
Information and Computation 247 (2016) 23–36
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Finite state incompressible infinite sequences ✩,✩✩

Cristian S. Calude a,∗, Ludwig Staiger b, Frank Stephan c

a Dept. of Computer Science, University of Auckland, Auckland, New Zealand
b Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik, D-06099 Halle, Germany
c Department of Mathematics and Department of Computer Science, National University of Singapore, Singapore 119076,
Republic of Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 September 2014
Received in revised form 21 August 2015
Available online 1 December 2015

Keywords:
AIT
Finite state complexity
and incompressibility
Normality

In this paper we define and study finite state complexity of finite strings and infinite
sequences as well as connections between these complexity notions to randomness and
normality. We show that the finite state complexity does not only depend on the codes for
finite transducers, but also on how the codes are mapped to transducers. As a consequence
we relate the finite state complexity to the plain (Kolmogorov) complexity, to the process
complexity and to prefix-free complexity. Working with prefix-free sets of codes we
characterise Martin-Löf random sequences in terms of finite state complexity: the weak
power of finite transducers is compensated by the high complexity of enumeration of
finite transducers. We also prove that every finite state incompressible sequence is normal,
but the converse implication is not true. These results also show that our definition of
finite state incompressibility is stronger than all other known forms of finite automata
based incompressibility, in particular the notion related to finite automaton based betting
systems introduced by Schnorr and Stimm. The paper concludes with a discussion of open
questions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Algorithmic Information Theory (AIT) [8,20,30,27] uses various measures of descriptional complexity to define and study
various classes of “algorithmically random” finite strings or infinite sequences. The theory, based on the existence of a
universal Turing machine (of various types), is very elegant and has produced many important results.

The incomputability of all descriptional complexities is an obstacle towards more “down-to-earth” applications of AIT
(e.g. for practical compression). One possibility to avoid incomputability is to restrict the resources available to the universal
Turing machine and the result is resource-bounded descriptional complexity [7]. Another approach is to restrict the compu-
tational power of the machines used, for example, using context-free grammars or straight-line programs instead of Turing
machines [15,24,25,34].

✩ This work was done in part during C.S. Calude’s visits to the Martin-Luther-Universität Halle-Wittenberg in October 2012 and the National University
of Singapore in November 2013 and June 2014, and L. Staiger’s visits to the CDMTCS, University of Auckland and the National University of Singapore in
March 2013. The work was supported in part by NUS grant R146-000-181-112 (PI F. Stephan).
✩✩ A preliminary version of this paper has appeared in T.V. Gopal, M. Agrawal, A. Li, B.S. Cooper (eds.), Proceedings of the 11th Annual Conference on Theory
and Applications of Models of Computation, Lecture Notes in Computer Science, vol. 8402, Springer, 2014, pp. 50–66.

* Corresponding author.
E-mail addresses: cristian@cs.auckland.ac.nz (C.S. Calude), staiger@informatik.uni-halle.de (L. Staiger), fstephan@comp.nus.edu.sg (F. Stephan).
http://dx.doi.org/10.1016/j.ic.2015.11.003
0890-5401/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2015.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:cristian@cs.auckland.ac.nz
mailto:staiger@informatik.uni-halle.de
mailto:fstephan@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.ic.2015.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2015.11.003&domain=pdf

24 C.S. Calude et al. / Information and Computation 247 (2016) 23–36
The first connections between finite state machine computations and randomness have been obtained for infinite se-
quences. Agafonov [1] proved that every subsequence selected from a (Borel) normal sequence by a regular language is also
normal. Characterisations of normal infinite sequences have been obtained in terms of finite state gamblers, information
lossless finite state compressors and finite state dimension: (a) a sequence is normal iff there is no finite state gambler that
succeeds on it [35] (see also [6,17]) and (b) a sequence is normal iff it is incompressible by any information lossless finite
state compressor [46]. Doty and Moser [18,19] used computations with finite transducers for the definition of finite state
dimension of infinite sequences. The NFA-complexity of a string [15] can be defined in terms of finite transducers that are
called in [15] “NFAs with advice”; the main problem with this approach is that NFAs used for compression can always be
assumed to have only one state.

The definition of finite state complexity of a finite string x in terms of a computable enumeration of finite transducers and
the input strings used by transducers which output x proposed in [10,11] is utilised to define finite state incompressible
sequences. In Theorem 9 we prove that the finite state complexity lies properly between the plain complexity, as a lower
bound, and the prefix-free complexity, as an upper bound, in the case that the enumeration of transducers considered is
a universal one. Furthermore, while finite state incompressibility depends on the enumeration of finite transducers, many
results presented here are independent of the chosen enumeration. For example, we prove that for every enumeration S
every C S -incompressible sequence is normal, Theorem 22. Furthermore, we can show that a sequence is Martin-Löf random
iff it satisfies a strong incompressibility condition (parallel to the one for prefix-free Kolmogorov complexity) for every
measure C S based on some perfect enumeration S . One can furthermore transfer this characterisation to the measure C S

for universal enumerations S .
Finally, we illustrate the dependence of finite state complexity on the enumeration of finite transducers. We prove that

in every sequence there are infinitely many finite state complexity dips when the complexity is based on some exotic
enumerations.

2. Notation

In this section we introduce the notation used throughout the paper. By N = {0, 1, 2, . . .} we denote the set of natural
numbers. Its elements will be usually denoted by letters i, . . . , n. By {0, 1}∗ we denote the set of all binary strings (words)
with ε denoting the empty string; {0, 1}ω is the set of all (infinite) binary sequences. The length of a finite string x ∈ {0, 1}∗
is denoted by |x|. Sequences (infinite strings) are usually denoted by x, y; the prefix of length n of the sequence x is denoted
by x � n; the nth element of x is denoted by x(n).

For w ∈ {0, 1}∗ and η ∈ {0, 1}∗ ∪{0, 1}ω let w ·η be their concatenation. This concatenation product extends in an obvious
way to subsets L ⊆ {0, 1}∗ and B ⊆ {0, 1}∗ ∪ {0, 1}ω .

By w � u and w � y we denote that w is a prefix of u and y, respectively, and a prefix-free set L ⊂ {0, 1}∗ is a set with
the property that for all strings p, q ∈ {0, 1}∗ , if p, pq ∈ L then p = pq.

3. Admissible transducers and their enumerations

We consider transducers which try to generate prefixes of infinite binary sequences from shorter binary strings and
consider hence the following transducers: An admissible transducer is a deterministic transducer given by a finite set of
states Q with starting state q0 and transition functions δ, μ with domain Q × {0, 1}, and say that the transducer on state q
and current input bit a transitions to q′ = δ(q, a) and appends w = μ(q, a) to the output produced so far.

One can generalise inductively the functions μ and δ by stating that μ(q, ε) = ε and μ(q, av) = μ(q, a) ·μ(δ(q, a), v) for
states q and input strings av with a being one bit; similarly, δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v). The output T (v) of a
transducer T on input-string v is then μ(q0, v).

Definition 1. A partially computable function S mapping binary strings to admissible transducers is called an enumera-
tion provided every admissible transducer T has a string σ ∈ dom(S); for a string σ ∈ dom(S), the admissible transducer
assigned by S to σ is denoted as S(σ) = T S

σ .
If the domain dom(S) is a prefix-free subset of {0, 1}∗ then we call S a prefix-free enumeration.

Next we introduce two subclasses of prefix-free enumerations, that is, enumerations S having a prefix-free domain
dom(S).

Definition 2. (See Calude, Salomaa and Roblot [10,11].) A perfect enumeration S of all admissible transducers is a partially
computable function with a prefix-free and computable domain mapping each binary string σ ∈ dom(S) to an admissible
transducer T S

σ in an onto way.

Note that partially computable functions with a computable range (as considered here) have a computable inverse, that
is, for each input y from the range, an algorithm finds, by searching in parallel over all possible inputs, an x which is
mapped to y. It is known that there are perfect enumerations with a regular domain and that every perfect enumeration S

C.S. Calude et al. / Information and Computation 247 (2016) 23–36 25
can be improved to a better perfect enumeration S ′ such that for each c there is a transducer represented by σ in S and
σ ′ in S ′ and these representations satisfy |σ ′| < |σ | − c, [10,11].

Definition 3. A universal enumeration S of all transducers is a partially computable function with prefix-free domain such
that for each other prefix-free enumeration S ′ of admissible transducers there exists a constant c such that for all σ ′ in the
domain of S ′ , the transducer T S ′

σ ′ equals some transducer T S
σ with σ ∈ dom(S) and |σ | ≤ |σ ′| + c.

Note that perfect and universal enumerations are prefix-free enumerations. The construction of a universal enumeration
S can be carried over from Kolmogorov complexity: If U is a universal machine for prefix-free Kolmogorov complexity and
S ′ is a perfect enumeration of the admissible transducers, then the domain of S is the set of all σ such that U (σ) is defined
and in the domain of S ′ and T S

σ is T S ′
U (σ) . Then, for every further enumeration S ′′ (also with prefix-free domain) there is a

σ at most a constant longer than σ ′′ such that U (σ) outputs an S ′-program σ ′ with T S ′′
σ ′′ = T S ′

σ ′ and so T S
σ = T S ′′

σ ′′ , that is,
there is a constant c such that each transducer with an index of length n in S ′′ has a further index of length up to n + c
in S . Thus U is universal.

Below in Lemma 4 we will show that universal enumerations S of all transducers exist.

4. Complexity and randomness

Recall that the plain complexity (Kolmogorov) of a string x ∈ {0, 1}∗ w.r.t. a partially computable function ϕ : {0, 1}∗ →
{0, 1}∗ is Kϕ(x) = inf{|p| : ϕ(p) = x}. It is well-known that there is a universal partially computable function U : {0, 1}∗ →
{0, 1}∗ such that

KU (x) ≤ Kϕ(x) + cϕ

holds for all strings x ∈ {0, 1}∗ . Here the constant cϕ depends only on U and ϕ but not on the particular string x ∈ {0, 1}∗ .
We will denote the complexity KU simply by K . Furthermore, in the case that one considers only partially computable
functions with prefix-free domain, there are also universal ones among them V , say, and the corresponding complexity K V ,
called prefix complexity is denoted with H ; like K , the prefix-free complexity H depends only up to a constant on the given
choice of the underlying universal machine.

Schnorr [36] considered the subclass of partially computable prefix-monotone functions (or processes) ψ : {0, 1}∗ →
{0, 1}∗ , that is, functions which satisfy the additional property that for strings v, w ∈ dom(ψ), if v � w , then ψ(v) � ψ(w).
For this class of functions there is also a universal partially computable prefix-monotone function W : {0, 1}∗ → {0, 1}∗ such
that for every further such ψ (with the same properties) there is a constant cψ , depending only on W and ψ , fulfilling

KW (x) ≤ Kψ(x) + cψ, (1)

for all binary strings x ∈ {0, 1}∗ . As in [20] we denote the complexity induced by the universal function by KmD . Since
processes are arbitrary partial computable functions and partial computable functions with prefix-free domain are processes,
the following inequalities hold for all x ∈ {0, 1}∗ .

K (x) ≤ KmD(x) + O (1) and KmD(x) ≤ H(x) + O (1) (2)

Having introduced prefix-free universal partially computable functions V we can now show that universal enumerations S
of all transducers in the sense of Definition 3 exist.

Lemma 4. There is a universal enumeration S of all transducers.

Proof. Let (Si)i∈N be an effective numbering of all enumerations with prefix-free domain, this time not requiring that these
Si have infinite domain. Now define a new prefix-free enumeration S as follows:

T S
0i 1σ

=
{

T Si
σ , if σ ∈ dom(Si);

undefined, otherwise.

For each i and each string x, if x has according to Si the complexity c = |στ | which is witnessed by some σ in the domain
of Si and some input τ with x = T Si

σ (τ), then x = T S
0i 1σ

(τ) as well and x has, according to S , at most the complexity
|0i1στ | = c + i + 1. Thus C S (x) ≤ C Si (x) + i + 1, for all strings x where C Si (x) is defined, hence S is universal. �

Martin-Löf [28] introduced the notion of the random sequences in terms of tests and Schnorr — as cited by Chaitin [13]
— characterised them in terms of prefix-free complexity; we take this characterisation as a definition. Furthermore, Schnorr
[36] showed that the same definition holds for process complexity.

Definition 5. (See Martin-Löf [28]; Schnorr [13,36].) An infinite sequence x ∈ {0, 1}ω is Martin-Löf random if there is a
constant c such that H(x � n) ≥ n − c, for all n ≥ 1. Equivalently, x is Martin-Löf random iff there is a constant c such that
KmD(x � n) ≥ n − c, for all n ≥ 1.

26 C.S. Calude et al. / Information and Computation 247 (2016) 23–36
5. Finite state complexity

For a fixed admissible transducer T , one usually denotes the complexity CT (x) of a binary string x as the length of the
shortest binary string y such that T (y) = x. The complexity CT was proposed in [10,11] to remedy the incomputability
of Kolmogorov complexity (see more about other proposals in [10]). It can be viewed also as an example of the Minimal
Description Length Principle [32,23]. A description of a string x consists of a finite transducer T and another string y such
as T “translates” y into x: CT (x) minimises the sum between the complexity of T and |y|.

This definition is now adjusted to enumerations S of admissible transducers.

Definition 6. Let S be an enumeration of the admissible transducers. For each string x, the complexity C S (x) is the minimum
|σ | + |y| taken over all σ in the domain of S and y in the domain of T S

σ such that T S
σ (y) = x.

This complexity is also called the finite state complexity based on S of a given string. Note that if S is universal and S ′ is
any other prefix-free enumeration then there is a constant c such that

C S(x) ≤ C S ′(x) + c,

for all binary strings x. Thus the universal enumerations define an abstract finite state complexity in the same way as it is
done for prefix-free, process or plain complexity. The next results relate the complexity C S for universal enumerations S to
the plain complexity K , the prefix-free complexity H and the process complexity KmD .

We start with a simple property. Note that there is a fixed transducer T S
τ such that T S

τ (x) = x, for all x. This implies the
following.

Corollary 7. For every enumeration S there is a constant cS such that C S(x) ≤ |x| + cs , for all x ∈ {0, 1}∗ .

Next we give a useful construction combining an enumeration S with a computable partial function ϕ .
Let ϕ : {0, 1}∗ → {0, 1}∗ be a computable partial function with domain dom(ϕ) and S an enumeration of admissible

transducers. Define a new enumeration S[ϕ] in the following way:

T S[ϕ]
0σ (w) = T S

σ (w), for w ∈ {0,1}∗,
T S[ϕ]

1σ (ε) = ε, if σ ∈ dom(ϕ),

T S[ϕ]
1σ (ε) = undefined, otherwise, and

T S[ϕ]
1σ (aw) = ϕ(σ), for a ∈ {0,1} and w ∈ {0,1}∗,
T S[ϕ]
ε (w) = undefined, for w ∈ {0,1}∗. (3)

Since T S
σ = T S[ϕ]

0σ , every transducer appears as an image of the new mapping S[ϕ], and, obviously, S[ϕ] is an enumeration
of transducers. Then, from Eq. (3) we obtain the following.

Lemma 8. If S is a enumeration and ϕ is a computable partial function then the new enumeration S[ϕ] has dom(S[ϕ]) = 0 ·dom(S) ∪
1 · dom(ϕ) and C S[ϕ](w) ≤ Kϕ(w) + 2, for all w ∈ {0, 1}∗ .

If, moreover, S is a prefix-free (perfect, universal) enumeration and dom(ϕ) is prefix-free then S[ϕ] is also a prefix-free (perfect,
universal) enumeration.

The next theorem shows that universal enumerations define intermediate complexities between the process and the
prefix-free complexities.

Theorem 9. Let S be a universal enumeration of the admissible transducers. Then there are constants c, c′ such that, for all binary
strings x,

KmD(x) ≤ C S(x) + c, C S(x) ≤ H(x) + c′ .
Furthermore, one cannot obtain equality up to constant for any of these inequalities.

Proof. For the first inequality, note that if T S
σ (y) = x then σ stems from a prefix-free set and hence there is a plain Turing

machine ψ which on input p first searches for a prefix σ of p which is in dom(S) and, in the case that such a σ is found,
outputs T S

σ (y) for the unique y with σ y = p. Thus the mapping from all σ y to T S
σ (y) with σ ∈ dom(S) and y ∈ dom(T S

σ)

is partially computable and prefix-monotone. Thus KmD(x) ≤ C S(x) + c for some constant c.
Theorem 10 below implies that the first inequality is proper.
Let S be a universal enumeration of all admissible transducers and V be a prefix-free universal mapping as mentioned

in Section 4. Consider the enumeration S[V]. Then according to Lemma 8 dom(S[V]) = 0 ·dom(S) ∪1 ·dom(V) is prefix-free

C.S. Calude et al. / Information and Computation 247 (2016) 23–36 27
and C S[V](w) ≤ H(w) + 2, for all w ∈ {0, 1}∗ . Since S is a universal enumeration, we have also C S (w) ≤ C S[V](w) + c1 ≤
H(w) + c1 + 2.

Since C S(w) ≤ |w| + c, for some constant c, and H(w) − |w| is unbounded (cf. [8,20]) one cannot reverse the second
inequality to an equality up to constant. �

The properness of one inequality was missing in the previous result. It follows from the following theorem.

Theorem 10. There is a prefix-monotone partially computable function ψ such that for every prefix-free enumeration S and each
constant c there is a binary string x with Kψ(x) < C S (x) − c.

Proof. Let
 be the infinite (Martin-Löf random) binary expansion of a Chaitin Omega number [13] and let
s be an
approximation to
 from the left for s steps. Now define

ψ(x) = 0min{s:x≤lex
s}.
Here x ≤lex A if either A extends x or if for the first k ∈ dom(x) with x(k) �= A(k) it holds that x(k) = 0 and A(k) = 1. Note
that this function is partially computable and furthermore it is prefix-monotone. It is defined on all x with x ≤lex
. Note
that for x =
 � n, ψ(x) coincides with the convergence module c
(n) = min{s : ∀m < n [
s(m) =
(m)]}.

The goal of the construction is now to show that for all constants c and all prefix-free enumerations S of admissible
transducers, almost all prefixes x �
 satisfy that ψ(x) is larger than the length of any value T S

σ (y) with |σ y| ≤ |x| + c. So
fix one prefix-free enumeration S .

The first ingredient for this is to use that for almost all σ , if T S
σ (y) is longer than ψ(
 � |σ | + |y| − c) then y is shorter

than |σ |. Assume by way of contradiction that this is not be true and that there are infinitely many n with corresponding
σ , y such that n = |σ | + |y| − c and |T S

σ (y)| ≥ ψ(
 � n) = c
(n) and |σ | ≤ n/2. Now one can compute from σ and |y| the
maximum length s of an output of T S

σ (z) with |z| ≤ |y| and then take
 � n as
s � n. Hence H(
 � n) is, up to a constant,
bounded by |σ | + 2 log(|y|) which is bounded by n/2 + 2 log n plus a constant, in contradiction to the fact that H(
 � n) ≥ n
for almost all n. Thus the above assumption cannot be true.

Hence, for the further proof, one has only to consider transducers whose input is at most as long as the code. The
corresponding definition would be to let, for each σ ∈ dom(S), ϕ(σ) be the length of the longest output of the form T S

σ (y)

with y ≤ |σ |.
Now assume by way of contradiction that there are a constant c and infinitely many x �
 such that there exists a σ

with |ψ(x)| ≤ ϕ(σ) and |σ | ≤ |x| + c. Then one can construct a prefix-free machine V with the same domain as S such that
V (σ) for all σ ∈ dom(S) outputs z =
ϕ(σ) � |σ | − c. As |σ | ≤ |x| + c it follows that z is a prefix of x and a prefix of
.

The domains of V and S are the same, hence V is a partially computable function with prefix-free domain which has
for infinitely many prefixes z �
 an input σ of length up to |z| + 2c with V (σ) = z, that is, which satisfies H V (z) ≤ |z| + 2c
for infinitely many prefixes z of
. This again contradicts the fact that
 is Martin-Löf random, hence this does not happen.

Note that Kψ(x) ≤ KmD(x) + c′ for some constant c′ . Now one has, for almost all n that the string un = 0c
(n) satisfies
un = ψ(
 � n) and Kψ(un) = n and KmD(un) ≤ n + c′ while, for all S and c and almost all n, C S (un) > n + c, hence C S (un) −
KmD(un) goes to ∞ for n → ∞. So C S and KmD cannot be equal up to constant for any prefix-free enumeration S of
admissible transducers. �

Furthermore, for enumerations S having a computable domain dom(S), one can show that there is an algorithm to
compute C S .

Proposition 11. Let S be an enumeration of the admissible transducers and let dom(S) be computable. Then the mapping x �→ C S (x)
is computable.

Proof. We have C S (x) ≤ |x| +c for some constant c. Now C S (x) is the length of the shortest σ y with σ ∈ dom(S), y ∈ {0,1}∗ ,
|σ y| ≤ |x| + c and T S

σ (y) = x. Due to the length-restriction |σ y| ≤ |x| + c, the search space is finite and due to the com-
putability of dom(S) the search can be carried out effectively. �
6. Complexity of infinite sequences

Martin-Löf randomness can be formalised using both prefix-free Kolmogorov complexity and process complexity, see
Definition 5. Therefore it is natural to ask whether such a characterisation does also hold for the C S complexity. As an easy
consequence of Definition 5 and the sandwich property of Theorem 9 one obtains the following.

Lemma 12. Let x ∈ {0, 1}ω . Then x is Martin-Löf random iff for every universal enumeration of transducers S there is a constant c
depending only on x and S such that for all n ∈N the condition C S(x � n) ≥ n − c holds.

One can, however, define randomness also in terms of weaker enumerations.

28 C.S. Calude et al. / Information and Computation 247 (2016) 23–36
Theorem 13. The following statements are equivalent:

(a) The sequence x is not Martin-Löf random;
(b) There is a perfect enumeration S such that for every c > 0 and almost all n > 0 we have C S(x � n) < n − c;
(c) There is a perfect enumeration S such that for every c > 0 there exists an n > 0 with C S(x � n) < n − c.

Proof. If x is Martin-Löf random then according to Lemma 12 for every prefix-free enumeration S it holds C S (x � n) ≥ n − c
for some constant c and all n. Hence none of the conditions (b) or (c) is satisfied.

Now assume that x is not Martin-Löf random. Let V be a universal prefix-free machine and H V = H . Using V we define
the following enumeration S of finite transducers:

For ση such that σ ∈ dom(V) and time(V (σ)) = |η|, let T S
ση be defined as the transducer which maps every non-empty

string w to V (σ)ηw .

Here time(V (σ)) denotes the time till the computation stops; S is computable and prefix-free because dom(V) is prefix-free
and dom(S) = {ση : σ ∈ dom(V) ∧ |η| = time(V (σ))}.

If the sequence x is not Martin-Löf random, then for every c > 0 there is an n > 0 such that H(x � n) < n − c. Hence, for
c > 0 we have n > 0, σ ∈ {0, 1}∗ , s > 0 such that V (σ) = x � n, |σ | < n − c and time(V (σ)) = s.

Define η ∈ {0, 1}s via
(
x � (n − c) + s

) = V (σ)η. Then T S
ση(w) � x whenever V (σ)ηw � x. Thus C S(x � n + s′) < n + s′ − c

for all s′ ≥ s, and the conditions (b) and (c) hold. �
Corollary 14. A sequence x is Martin-Löf random iff for every prefix-free enumeration S there is a constant c such that for every n ≥ 1
the inequality C S(x � n) ≥ n − c holds true.

Furthermore, there is a perfect enumeration S which satisfies that a sequence x is Martin-Löf random iff for every n ≥ 1 the in-
equality C S(x � n) ≥ n − c holds true.

The second clause of this result shows that the measure C S , for perfect S , combines features of prefix-free Kolmogorov
complexity and a minimum description length: On one hand it permits to define the Martin-Löf random sequences in a
very natural way and, on the other hand, the complexity C S (x) can be effectively computed for every x ∈ {0, 1}∗ . However,
C S cannot replace the prefix-free Kolmogorov complexity to single out the random finite strings: the set of random strings
is immune, hence it cannot be defined by a computable measure like C S , as that would result in a decidable set. In this
way, the measure obtained here is the best possible.

7. Finite state complexity based on exotic enumerations

Most of the previous results have used the complexity C S based on prefix-free enumerations S . If we drop the prefix-
freeness condition the complexity can behave in a different way. First we investigate the relation between the complexity
C S and plain Kolmogorov complexity K .

Lemma 15. Let S be a not necessary prefix-free enumeration of all admissible transducers. Then there is a constant c such that for all
w ∈ {0, 1}∗ we have:

K (w) ≤ C S(w) + 2 log |w| + c.

Proof. Let γ : N → {0, 1}∗ be a computable prefix-free encoding of the natural numbers. We may assume that for all n,
|γ (n)| ≤ 2 log n + 2.

Given S we define a computable partial function ϕ as follows:

ϕ(π) =
{

T S
σ (p), if π = γ (|σ |) · σ · p, and

ε, otherwise.

Then

Kϕ(T S
σ (p)) ≤ |σ | + |p| + 2 log |σ | + 2 ≤ C S(T S

σ (p)) + 2 log C S(T S
σ (p)) + 2.

Now the assertion follows from C S (w) ≤ |w| + cS (see Corollary 7). �
Next we show that in every sequence there exist infinitely many complexity dips, a phenomenon discovered by Martin-

Löf [29] for the plain (Kolmogorov) complexity. As this is readily seen, for enumerations like S[U], see Lemma 8, we restrict
our considerations to enumerations where dom(S) is computable.

By string(i) we denote the binary string obtained by removing the leading 1 from the binary representation of the
integer i ≥ 1. For an enumeration of admissible transducers S define the following modified enumeration S ′:

C.S. Calude et al. / Information and Computation 247 (2016) 23–36 29
Fig. 1. Transducer T1w ′ where |w ′| = n and n̄ =
 + n.

T S ′
0σ (p) = T S

σ (p), for σ ∈ S, p ∈ {0,1}∗, (4)

T S ′
1ρ(p) =

⎧⎪⎨
⎪⎩

string(|ρ|) · T S ′
1ρ(p′), if p = 0p′,

ρ · T S ′
1ρ(p′), if p = 1p′,

ε, otherwise.

(5)

The transducer T S ′
1ρ realises, as one can easily see, a homomorphism from {0, 1}∗ to {0, 1}∗ mapping 0 onto string(|ρ|)

and 1 onto ρ .
Next we use the following illustration of [22, Theorem 1] ([8, Theorem 6.10]).

Lemma 16. Every infinite sequence x ∈ {0, 1}ω has infinitely many prefixes of the form string(|w|)w, with w ∈ {0, 1}∗ .

Proof. The proof follows [22, Theorem 1]. Fix x ∈ {0, 1}ω . Choose an integer
 ≥ 1 and put v = x �
. Then v = string(n) for a
unique integer n ≥ 1. Next define w ′ to be the prefix of length
 +n of x, that is, x � (
 +n) = w ′ = v · w = string(|w|)w . �
Theorem 17. There exist enumerations S ′ having a computable domain dom(S ′) such that for every infinite sequence x ∈ {0, 1}ω there
are infinitely many prefixes vi � x such that |vi| − C S ′ (vi) > i.

Proof. First observe that for w ∈ {0, 1}∗, |w| ≥ 2, according to Eq. (5) we have T S ′
1w(01) = string(|w|)w and thus

C S ′
(
string(|w|)w

) ≤ |w| + 3, but
∣∣string(|w|)w

∣∣ ≥ |w| + �log2 |w|�. The assertion follows from Lemma 16. �
Complexity dips cannot be avoided even when we consider only transducers which satisfy the condition |μ(q, a)| ≤ m,

for all (q, a) ∈ Q × {0, 1}, that is, the output can always be at most m times as long as the input. We call these transducers
m-bounded. We denote by C (m)

S the variant of C S which looks at complexity using only m-bounded transducers.

Theorem 18. There exist enumerations S of admissible 2-bounded transducers having a computable domain dom(S) such that for
every infinite sequence x ∈ {0, 1}ω there are infinitely many prefixes vi � x such that |vi| − C (2)

S (vi) > i.

Proof. Similar to the proof of Lemma 16 define v = string(n) to be the prefix of length 2
 of x and then append the next
2n symbols of x. This construction shows that for every infinite sequence x ∈ {0, 1}ω there are infinitely many prefixes of
the form string

(|w|
2

)
w where the lengths of string

(|w|
2

)
and w are even.

Let w = a1 · · ·a2n and v = b1 · · ·b2
 and define the transducer T1w ′ where w ′ = a2a4 · · ·a2n as T1w ′ = ({0, 1}, {s1, . . . , sn̄},
s1, δ, μ) with n̄ =
 + n and

δ(si,a) = si+1, μ(si,a) = ab2i, for i = 1, . . . ,
,

δ(si,a) = si+1, μ(si,a) = aa2i, for i =
 + 1, . . . , n̄,

δ(sn̄+1,a) = sn̄+1, μ(sn̄+1,a) = a, a ∈ {0,1}.
This construction is depicted in Fig. 1.

The transducer T1w ′ is 2-bounded and

T1w ′(b1b3 · · ·b2
−1a1a3 · · ·a2n−1) = b1 · · ·b2
 · a1 · · ·a2n = string
(|w|

2

)
w.

A construction similar to Eqs. (4) and (5) shows that

∣∣string
(|w|

2

)
w

∣∣ − C (2)
S

(
string

(|w|
2

)
w

) ≥
 − 3

is unbounded for suitably chosen prefixes of x ∈ {0, 1}ω . �

30 C.S. Calude et al. / Information and Computation 247 (2016) 23–36
8. Finite state incompressibility and normality

In this section we define finite state incompressible sequences and prove that each such sequence is normal. Given an
enumeration S of all admissible transducers, a sequence x = x1x2 · · · xn · · · is C S -incompressible if lim infn C S (x � n)/n = 1.
This definition resembles in some sense the definition of (asymptotic) Kolmogorov complexity κ(x) = lim infn K (x � n)/n in-
vestigated in [33,38]. From Levin’s Theorem 3.4 of [47] one deduces that this quantity coincides with Lutz’s [26] constructive
dimension. For more details see [41,42].

Proposition 19. Every Martin-Löf random sequence is C S -incompressible for every enumeration S, but the converse implication is not
true.

Proof. If x is a Martin-Löf random sequence, then lim infn K (x � n)/n = 1, so by Lemma 15, x is C S -incompressible. Next we
take a Martin-Löf random sequence x and modify it to be not random: define x′(n) = 0 whenever n is a power of 2 and
x′(n) = x(n), otherwise. Clearly, x′ is not Martin-Löf random, but lim infn K (x � n)/n = 1, so x is C S -incompressible for every
enumeration S of all admissible transducers. �

A sequence is normal if all digits are equally likely, all pairs of digits are equally likely, all triplets of digits equally likely,
etc. This means that the sequence x = x1x2 · · · xn · · · is normal if the frequency of every string y in x is 2−|y| , where |y| is
the length of y.

Lemma 20. If the sequence x is not normal, then there exist a transducer T S
σ and a constant α with 0 < α < 1 (depending on x, σ , S)

such that for infinitely many integers n > 0 we have CT S
σ
(x � n) < α · n.

Proof. It is known (see [18,19,35]) that if the sequence x is not normal, then there exist a transducer T S
σ , a sequence y, and

a real α ∈ (0, 1) such that limm→∞ T S
σ (y � m) = x and for infinitely many m > 0

T S
σ (y � m) � x and m < α · |T S

σ (y � m)|.
Consequently, for infinitely many m > 0

CT S
σ
(T S

σ (y � m)) ≤ m < α · |T S
σ (y � m)|,

hence CT S
σ
(x � n) < α · n for infinitely many n > 0 because T S

σ (y � m) � x for infinitely many m > 0. �
Example 21. Ambos-Spies and Busse [2,3] as well as Tadaki [44] investigated infinite sequences x which can be predicted
by finite automata in a certain way. The formalisations result in the following equivalent characterisations for a sequence x
to be finite state predictable:

• The sequence x can be predicted by a finite automaton in the sense that every state is either passing or has a prediction
on the next bit and when reading x the finite automaton makes infinitely often a correct prediction and passes in those
cases where it does not make a correct prediction, that is, it never predicts wrongly.

• There is a finite automaton which has in every state a label from {0, 1}∗ such that, whenever the automaton is in a
state with a non-empty label w then some of the next bits of x are different from the corresponding ones in w .

• The sequence x is the image T (y) for some binary sequence y and a finite transducer T which has only labels of the
form (a, aw) with a ∈ {0, 1} and w ∈ {0, 1}∗ and where in the translation from y into x infinitely often a label (a, aw)

with w �= ε is used.
• There is a finite connected automaton with binary input alphabet such that not all states of it are visited when read-

ing x.
• x fails to contain some string w as a substring.

The last item makes clear that the class of finite state predictable sequences is the complement of the class of disjunctive
[21] or rich sequences [39]. All Borel normal sequences are disjunctive whereas not all disjunctive sequences are Borel
normal. An example is the sequence x = ∏

w∈{0,1}∗ 0|w|! · w from [37] which contains considerably more occurrences of
zeros than ones.

In [37,39] the set of non-disjunctive sequences is characterised as the union of nullsets or, equivalently, nowhere dense
sets definable (or accepted) by finite automata.

Theorem 22. Every C S -incompressible sequence is normal.

Proof. Assume that the sequence x is not normal. According to Lemma 20 there exist α ∈ (0, 1) and σ ∈ dom(S) such that
for infinitely many integers n > 0 we have CT S

σ
(x � n) < α · n. For these n it also holds that C S (x � n) < α · n + |σ |. Since

α < 1, x is not C S -incompressible. �

C.S. Calude et al. / Information and Computation 247 (2016) 23–36 31
9. How large is the set of incompressible sequences?

It is natural to ask whether the converse of Theorem 22 is true. The results in [1,6,35,46] discussed in Introduction might
suggest a positive answer. In fact, the answer is negative.

To prove this result we will use binary de Bruijn strings of order r ≥ 1 which are strings w of length 2r + r − 1 over
alphabet {0, 1} such that any binary string of length r occurs as a contiguous substring of w (exactly once). It is well-known
that de Bruijn strings of any order exist, and have an explicit construction [16,45]. For example, 00110 and 0001011100 are
de Bruijn strings of orders 2 and 3 respectively.

Note that de Bruijn strings are derived in a circular way, hence their prefix of length r − 1 coincides with the suffix of
length r − 1. Denote by B(r) the prefix of length 2r of a de Bruijn string of order r. The examples of de Bruijn strings of
orders 2 and 3 previously presented are derived from the strings B(2) = 0011 and B(3) = 00010111, respectively. Thus the
string B(r) · B ′(r), where B ′(r) is the length r − 1 prefix of B(r), contains every binary string of length string r exactly once
as a substring.

In [31] it is shown that every sequence of the form

b f = B(1) f (1)B(2) f (2) · · · B(n) f (n) · · ·
is normal provided that the function f : N → N is increasing and satisfies the condition f (i) ≥ ii , for all i ≥ 1. Moreover, in
this case the real 0.b f is a Liouville number, i.e. it is a transcendental real number with the property that, for every positive
integer n, there exist integers p and q with q > 1 and such that 0 < |0.b f − p

q | < q−n .

Lemma 23. Every string w, B(1) � w � b f can be represented in the form

w = B(1) f (1)B(2) f (2) · · · B(n − 1) f (n−1)B(n) j w ′ (6)

where n ≥ 1, 1 ≤ j ≤ f (n) and |w ′| < 2n+1 = |B(n + 1)|.

Proof. Indeed, in the case

B(1) f (1)B(2) f (2) · · · B(n − 1) f (n−1) � w � B(1) f (1)B(2) f (2) · · · B(n) f (n)

we can choose w ′ � B(n), and if

B(1) f (1)B(2) f (2) · · · B(n) f (n) � w � B(1) f (1)B(2) f (2) · · · B(n) f (n)B(n + 1)

we can choose w ′ � B(n + 1). �
Next we show that there are normal sequences which are simultaneously Liouville numbers and compressible by trans-

ducers, that is, the converse of Theorem 22 is false. This also proves that C S -incompressibility is stronger than all other
known forms of finite automata based incompressibility, cf. [1,6,17,35,46]. In view of the second inequality of Theorem 9,
for universal enumerations S this follows from the existence of computable normal sequences, cf. [4,5]. Here we show that
this holds for all enumerations.

Theorem 24. For every enumeration S there are normal sequences x such that limn→∞ C S(x � n)/n = 0, so x is C S -compressible.

Proof. Define the transducer Tn = ({0, 1}, {s1, . . . , sn+1}, s1, δn, μn) as follows:

δn(si,0) = si, μn(si,0) = B(i), for i ≤ n,

δn(si,1) = si+1, μn(si,1) = B(i), for i ≤ n,

δn(sn+1,a) = sn+1, μn(sn+1,a) = a, for a ∈ {0,1} .

For example, the transducer T4 is presented in Fig. 2. Let σn be an encoding of Tn according to S . Choose a function
f : N →N which satisfies the following two conditions for all n ≥ 1, i > 1:

f (n) ≥ max{|σn+1|,nn,2n+2} and f (i) ≥ 2 · f (i − 1). (7)

Finally, let pi = 0 f (i)−11 and p′
j = 0 j−11. Eq. (6) shows that

Tn(p1 · · · pn−1 p′
j w ′) = B(1) f (1) · · · B(n − 1) f (n−1)B(n) j w ′

is a prefix of the normal sequence x = b f . We then have:

|Tn(p1 · · · pn−1 p′
j w ′)| =

n−1∑
i=1

2i f (i) + 2n j + |w ′|

≥ 2n−1 f (n − 1) + 2n j,

32 C.S. Calude et al. / Information and Computation 247 (2016) 23–36
Fig. 2. Block representation of the transducer T4.

and

|σn| + |p1 · · · pn−1 · p′
j · w ′| = |σn| +

n−1∑
i=1

|pi| + |p′
j| + |w ′|

≤ f (n − 1) + 2 f (n − 1) + j + f (n − 1)

= 4 f (n − 1) + j.

This shows that for every prefix w of b f presented in the form (6) as

w = B(1) f (1) · · · B(n − 1) f (n−1) · B(n) j · w ′,

we have B(1) � w � b f and (by using the inequality a+b
c+d ≤ max

{
a
c , b

d

}
, when 0 < a, b, c, d):

C S(w)

|w| ≤ 4 f (n − 1) + j

2n−1 f (n − 1) + 2n j
≤ 4

2n−1
.

This shows that limn→∞ C S (x � n)/n = 0. �
In the proof of Theorem 24 we have used an arbitrary function f satisfying (7). Of course, there exist computable and

incomputable such functions.

Corollary 25. For every enumeration S there are normal and C S -compressible computable and incomputable sequences.

Similar to Section 7 we consider also the variant C (m)
S of C S which looks at complexity using only m-bounded transducers.

The following result is a sample result for this area.

Theorem 26. For every enumeration S of all 2-bounded admissible transducers, there are normal sequences x such that limn→∞C (2)
S (x �

n)/n = 1/2.

Proof. We start from the transducers Tn defined in the proof of Theorem 24 and we split every long output B(i) of Tn

into 2i−1 pieces of length 2. Formally, we replace the states si, i ≤ n, by sub-transducers Ai = ({0, 1}, Ri, ri,1, δ
(i)
n , μ(i)

n) where
Ri = {ri,1, . . . , ri,2i−1},

δ
(i)
n (ri, j,a) = ri, j+1, μ

(i)
n (ri, j,a) = ui, j, j < 2i, a < 2,

δ
(i)
n (ri,2i−1 ,0) = ri,1, μ

(i)
n (ri,2i−1 ,0) = ui,2i−1 ,

δ
(i)
n (ri,2i−1 ,1) = ri+1,1, μ

(i)
n (ri,2i−1 ,1) = ui,2i−1 ,

and B(i) = ui,1 · · · ui,2i−1 with |uij | = 2. Observe that the transition with input 1 on state ri,2i−1 leads to the initial state of
the next sub-transducer (for i = n this leads to state rn+2,1 = sn+1 of Tn).

Then, the new transducer is defined as follows:

Q n =
n⋃

i=1

Ri ∪ {sn+1},q0n = r1,1,

δ′
n =

n⋃
i=1

δ
(i)
n ∪ {(sn+1,0, sn+1), (sn+1,1, sn+1)}

C.S. Calude et al. / Information and Computation 247 (2016) 23–36 33
and

μ′
n =

n⋃
i=1

μ
(i)
n ∪ {(sn+1,0,0), (sn+1,1,1)}.

Again let σ ′
n be an encoding of T ′

n in S , and let p̄i = (02i−1
) f (i)−102i−1−11 where f : N → N, f (n) ≥ max{|σ ′

n+1|, nn, 2n+2},
f (i) ≥ 2 · f (i − 1), is as in the proof of Theorem 24. Let p̄′

i, j = (02i−1
) j−102i−1−11.

Furthermore, let B(1) � w � b f . According to Eq. (6) we have:

w = B(1) f (1) · · · B(n − 1) f (n−1)B(n) j w ′ = T ′
n(p̄1 · · · p̄n−1 p̄′

j w ′).

We then have:

|T ′
n(p̄1 · · · p̄n−1(0 j−1)1 · w ′)| = ∑n−1

i=1 2i · f (i) + 2n j + |w ′|
≥ ∑n−1

i=1 2i · f (i) + 2n j,

and

C (m)
S (w) ≤ |σ ′

n| +
∑n−1

i=1 2i−1 f (i) + 2n−1 j + |w ′|
≤ f (n − 1) + ∑n−1

i=1 2i−1 f (i) + 2n−1 j + f (n − 1),

finally obtaining

C (m)
S (w)

|w| ≤
∑n−2

i=1 2i−1 f (i) + 2n−1 j + (2n−2 + 2) f (n − 1)∑n−2
i=1 2i f (i) + 2n j + 2n−1 f (n − 1)

≤ 2n−2 + 2

2n−1
.

This proves that limt→∞ C (2)
S (x � t)/t = 1/2. �

Theorem 26 can be easily generalised to m-bounded complexity thereby yielding the bound limn→∞ C (m)
S (x � n)/n = 1/m.

Moreover, the results of Theorems 24 and 26 can be also generalised to arbitrary (output) alphabets Y . Here the circular
de Bruijn strings of order n, CB|Y |(n), have length |Y |n .

In connection with Theorem 24, we can ask whether the finite state complexity of each sequence x represent-
ing a Liouville number satisfies the inequality lim supn→∞ C S (x � n)/n < 1. The answer is negative: Example 12 of [40]
shows that there are sequences x representing Liouville numbers having lim supn→∞ K (x � n)/n = 1, hence by Theorem 9,
lim supn→∞ C S (x � n)/n = 1.

The following result complements Theorem 24: the construction is valid for every enumeration, but the degree of in-
compressibility is slightly smaller.

Theorem 27. There exists an infinite, normal and computable sequence x which satisfies the condition lim infn→∞ C S(x � n)/n = 0,
for all prefix-free enumerations S.

Proof. Fix a computable enumeration (Tm)m≥1 of all admissible transducers such that each Tm has at most m states and
each transition in Tm from one state to another has only labels which produce outgoing strings of at most length m (that
is, complicated transducers appear sufficiently late in the list).

Now define a sequence of strings αn such that each αn is the length-lexicographic first string longer than n such that
for all transducers Tm with 1 ≤ m ≤ n, for all states q of Tm and for each string γ of less than n bits, there is no string
β of length below n−1

n · |αn| such that γ Tm(q, β) is αn or an extension of it. Note that these αn must exist, as every suf-
ficiently long prefix of the Champernowne sequence meets the above given specifications due to Champernowne sequence
normality [14]. Furthermore, α0 = 0 as the only constraint is that α0 is longer than 0. An easy observation shows that also
|αn| ≤ |αn+1|, for all n.

In what follows we will use an acceptable numbering of all partially computable functions from natural numbers to
natural numbers of one variable (ϕe)e≥1. Now let f be a computable function from natural numbers to natural numbers
satisfying the following conditions:

Short: For all t ≥ 1, |α f (t)| ≤
√

t .
Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f (t) > n.
Match: ∀n ∀e < n ∃t [ϕe(n) < ∞ =⇒ t > ϕe(n) ∧ f (t) = n ∧ f (t + 1) = n ∧ . . . ∧ f (t2) = n].

34 C.S. Calude et al. / Information and Computation 247 (2016) 23–36
In order to construct f , consider first a computable one-one enumeration (e0, n0, m0), (e1, n1, m1), . . . of the set {(e, n, m) :
e < n ∧ ϕe(n) = m}. The function f is now constructed in stages where the requirement “Short” is satisfied all the time, the
requirement “Finite-to-one” will be a corollary of the way the function is constructed and the requirement “Match” will be
satisfied for the k-th constraint (ek, nk, mk) in the k-th stage.

In the k-th stage, let sk be the first value where f (sk) was not defined in an earlier stage and let tk be the first number
such that tk > sk + mk and |αnk | ≤

√
tk . Having these properties, for u with sk ≤ u < tk , let f (u) be the maximal
 with

|α
| ≤ √
max{1, u}, and for u with tk ≤ u ≤ t2

k , let f (u) = nk .

It is clear that the function f is computable. Next we verify that it satisfies the required three conditions.

Short: This condition, which is more or less hard-coded into the algorithm, directly follows from the way tk is selected and
f (u) is defined in the two cases.

Finite-to-one: The inequality f (u) ≤ n is true only in stages k where for some u either |αn+1| > √
sk or nk ≤ n; both

conditions happen only for finitely many stages k.
Match: For each n and e with ϕe(n) being defined, there is a stage k such that (ek, nk, mk) = (e, n, ϕe(n)). The choice of tk

makes then f to be equal to nk on tk, tk + 1, . . . , t2
k and furthermore tk > ϕek (nk).

Let x be the sequence α f (0)α f (1)α f (2) . . . which is obtained by concatenating all the strings α f (n) for the n in default order.
It is clear that x is computable.

Consider any enumeration S of transducers. Choose e such that ϕe(n) takes the value the length of the code of that
transducer Tn which has the starting state q and a further state q′ and follows the following transition table:

State Input Output New state

q 0 ε q′
q 1 αn q
q′ 0 0 q
q′ 1 1 q

As ϕe is total, there is for each n > e a t larger than the code of the transducer Tn such that f (t), f (t + 1), . . . , f (t2) are
all n. Now σ = α f (0) . . . α f (t2) can be generated by Tn by a code of the form β = 0σ(0)0σ(1) . . . 0σ(u − 1)1t2−t where u is
the length of α f (0)α f (1) . . . α f (t−1) . The length of β is 2u + t2 − t . Note that u ≤ t ·√t by the condition “Short” and therefore
|β| ≤ t2 + t3/2 − t while the string σ generated from β by the transducer Tn has at least the length (t2 − t) · |αn| which is
at least (t2 − t) · (n + 1). Furthermore, the representation of Tn in S has at most length t , thus

C S(σ)/|σ | ≤ (t2 + t3/2)/(n · (t2 − t)) ≤ 2

n
.

It follows that lim infn→∞ C S (x � n)/n = 0.
Next we prove that x is normal. Fix a transducer Tm . Then, for every n > m, there is a sufficiently large t such that

(n − 1) · t of the first n · t values s < n · t satisfy f (s) > n. Fix such a t and let β = β0β1 . . . βn·t be such that β0 . . . βs is
the shortest prefix of β with Tm producing from the starting state and input β0 . . . βs an extension of α f (0) . . . α f (s) . Note
that the image of β0 . . . βs is at most m − 1 symbols longer than α f (0) . . . α f (s) . Let σ = α f (0) . . . α f (t·n) . One can prove by
induction that for all s with f (s) ≥ n we have

|βs| ≥ n − 1

n
· |α f (s)|,

and for all s where f (s) < n we have

|α f (s)| ≤ |σ |/(t · n).

It follows that |β| ≥ (n−1)2

n2 · |σ | and therefore we have sufficiently long prefixes of x which are concatenations of the strings
α f (0) . . . α f (t·n) , all having complexity relative to Tm near 1. Furthermore, the length difference between any given prefix
and a prefix of such a form is smaller than the square root of the length and therefore one can conclude that the sequence
is incompressible with respect to each fixed transducer Tm . Hence, by Theorem 22, it is normal. �

The proof method in Theorem 27 can be adapted to obtain the following result.

Theorem 28. There exists a perfect enumeration S and a sequence which is computable, normal and C S -incompressible.

Proof. The sequence of the Tn and αn is defined as in the proof of Theorem 27; furthermore, it is assumed that the listing
of the Tn is one-one. However, f is chosen such that it satisfies the following three conditions:

C.S. Calude et al. / Information and Computation 247 (2016) 23–36 35
Short: For all t ≥ 1, |α f (t)| ≤
√

t .
Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f (t) > n.
Monotone: For all t ≥ 1, f (t) ≤ f (t + 1).

This is achieved by selecting

f (t) = max{m : |αm| ≤ √
t}.

It is clear that f is computable and satisfies the conditions “Short” and “Monotone”. The condition “Finite-to-one” follows
from the observation that f (t) > n for all t with |αn+1| ≤

√
t and the fact that almost all t satisfy this condition.

As above one can see that whenever f (t) > n and m ≤ n then Tm(β) extends α f (0)α f (1) . . . α f (n·t) only if |β| ≥ (n −1)2/n2.
Now one makes S such that the transducer Tm has the code word 0m1m2·tm for the first tm such that f (tm) > m. It can be
concluded that CTm (σ)/|σ | ≥ (m − 1)2/m2 · |σ |, for all prefixes σ of x and that CTm (σ)/|σ | goes to 1 for longer and longer
prefixes of x. Thus the sequence x is normal and furthermore x is incompressible with respect to the here chosen S . �
10. Conclusion and open questions

Enumerations are — in the context of this paper — computable listings of all admissible transducers. We have investigated
two main notions of enumerations: the arbitrary ones and the prefix-free ones. The prefix-free ones turned out to be the far
more natural notion and, among these, we were specifically interested in two special cases: the perfect enumerations (which
have a decidable domain, are surjective and have a computable inverse) and the universal enumerations (which optimise
the codes for the transducers up to a constant for the best possible value). We have showed that Martin-Löf randomness
of infinite sequences can be characterised with both of these types of enumerations. Furthermore, we have related the
finite-state complexity based on universal enumerations with the prominent notions of algorithmic description complexity of
binary strings. Finite-state complexities based on some exotic enumerations behave like the plain (Kolmogorov) complexity.

The results of Sections 8 and 9 show that our definition of finite state incompressibility is stronger than all other known
forms of finite automata based incompressibility, in particular the notion related to finite automaton based betting systems
introduced by Schnorr [35].

The following three questions are left open: Are there an enumeration S , a computable sequence x and a constant c such
that C S (σ) > |σ | − c, for all prefixes σ of x? This would mean that, with respect to S , some computable sequence x behaves
like a Martin-Löf random one (in other enumerations). One can also ask the converse question: for which enumerations S is
it true that every sequence satisfying C S (x � n) ≥ n −c is Martin-Löf random? Note that every universal and also some perfect
enumeration satisfy this condition. What is the relation between C S -incompressible sequences and ε-random sequences, [9,
12,43]? Note that some ε-random sequences can be finite-state predictable by not having a certain substring, cf. [38,44],
hence they can be compressed by a single transducer; this is, however, not true for all ε-random sequences. In particular it
would be interesting to ask whether it is true that x is ε-random iff for every perfect enumeration S there is a constant c
such that for all n, C S (x � n) ≥ ε · n − c.

Acknowledgments

The authors would like to thank Sanjay Jain and the anonymous referees for helpful comments.

References

[1] V.N. Agafonov, Normal sequences and finite automata, Sov. Math. Dokl. 9 (1968) 324–325.
[2] K. Ambos-Spies, E. Busse, Automatic forcing and genericity: on the diagonalization strength of finite automata, in: Proceedings of DMTCS 2003, in:

Lect. Notes Comput. Sci., vol. 2731, Springer, 2003, pp. 97–108.
[3] K. Ambos-Spies, E. Busse, Computational aspects of disjunctive sequences, in: Proceedings of MFCS 2004, in: Lect. Notes Comput. Sci., vol. 3153,

Springer, 2004, pp. 711–722.
[4] V. Becher, S. Figueira, An example of a computable absolutely normal number, Theor. Comput. Sci. 270 (2002) 947–958.
[5] V. Becher, P. Heiber, T.A. Slaman, A computable absolutely normal Liouville number, Math. Comput. 84 (2015) 2939–2952.
[6] C. Bourke, J.M. Hitchcock, N.V. Vinodchandran, Entropy rates and finite-state dimension, Theor. Comput. Sci. 349 (3) (2005) 392–406.
[7] H. Buhrman, L. Fortnow, Resource-bounded Kolmogorov complexity revisited, in: Proceedings of STACS 1997, in: Lect. Notes Comput. Sci., vol. 1200,

Springer, 1997, pp. 105–116.
[8] C.S. Calude, Information and Randomness. An Algorithmic Perspective, 2nd ed., Springer, Berlin, 2002.
[9] C.S. Calude, N.J. Hay, F. Stephan, Representation of left-computable ε-random reals, J. Comput. Syst. Sci. 77 (2011) 812–839.

[10] C.S. Calude, K. Salomaa, T.K. Roblot, Finite state complexity, Theor. Comput. Sci. 412 (2011) 5668–5677.
[11] C.S. Calude, K. Salomaa, T.K. Roblot, State-size hierarchy for FS-complexity, Int. J. Found. Comput. Sci. 23 (1) (2012) 37–50.
[12] C.S. Calude, L. Staiger, S.A. Terwijn, On partial randomness, Ann. Pure Appl. Logic 138 (2006) 20–30.
[13] G.J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975) 329–340.
[14] D.G. Champernowne, The construction of decimals normal in the scale of ten, J. Lond. Math. Soc. 8 (1933) 254–260.
[15] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai, A. Shelat, Approximating the smallest grammar: Kolmogorov com-

plexity in natural models, in: Proceedings of STOC 2002, ACM Press, 2002, pp. 792–801.
[16] N. de Bruijn, A combinatorial problem, Proc. K. Ned. Akad. Wet. 49 (1946) 758–764.
[17] J.J. Dai, J.I. Lathrop, J.H. Lutz, E. Mayordomo, Finite-state dimension, Theor. Comput. Sci. 310 (2004) 1–33.

http://refhub.elsevier.com/S0890-5401(15)00101-7/bib41676166s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib41423033s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib41423033s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib41423034s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib41423034s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib424632303032s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib42485332303134s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib424856s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4246s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4246s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib63726973s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib43485332303131s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib43535232s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib43535233s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib435354s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib43683735s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4368616D70s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib434C4Cs1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib434C4Cs1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib6442s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib444C4C4Ds1

36 C.S. Calude et al. / Information and Computation 247 (2016) 23–36
[18] D. Doty, P. Moser, Finite-state dimension and lossy compressors, arXiv:cs/0609096v2, 2006.
[19] D. Doty, P. Moser, Feasible depth, in: Proceedings of CiE 2007, in: Lect. Notes Comput. Sci., vol. 4497, Springer, 2007, pp. 35–44.
[20] R. Downey, D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, Heidelberg, 2010.
[21] H. Jürgensen, H.-J. Shyr, G. Thierrin, Disjunctive ω-languages, Elektron. Inf.verarb. Kybern. 19 (1983) 267–278.
[22] H.P. Katseff, Complexity dips in random infinite binary sequences, Inf. Control 38 (3) (1978) 258–263.
[23] M. Koppel, H. Atlan, An almost machine-independent theory of program-length complexity, sophistication, and induction, Inf. Sci. 56 (1991) 23–33.
[24] E. Lehman, Approximation algorithms for grammar-based compression, PhD thesis, MIT, 2002.
[25] E. Lehman, A. Shelat, Approximation algorithms for grammar-based compression, in: Proceedings of SODA 2002, SIAM Press, 2002, pp. 205–212.
[26] J.H. Lutz, The dimensions of individual strings and sequences, Inf. Comput. 187 (1) (2003) 49–79.
[27] M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed., Springer, 2007.
[28] P. Martin-Löf, The definition of random sequences, Inf. Control 9 (1966) 602–619.
[29] P. Martin-Löf, Complexity oscillations in infinite binary sequences, Z. Wahrscheinlichkeitstheor. Verw. Geb. 19 (1971) 225–230.
[30] A. Nies, Computability and Randomness, Clarendon Press, Oxford, 2009.
[31] S. Nandakumar, S.K. Vangapelli, Normality and finite-state dimension of Liouville numbers, Theory Comput. Syst. (2014) 1–11, http://dx.doi.org/10.1007/

s00224-014-9554-8.
[32] J. Rissanen, Information and Complexity in Statistical Modeling, Springer, New York, 2007.
[33] Ryabko, B. Ya, Noise-free coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity, Probl. Pereda. Inf. 22 (3) (1986) 16–26.
[34] W. Rytter, Application of Lempel–Ziv factorization to the approximation of grammar-based compression, Theor. Comput. Sci. 302 (2002) 211–222.
[35] C.P. Schnorr, H. Stimm, Endliche Automaten und Zufallsfolgen, Acta Inform. 1 (1972) 345–359.
[36] C.P. Schnorr, Process complexity and effective randomness tests, J. Comput. Syst. Sci. 7 (1973) 376–388.
[37] L. Staiger, Reguläre Nullmengen, Elektron. Inf.verarb. Kybern. 12 (1976) 307–311.
[38] L. Staiger, Kolmogorov complexity and Hausdorff dimension, Inf. Comput. 103 (2) (1993) 159–194.
[39] L. Staiger, Rich ω-words and monadic second-order arithmetic, in: Mogens Nielsen, Wolfgang Thomas (Eds.), Computer Science Logic, Selected Papers,

Aarhus, 1997, in: Lect. Notes Comput. Sci., vol. 1414, Springer, 1998, pp. 478–490.
[40] L. Staiger, The Kolmogorov complexity of real numbers, Theor. Comput. Sci. 284 (2002) 455–466.
[41] L. Staiger, Constructive dimension equals Kolmogorov complexity, Inf. Process. Lett. 93 (2005) 149–153.
[42] L. Staiger, The Kolmogorov complexity of infinite words, Theor. Comput. Sci. 383 (2007) 187–199.
[43] L. Staiger, On oscillation-free ε-random sequences, Electron. Notes Theor. Comput. Sci. 221 (2008) 287–297.
[44] K. Tadaki, Phase transition and strong predictability, in: H. Oscar, Ibarra, Lila Kari, Steffen Kopecki (Eds.), Unconventional Computation and Natural

Computation – 13th International Conference, Proceedings, UCNC 2014, in: Lect. Notes Comput. Sci., vol. 8553, Springer, 2014, pp. 340–352.
[45] J.H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1993.
[46] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding, IEEE Trans. Inf. Theory 24 (1978) 530–536.
[47] A.K. Zvonkin, L.A. Levin, Complexity of finite objects and the development of the concepts of information and randomness by means of the theory of

algorithms, Russ. Math. Surv. 25 (1970) 83–124.

http://refhub.elsevier.com/S0890-5401(15)00101-7/bib444D31s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib444D32s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4448s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4A5354s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4B617473656666s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4B6F7070656C41746C616Es1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4C65s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4C53s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib69632F4C75747A3033s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib4C563037s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib6D617231s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib6D617232s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib414Es1
http://dx.doi.org/10.1007/s00224-014-9554-8
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib52697373616E656Es1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib527961626B6F3836s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib5279s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib5363686E6F7272s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib7363683733s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib53743736s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib69632F53743933s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib63736C2F53743937s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib63736C2F53743937s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib53743032s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib53743035s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib53743037s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib656E7463732F53743038s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib546132303133s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib546132303133s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib764C57s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib5A4Cs1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib5A4C6576s1
http://refhub.elsevier.com/S0890-5401(15)00101-7/bib5A4C6576s1
http://dx.doi.org/10.1007/s00224-014-9554-8

	Finite state incompressible inﬁnite sequences
	1 Introduction
	2 Notation
	3 Admissible transducers and their enumerations
	4 Complexity and randomness
	5 Finite state complexity
	6 Complexity of inﬁnite sequences
	7 Finite state complexity based on exotic enumerations
	8 Finite state incompressibility and normality
	9 How large is the set of incompressible sequences?
	10 Conclusion and open questions
	Acknowledgments
	References

