a constant overhead in time for

each MWIS problem instance independent of the number of samples ðand thus of k99Þ.
To estimate the TTS times TH and Tstd described in Sec. 3.1, one must ¯rst

estimate k99, as de¯ned in Eq. (2), for each weight assignment wi. This is done by

estimating the probability of success si for each such case as Nopt=Ntotal, where Ntotal

is the number of annealing cycles performed, while Nopt denotes the number of times

an optimal solution was found. To determine this ratio accurately for each weight

assignment, each problem instance was initially run twice with 1000 samples.

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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Problem instances for which an optimal solution was not found several times for

every weight assignment were run a further ¯ve times; the hardest instances were

eventually run a further two times with 2000 samples per run and, for one di±cult

graph (the complete bipartite graph K12;12), a further 14 runs with 2000 samples. By

performing many runs (and since each weight assignment is considered separately),

random noise due primarily to analog programming accuracy is largely reduced, and

k99 is estimated more accurately.

Some problem instances remained unsolved after these runs (i.e. there was at least

one weight assignment wi for which an optimal solution was never found so that k99
was unde¯ned) and such problem instances had to be abandoned; indeed, this was

the limiting factor in the size of graphs analyzed, preventing us from considering

larger problems. As a result, the initial 156 graphs were reduced to 124 for which a

running time could be computed and analyzed. These graphs that we originally

selected but for which further analysis could not be performed are listed separately

for reference in Appendix A (see Table A.2). The fact that such cases were not

uncommon despite the relatively modest size of the graphs (even the largest em-

bedded graph required only 280 of the 1098 available physical qubits) highlights

limitations of the current state of quantum annealing on more traditional (and,

potentially, practical) computational problems.

4.6. Results and analysis

For each DWMWIS problem instance (i.e. for each graph G) the times TH and Tstd

were calculated, following the approach described in Sec. 3.1, as

TH ¼ tembed þ
X
i

ðtprogðPiÞ þ k99ðPiÞtanneal þ tpostðPiÞÞ

and

Tstd ¼
X
i

ðtembed þ tprogðPiÞ þ k99ðPiÞtanneal þ tpostðPiÞÞ;

where k99ðPiÞ is the k99 value for weight assignment wi and tanneal ¼ 309�s. As noted

in Sec. 3.1, Tstd may be reduced by a small constant factor by exploiting classical

parallelism, so Tstd as de¯ned here constitutes an upper bound on the time of a

traditional quantum annealing approach. Both tprogðPiÞ and tpostðPiÞ are of the order
of 20ms (although the latter varies by an order of magnitude more than the former

over di®erent problem instances and runs). Note that the processing time tproc de¯ned

earlier is, for this approach to the DWMWIS problem, given by

tproc ¼ tprogðPiÞ þ k99ðPiÞtanneal þ tpostðPiÞ:

The classical time TC was taken as the processor time for the classical algorithm

described earlier.
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A detailed summary of the overall times for each graph is given in Appendix A.

These results are summarized in Figs. 3(a) and 3(b), which show how the hybrid

times TH compare to both Tstd and TC . Error bars are calculated from the observed

variation in tembed, the number of optimal solutions found Nopt and the post-

processing time tpost. Of these, the error in tpost is the dominant factor, and largely

arises from the uncontrollability of the post-processing environment, which is per-

formed remotely within the D-Wave processing pipeline. However, this variation did

not result in any signi¯cant variation in success probability of the annealing, so it

seems the computational e®ort expended on post-processing was nonetheless con-

stant. Indeed, we note that in some earlier runs the post-processing was performed

20 times faster with no noticeable change in the quality of solution. Given that post-

processing contributes nonnegligibly to TH and Tstd, this could signi¯cantly a®ect

the overall times. We discarded these results to present a conservative analysis and

the overall conclusions are not a®ected by this, but we note that with increased

control of the classical post-processing, the quantum times could be signi¯cantly

reduced.

As noted in the previous subsection, practical and logistical constraints prevented

us from taking the variation due to di®erent embeddings of each graph fully into

account. To assess the possible magnitude of this e®ect, we tested one relatively

di±cult graph (Shrikhande) and found that consideration of the embedding roughly

tripled the error in TH , changing the value from 12; 800þ370
�240 �s to 15; 300� 1; 280�s,

with the average size of the embedding being 67 physical qubits but with a standard

deviation of 6:5, explaining much of this variation. While this variation would thus

generally be a signi¯cant source of error, the variation it induces will not be large

enough to a®ect any of our conclusions signi¯cantly, even if the inability to take this

into account is admittedly regrettable.

(a) (b)

Fig. 3. (a) An upper bound for Tstd against TH . The dashed line is TH ¼ Tstd; the points falling on the line
correspond to graphs for which a trivial embedding was possible. (b) TC against TH for each DWMWIS

problem instance. The di®erent colors indicate speci¯c graph families for reference: cycle graphs Cn, star

graphs Sn, complete graphs Kn and complete bipartite graphs Kn;m. All times are in ms.
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First and foremost, from the results shown in Fig. 3(a) the extent of the advantage

of the hybrid approach is evident. Indeed, this is to be expected given that for a given

DWMWIS problem, they di®er (by de¯nition) by 99� tembed. Although this might

seem a trivial con¯rmation of this fact, the results help illustrate the extent of the

advantage that the hybrid approach can have for such problems, a consequence of the

absolute cost of the embedding.

It is interesting to ask, moreover, how the advantage of the hybrid approach

scales. To understand this, we ¯rst look at how tembed scales since, as long as this

remains a signi¯cant compared to the annealing time, this will largely determine the

scaling of the hybrid advantage. Recall, following the discussion of Sec. 2.3, that

although a poor embedding can be quickly found (given enough physical qubits), one

may expect, in general, the time required to ¯nd a good embedding— as the heuristic

embedder we use indeed tries to do — to scale exponentially with the graph order.

This is con¯rmed in Fig. 4(a), showing tembed as a function of the number of

vertices in a graph. Moreover, from the ¯gure one sees that even for these relatively

small graphs, tembed quickly approaches 1 s. The ¯gure shows that there is a large

variation in the embedding times, due in part to di®erent behaviors on graphs from

di®erent families. Indeed, some graph families are quite naturally easier to embed

than others for the heuristic embedder; of course, for a known family of graphs one

could generally ¯nd a good e±cient embedding, but our interest is in understanding

the scaling for a generic approach that should work on arbitrary graphs.

The scaling behavior is clearer to see in Fig. 4(b), which shows tembed instead as

a function of the embedded graph order, i.e. the number of physical qubits re-

quired, since this accounts for much of the di®erence in di±culty in embedding

di®erent graphs. There, a nonlinear regression analysis shows a much better ¯t

with exponential scaling and, given that the embedded graph order scales at most

(a) (b)

Fig. 4. (a) Plot of graph order jV j against the embedding time tembed on a logarithmic time scale. (b) Plot

of the order of the embedded graph against the embedding time tembed showing a better exponential ¯t. The

colors show particular graph families for reference.
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quadratically with the logical graph order, this con¯rms the exponential scaling of

the embedding time.

The overall advantage of the hybrid approach will depend on not just tembed, but

how this relates to the rest of the annealing times. To study this more directly, it is

useful to look at the \hybrid speedup ratio" RH ¼ Tstd=TH ; the larger this value, the

more advantage the hybrid approach provides. In Fig. 5(a) we plot this as a function

of the graph order jV j. This shows a general trend of increasing RH (excepting a

handful of points with RH ¼ 1 for which a trivial embedding was possible, giving

tembed ¼ 0). Although the complexity of the quantum annealing algorithm is a priori

unknown, it is expected (as for tembed) to exhibit exponential scaling with

TH / expðkH 
 n‘H Þ, and one has RH ¼ 1þ 99tembed=TH . Performing a nonlinear re-

gression with such a model shows that indeed RH appears to be increasing expo-

nentially. However, there is signi¯cant variation between families of graphs: whileRH

grows quickly for the complete bipartite graphs Kn;m, it is relatively constant for the

star graphs Sn. Moreover, the trend is dominated by the cycle graphs Cn, which

include several of the largest graphs in our problem set, meaning that the ¯t shown

has limited generality.

As for the embedding time, it is thus useful to instead look at how RH depends on

the embedded graph order, and we plot this in Fig. 5(b). Although much variation

remains between di®erent families of graphs, the general trend remains and is con-

sistent with an exponentially increasing hybrid speedup, despite the trend no longer

being dominated by simple families such as the Cn graphs. We emphasize, however,

that the bene¯t of the hybrid approach in general will depend on the problem one is

solving (e.g. the number of times an embedding would need to be performed in the

standard approach) and the way in which RH scales is likely to change further as

newer quantum annealers become available and larger problems become solvable.

From Fig. 3(b) it is evident that no absolute quantum speedup was observed using

the hybrid algorithm, and indeed there is a vast di®erence in scale between TC and

(a) (b)

Fig. 5. Logarithmic plots of (a) graph order jV j against the hybrid speedup ratio RH ; and (b) embedded

graph order against RH . The colors indicate particular graph families for reference.
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TH : the \hardest" problem was solved classically in less than 200ms, whereas the

hybrid algorithm required almost 60 times as much time to solve it correctly. The

inability to observe any raw speedup is hardly surprising when one notes that even if

k99 ¼ 1 and tembed ¼ tpost ¼ 0, the fact that tprog � 20ms means that that one would

have TH > 2000ms. The programming time thus adds an essentially constant over-

head, which would have less of an impact as larger problems (for which k99 is much

larger) become solvable.

Although no overall raw speedup was observed, the experiment nonetheless

illustrated the advantage of the hybrid approach over the standard quantum one

which, we recall, was the primary goal. It is nonetheless interesting to examine the

scaling behavior of the hybrid algorithm in comparison to the classical one, to see

whether there is any indication that a speedup might potentially be obtainable once

the overheads (such as the embedding and programming times) are su±ciently

negated. To analyze this more carefully, it will be useful to look at the \classical

speedup ratio" RC ¼ TH=TC , which provides a clearer measure of any potential

speedup: a value of RC < 1 thus indicates an absolute speedup for the hybrid

algorithm.r

In Fig. 6 we show the scaling behavior of RC against the graph order jV j, which is

proportional to the problem size, and the actual number of physical qubits used, i.e.

the size of the embedded graph. While the scaling of an algorithm should generally be

studied with respect to problem size, as for the analysis of the hybrid speedup above,

Fig. 6(a) shows a large variation between di®erent graphs and, in particular, between

the families of graphs within our set of problems. Since the quantum annealer

operates with physical, rather than logical, qubits, one expects that its scaling is

rWe could equally look at the hybrid speedup TC=TH ¼ 1=RC , but we choose RC because it is slightly

easier to interpret visually.

(a) (b)

Fig. 6. Logarithmic plots of the scaling behavior of the classical speedup ratio RC for the DWMWIS
problem instances: (a) graph order jV j against RC ; and (b) embedded graph order against RC . The colors

highlight particular graph families as in the previous plots.

A. A. Abbott et al.

1950042-28

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

U
C

K
L

A
N

D
 o

n 
10

/1
7/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



better described as a function of the embedded graph size. By examining RC as a

function of this in Fig. 6(b) one thus removes part of the variation between graphs—

although much still remains — and allows this scaling, and thereby the possibility of

a potential speedup, to be better analyzed.

These ¯gures highlight once more the discrepancy between the hybrid and clas-

sical times, with the minimum classical speedup observed being RC ¼ 40� 2. Both

¯gures, however, show that RC decreases with problem size and di±culty, indicating

that for the problem instances tested the hybrid algorithm exhibited better scaling

behavior than the BIP-based classical algorithm. Both quantum annealing algo-

rithms and the classical baseline we use (due to it being a relatively generic BIP

algorithm) are expected to exhibit some form of exponential scaling (with respect to

both the order and embedded graph size, since these di®er by at most a quadratic

factor), even if the precise complexity of the algorithms is a priori unknown.

A nonlinear regression analysis shows that the scaling behavior of RC is indeed,

with respect to both jV j and the embedded graph order, most consistent with

RC / expðkH 
 n‘H Þ=expðkC 
 n‘C Þ, for constants kH ; ‘H ; kC and ‘C , with the hybrid

algorithm scaling being slower. With respect to jV j the large variation in performance

over di®erent graph families and the fact that the scaling is largely dominated by the

larger Cn graphs mean that little can be read into the precise form of the scaling.

While much variation remains when viewed as a function of the embedded graph

order, the ¯t is nevertheless better in that case.

It is possible to extrapolate these ¯ts to obtain a very crude estimate of when one

might obtain RC ¼ 1, at which point the hybrid and classical algorithms require

the same amount of time. One ¯nds that this point is obtained for graphs requiring

1200 physical qubits. However, the uncertainty in the scaling behavior means there is

huge uncertainty in this ¯gure, with relatively minor changes in the parameters

meaning that any estimated point of \hybrid equality" can vary by at least 50% (the

uncertainty is particularly large on the upper end of the scale). Moreover, one should

caution that the scaling may also change for larger problems; indeed, while the

minimum annealing time of tanneal ¼ 20�s was used for all problem instances here, for

larger problems this is no longer likely to be optimal.49,48 The consequent need to

consider the scaling of tanneal in addition to k99 is likely to change the future scaling

behavior, as are the developments and improvements in future devices (e.g. by de-

creasing errors arising from noise and limits on the control of qubits). Such an esti-

mate for hybrid equality should thus be taken extremely cautiously, at the very best

as a crude lower bound on the size of the problem that one must at least be capable of

solving with a quantum annealer before any quantum advantage is obtainable, and

without any guarantee that such a condition is su±cient.

While 1200 physical qubits is not far beyond the size of D-Wave device we used

(and within the reach of more recent devices), the fact that we had to reject many

graphs requiring many fewer qubits because the quantum annealer could not ¯nd the

optimal solution shows that the number of physical qubits itself is not necessarily the

A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing
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only limiting factor in this respect. It is also worth noting that even in Fig. 6(b), there

is signi¯cant variation between di®erent types of graphs and, indeed, certain graph

families. It is thus interesting to also look at the scaling behavior for di®erent graph

families individually, as one may then make more informed estimates of when an

advantage may be obtained on such graphs even if such families are not represen-

tative of arbitrary problems (both for the quantum and classical algorithms). In

Fig. 7 we show this for the cycle graphs Cn, star graphs Sn and the complete graphs

Kn (each plotted as a function of n); as the Kn;m graphs show much greater vari-

ability and have two parameters we avoid analyzing them further here.

Again the scaling behavior is found to be consistent with a ratio of exponentials,

but with much less uncertainty (note that, nonetheless, the log-scale used in Fig. 7

makes the uncertainty look smaller that it remains). From these ¯ts, we can ex-

trapolate to estimate lower bounds on the point of \hybrid equality" (i.e. when

RC ¼ 1) for these three families as being obtained for C580, S5618 and K38, respec-

tively. This provides a useful, albeit rough, estimate of when our algorithm might

show a hybrid speedup on graphs taken from these families. A necessary requirement

is thus the ability for the heuristic embedding algorithm used in our hybrid algorithm

to embed such logical graphs in the physical graph.

(a) (b)

(c)

Fig. 7. Plots of the classical speedup ratio RC against n for three families of graphs parameterized by n:

(a) the Cn graphs; (b) the Sn graphs and (c) the Kn graphs.
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Of course, for such families one can generally devise analytic approaches to pro-

vide much smaller embeddings than the heuristic approach would ¯nd. Indeed, cycle

graphs permit small embeddings and C580 can be embedded in the Chimera graph �10

with 800 physical qubitss while, as mentioned earlier in Sec. 2.3, K38 can also be

embedded in �10 and S5618 would require a much larger �31 graph.t However, we

emphasize that our algorithm is necessarily general and must thus be applicable to

arbitrary problems. Indeed, it is important to note that if one were to tailor the

algorithm for speci¯c graph families, then much more e±cient classical algorithms

can easily be found. For example, the MWIS of a Kn graph can simply be computed

as maxv2V wðvÞ since the only independent sets are singletons. More generally, for the

families with low treewidth (which includes both cycle and star graphs), e±cient

algorithms are well known.69

In practice, one would thus need somewhat larger Chimera graphs to embed these

graphs than the ¯gures discussed so far suggest. Nonetheless, they provide useful

lower bounds on the size of a quantum annealer required to embed the problems for

which hybrid equality might be expected to be obtained. Since the D-Wave 2X device

we used has a �12 physical graph (albeit with some physical qubits disabled), one is

not far from being able to embed K38 and C580, and indeed this is probably feasible

with newer devices. However, our results showed that at least for certain families of

graphs, the prohibitory factor to obtaining a potential quantum speedup is not the

number of physical qubits, but the stability and control one has over those qubits.

This is pointedly highlighted by noting that many problems that are easily embed-

dable in D-Wave 2X's physical graph nonetheless fail to be solved by it23 and, indeed,

the larger problems in the graph families we solved were on the edge of what we could

solve given the physical resources and time available to us. The precision with which

parameters can be controlled may play a major role in this41–43 and mitigating this

will be a major challenge in the search for a practical quantum speedup.

Given the discussions above, these estimates should only be seen as very conser-

vative lower bounds for when a hybrid speedup may become obtainable, at least for

some problem instances: not only may the scaling behavior change for larger problem

instances, but one should also recall that a speedup over a particular classical algo-

rithm — here the BIP-based solver — only proves a potential quantum speedup.

Indeed, as we noted above, for certain graph families very e±cient solutions exist,

while one would expect more e±cient classical algorithms for the DWMIS problem to

exist. Nonetheless our results show that a \potential" quantum speedup remains

plausible in the future for the DWMWIS problem, even if it is currently beyond the

capabilities of the D-Wave annealer.

While our results failed to ¯nd a quantum speedup and produced only tentative

evidence that such a speedup might be obtainable in the future for the DWMWIS

sA simple argument shows that there exists at cycle of length at least 7
8j�nj by ¯nding a cycle connecting

the bipartite blocks, where at least seven of eight vertices of each K4;4 are spliced into a bigger cycle.
tAnother argument shows that we can construct in �n a spanning caterpillar with 2n2 spine vertices with

6n2 leaves. Contracting the spine vertices gives a minor embedding of S6n 2 .
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problem, the experiment was a successful proof-of-concept for the hybrid paradigm

we have presented. In particular, the hybrid algorithm we presented provided large

absolute gains over the standard quantum approach and showed good scaling be-

havior. As larger and more e±cient devices become available and more problems of

practical interest are studied, it will become clearer if/when a quantum speedup

might be obtainable in practice. A more detailed study using a TTT metric might

allow larger problems to be studied (since one need not ¯nd an exact solution to each

problem instance) and thereby lead to a better understanding in this direction.

However, this goes beyond the scope of the simple experiment we performed here and

represents an interesting challenge for future research.

5. Conclusion

In this paper, we presented a hybrid quantum-classical paradigm for exploiting raw

quantum speedups in quantum annealers. Our paradigm is relevant in particular for

devices in which physical qubits have limited connectivity, where a problem of in-

terest must be embedded into the graph this connectivity imposes. This problem is a

major, but often neglected, hurdle to practical quantum computing. Indeed, not only

does the need to ¯nd such an embedding often contribute signi¯cantly to the overall

computational costs, but the quality or size of embedding used can often signi¯cantly

a®ect the performance and accuracy of the quantum algorithm itself.34,54

The paradigm we presented is not simply an algorithmic approach, but also aims

to identify types of problems that are more amenable to quantum annealing. In

particular, we identify those problems that require solving a large number of related

subproblems, each of which can be directly solved via annealing, may permit a hybrid

approach. This is obtained by reusing and modifying embeddings for the related

subproblems. Previous applications of quantum annealers have focused on problems

that are not easily subdivided in this way, so even when only very simple reuse of

embeddings is required — as in the case study we presented — the realization that

quantum annealing may be more advantageous for such problems is already im-

portant. One can, however, envisage problems where the reuse of embeddings is more

involved, such as small perturbations to the logical graph.70,71 More research is

needed to identify such problems of interest where the hybrid paradigm is applicable.

To exemplify the hybrid approach in an experimental setting, we identi¯ed a

simple but suitable problem, called the dynamically-weighted maximum-weight in-

dependent set problem. We experimentally solved a large number of such instances

on a D-Wave 2X quantum annealer, and observed the expected advantage of the

hybrid algorithm over a more traditional approach in which a known embedding is

not reused. We failed to observe a quantum speedup over classical algorithms,

although this was not the main goal of the proof-of-concept experiment. This is

perhaps unsurprising given that many examples of quantum annealing competing

well with classical algorithms are on problems speci¯cally constructed so that

embedding is not an issue.6,8,46,49,50 We note that another recent experimental study

A. A. Abbott et al.
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of the (unweighted) maximum independent sets problem conducted on the D-Wave

2000Q machine (the generation following the D-Wave 2X device we utilized, for

which the number of qubits has been doubled) was similarly restricted to graphs with

no more than 70 vertices and also failed to observe a speedup23; in principle, the

weighted version of the problem should be even harder for D-Wave devices because of

analog programming errors and the extra constraints the weights impose. Nonethe-

less, our hybrid algorithm showed good scaling behavior, providing tentative evi-

dence that a quantum speedup might be obtainable in the future.

While the problem we implemented as a proof-of-principle is perhaps somewhat

contrived, it illustrates the advantage and feasibility of our hybrid approach and sets

the groundwork for addressing more complex problems of practical interest. Finding

such problems, in which the same embedding can be reused multiple times, is itself a

major step towards ¯nding practical uses for quantum computers in the near term

future. One possible, more realistic, such problem is the decoding of error correcting

codes,72,73 and studying such problems would be an interesting next step towards

obtaining quantum speedups from hybrid approaches.
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Appendix A. Summary of Results for MWDWIS Instances

All the standard graphs were produced using SageMath62 and descriptions of them

can be found in the corresponding API; the sole exception is the Dinneen Graph,

which is described in Ref. 74.

Table A.1. Summary of 124 graphs de¯ning the DWMWIS problem instances and the average times for
the hybrid algorithm, the classical BIP-based algorithm and the standard quantum annealing approach.

Graph G ¼ ðV ;EÞ jV j jEj
Max/

chain

Embedded/

graph order TH (ms) TC (ms) Tstd (ms)

Bidiakis Cube 12 18 2 18 4635� 102 26.6� 0.4 22,851� 184

Blanusa Snark 1 18 27 3 33 5799� 120 39.2� 0.8 28,846� 591

Blanusa Snark 2 18 27 2 31 6280� 139 38.9� 0.7 28,802� 405

Brinkmann 21 42 4 68 12,988þ861
�363

66.8� 0.6 42,876þ1047
�698

Bucky Ball 60 90 3 127 12,491þ599
�286

123.1� 3.3 83,128þ4462
�4431

Bull 5 5 2 6 4379� 90 16.4� 0.3 18,427� 99

Butter°y 5 6 2 6 4405� 91 17.3� 0.3 19,137� 99
C4 4 4 1 4 4441� 89 15.1� 0.2 19,162� 447

C5 5 5 2 6 4785� 109 16.6� 0.3 19,209� 133
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Table A.1. (Continued )

Graph G ¼ ðV ;EÞ jV j jEj
Max/

chain

Embedded/

graph order TH (ms) TC (ms) Tstd (ms)

C6 6 6 1 6 4781� 103 17.5� 0.3 19,532� 140

C7 7 7 2 8 4785� 102 18.9� 0.4 20,110� 176
C8 8 8 2 10 4743� 102 19.8� 0.4 20,375� 174

C9 9 9 2 10 4927� 107 20.9� 0.3 21,084� 149

C10 10 10 2 12 6453� 161 21.9� 0.5 22,877� 194

C20 20 20 3 40 5788� 142 35.0� 0.7 28,330� 640
C30 30 30 2 44 5436� 135 48.5� 1.3 33,394� 512

C40 40 40 3 71 5490� 123 62.6� 2.0 41,743� 1043

C50 50 50 2 92 5644� 123 78.9� 2.2 50,867� 1190

C60 60 60 3 106 5560� 120 94.1� 3.3 58,397� 2378
C70 70 70 2 92 6122� 117 111.8� 4.3 70,066� 2245

C80 80 80 4 142 6084� 123 128.4� 4.7 79,117� 3279

C90 90 90 2 128 6006� 120 148.8� 5.6 98,769� 4681
Chvatal 12 24 3 25 5899þ124

�122
35.4� 0.4 26,372þ439

�438

Clebsch 16 40 4 50 8527þ172
�160

60.2� 0.6 35,207þ818
�816

Coxeter 28 42 3 57 8424þ205
�181

53.9� 1.3 39,807þ575
�567

Desargues 20 30 2 28 6160þ126
�124

37.3� 0.7 30,861� 672

Diamond 4 5 2 5 4783� 106 16.0� 0.2 19,089� 111

Dinneen 9 21 3 22 6072� 126 29.6� 0.6 24,724� 285
Dodecahedral 20 30 3 39 6128þ124

�122
45.6� 0.9 31,373þ997

�996

Double Star Snark 30 45 3 65 8527þ214
�192

58.0� 1.3 40,801þ773
�767

Durer 12 18 2 19 4643� 100 30.3� 0.3 23,076� 254
Dyck 32 48 3 73 10,562þ673

�275
55.6� 1.6 44,380þ1185

�1013

Ellingham Horton 54 81 3 117 8043þ232
�152

93.5� 3.0 63,265þ2007
�1999

Errera 17 45 4 53 9543þ201
�182

90.1� 0.9 39,738þ867
�863

Flower Snark 20 30 2 35 5589� 105 39.5� 0.7 28,992� 341

Folkman 20 40 4 49 10,293þ471
�258

39.5� 0.7 38,964þ853
�757

Franklin 12 18 2 21 5030� 99 25.3� 0.4 23,127� 165
Frucht 12 18 2 18 4842� 101 29.5� 0.5 23,791� 349

Goldner Harary 11 27 4 22 5716þ132
�119

28.2� 0.4 26,486þ381
�377

2� 3 Grid 6 7 1 6 5073� 140 17.6� 0.2 19,972� 162

3� 3 Grid 9 12 2 11 5336� 150 21.1� 0.3 21,948� 258
3� 4 Grid 12 17 3 19 5122� 107 25.0� 0.4 24,100� 447

4� 4 Grid 16 24 2 25 5409� 140 31.7� 0.6 27,605� 551

4� 5 Grid 20 31 3 35 6999þ155
�153

37.2� 1.0 32,956� 693

6� 6 Grid 36 60 3 72 7743þ195
�184

65.7� 3.3 54,679þ2383
�2382

6� 7 Grid 42 71 4 11 10,252þ1122
�287

76.6� 4.4 64,583þ2739
�2516

7� 7 Grid 49 84 4 120 8591þ213
�183

85.2� 2.3 75,158þ4197
�4195

Grotzsch 11 20 3 22 5793� 133 29.7� 0.3 24,741� 324

Heawood 14 21 3 25 7663þ197
�193

29.0� 0.6 27,542þ380
�379

Herschel 11 18 3 25 5871� 145 24.3� 0.3 24,394� 349
Hexahedral 8 12 1 8 4803� 106 20.6� 0.3 20,920� 145

Ho®man 16 32 4 38 7010þ168
�167

33.2� 0.6 29,453� 433

House 5 6 2 6 4700� 110 16.9� 0.3 19,292� 113

Icosahedral 12 30 4 39 7177þ138
�125

50.0� 0.4 29,413þ422
�418

K2 2 1 1 2 4607� 109 12.7� 0.3 4607� 109

K3 3 3 2 4 4821� 118 14.6� 0.3 4821� 118

K4 4 6 2 6 5875� 131 17.7� 0.3 5875� 131
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Table A.1. (Continued )

Graph G ¼ ðV ;EÞ jV j jEj
Max/

chain

Embedded/

graph order TH (ms) TC (ms) Tstd (ms)

K5 5 10 2 8 5210� 119 22.0� 0.2 5210� 119

K6 6 15 3 14 6101� 143 26.8� 0.3 6101� 143
K7 7 21 3 18 6546þ158

�157
33.5� 0.2 27,296� 2667

K8 8 28 4 23 7293� 180 41.2� 0.4 28,836� 290

K9 9 36 4 27 6883� 164 49.0� 0.5 30,247� 457
K10 10 45 5 36 6726þ153

�148
59.3� 0.6 33,090þ856

�855

K2;3 5 6 1 5 5570� 142 16.3� 0.2 19,083� 152

K3;3 6 9 1 6 4486� 103 17.7� 0.3 4486� 103

K3;4 7 12 1 7 5147� 125 19.3� 0.3 19,641� 487

K4;4 8 16 1 8 5036� 123 21.4� 0.3 5036� 123

K4;5 9 20 2 13 5729� 131 23.6� 0.3 20,173� 136

K5;5 10 25 2 20 7470� 215 25.4� 0.3 7469� 215

K5;6 11 30 2 22 8619� 212 26.8� 0.3 23,805� 216

K5;7 12 35 2 24 6563� 155 28.7� 0.4 28,026� 292

K5;8 13 40 2 26 4789� 74 30.4� 0.4 27,103� 214

K5;9 14 45 3 33 6705þ154
�151

30.9� 0.5 31,346þ352
�351

K6;6 12 36 2 24 6992.0� 159 28.9� 0.3 23,674� 231

K6;7 13 42 2 26 6279.8� 125 31.4� 0.4 30,079� 305

K6;8 14 48 2 28 6353.1� 131 33.3� 0.5 32,331� 539

K6;9 15 54 3 36 7089þ192
�168

33.9� 0.5 38,878þ5248
�5247

K7;7 14 49 2 28 6480� 132 33.5� 0.4 32,279� 941

K7;8 15 56 2 30 6563� 154 35.8� 0.5 33,432� 599

K8;8 16 64 2 32 6319� 150 38.4� 0.6 34,722� 761

K8;9 17 72 3 51 6416þ145
�137

40.8� 0.8 44,115� 5996

K9;9 18 81 3 54 6424� 134 44.1� 0.6 40,895� 712

K10;10 20 100 3 60 5711� 109 50.0� 1.0 47,113� 1408

K11;11 22 121 3 66 6782þ134
�130

57.4� 1.1 53,698� 1458

K12;12 24 144 4 96 33,536þ1674
�852

67.2� 0.7 86,818þ2241
�1717

Kittell 23 63 5 83 11,920þ427
�217

177.8� 8.2 52,401þ1959
�1924

Krackhardt Kite 10 18 3 15 5048� 99 29.3� 0.4 22,155� 263
Markstroem 24 36 9 87 5547� 130 59.0� 1.2 32,525� 568

McGee 24 36 3 44 7309þ155
�148

48.6� 1.2 35,504þ1003
�1002

Moebius Kantor 16 24 2 24 6420� 155 31.4� 0.6 27,170� 361

Moser Spindle 7 11 2 10 5326� 131 23.4� 0.4 21,473� 241
Nauru 24 36 3 55 7862þ180

�171
43.2� 1.1 34,622þ702

�700

Octahedral 6 12 2 8 5461� 133 21.1� 0.3 21,262� 219

Pappus 18 27 2 32 6618� 179 34.1� 0.7 28,259� 398
Petersen 10 15 3 22 5069� 108 24.5� 0.4 22,275� 183

Poussin 15 39 4 46 8621þ195
�182

64.6� 0.8 35,846þ529
�525

Q3 8 12 1 8 5153� 99 20.7� 0.2 22,597� 1180
Q4 16 32 3 36 6091� 121 33.0� 0.6 28,643� 391

Robertson 19 38 4 55 9635þ220
�187

59.9� 0.5 36,633þ764
�755

S2 3 2 1 3 4858� 127 13.6� 0.2 18,580� 147

S3 4 3 1 4 4849� 105 14.7� 0.2 18,738� 171
S4 5 4 1 5 4506� 85 15.7� 0.3 18,406� 93

S5 6 5 2 7 4977� 103 17.7� 0.8 19,204� 178

S6 7 6 1 7 4766� 102 17.7� 0.3 20,319� 899

S7 8 7 2 9 4819� 98 18.8� 0.3 22,570� 1238
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Table A.1. (Continued )

Graph G ¼ ðV ;EÞ jV j jEj
Max/

chain

Embedded/

graph order TH (ms) TC (ms) Tstd (ms)

S8 9 8 3 11 4807� 94 20.0� 0.4 20,251� 225

S9 10 9 3 12 4994� 125 20.9� 0.3 20,042� 159
S10 11 10 4 14 5290� 156 23.5� 0.9 20,457� 222

S11 12 11 4 15 4738� 92 23.3� 0.4 23,587� 3131

S12 13 12 5 17 4814� 100 24.4� 0.4 21,258� 281

S13 14 13 3 16 4896� 98 25.6� 0.4 21,003� 300
S14 15 14 4 18 4772� 90 26.3� 0.6 20,860� 211

S15 16 15 4 19 4738� 104 27.3� 0.6 21,627� 270

S16 17 16 4 20 4432� 84 30.6� 1.9 21,143� 216

S17 18 17 6 23 4444� 84 29.5� 0.8 22,650� 361
S18 19 18 8 26 6113� 122 31.1� 0.8 24,339� 471

S19 20 19 6 25 6020� 123 32.9� 0.7 23,474� 443

S20 21 20 7 27 5569� 121 34.3� 0.8 24,497� 619
Shrikhande 16 48 5 70 12,803þ367

�244
86.1� 0.7 45,275þ1106

�1072

Sousselier 16 27 3 31 7231þ171
�169

38.9� 0.8 29,675þ531
�530

Thomsen 6 9 1 6 5220� 137 17.7� 0.2 20,555� 190
Tietze 12 18 3 23 4927� 113 27.6� 0.3 23,380� 216

TutteCoxeter 30 45 3 55 8566þ191
�179

52.5� 1.2 40,058þ594
�591

Wagner 8 12 2 16 4817� 111 22.0� 0.3 21,004� 191

Table A.2. A list of 32 small graphs for which a full analysis could not be
performed due to the quantum annealer not ¯nding enough optimal solutions

on each of the 100 MWIS instances.

Graph G ¼ ðV ;EÞ jV j jEj Max/chain Embedded/graph order

Balaban 10-Cage 70 105 5 232

BiggsSmith 102 153 8 358

Ellingham Horton 2 78 117 3 172

Foster 90 135 5 285
Gray 54 81 4 148

6� 8 Grid 48 82 4 118

6� 9 Grid 54 93 5 134
7� 8 Grid 56 97 4 141

7� 9 Grid 63 110 4 149

8� 8 Grid 64 112 4 151

8� 9 Grid 72 127 5 201
9� 9 Grid 81 144 4 205

Harries 70 105 5 201

Harries Wong 70 105 5 205

Ho®man Singleton 50 175 14 501
Horton 96 144 5 218

K11 11 55 5 50

K12 12 66 5 53

K13 13 78 5 56
K14 14 91 6 72

K15 15 105 7 85

Ljubljana 112 168 7 390
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