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a b s t r a c t

In this paper we develop a version of Algorithmic Information Theory (AIT) based on
finite transducers instead of Turing machines; the complexity induced is called finite-state
complexity. In spite of the fact that the Universality Theorem (true for Turing machines) is
false for finite transducers, the Invariance Theorem holds true for finite-state complexity.
We construct a class of finite-state complexities based on various enumerations of the set of
finite transducers. In contrast with descriptional complexities (plain, prefix-free) from AIT,
finite-state complexity is computable and there is no a priori upper bound for the number
of states used forminimal descriptions of arbitrary strings. Upper and lower bounds for the
finite-state complexity of arbitrary strings, and for strings of particular types, are given and
incompressible strings are studied.

© 2011 Elsevier B.V. All rights reserved.

Algorithmic Information Theory [9,7] uses various measures of descriptional complexity to define and study various
classes of ‘‘algorithmically random’’ finite strings or infinite sequences. This theory, based on the existence of a universal
Turing machine (of various types), is very elegant and has produced many important results, as one can see from the latest
monographs on the subject [17,14].

The incomputability of all descriptional complexities was an obstacle towards more ‘‘down-to-earth’’ applications of AIT
(e.g. for practical compression). One possibility to avoid incomputability is to restrict the resources available to the universal
Turing machine and the result is resource-bounded descriptional complexity [6]. Various models which have been studied
in this area did not produce significant understanding of deterministic randomness (i.e. chaoticity and software-generated
randomness).

Another approach is to restrict the computational power of the machines used. For example, the size of the smallest
context-free grammar, or straight-line program, generating the singleton language {x} is a measure of the descriptional
complexity of x. This model, investigated since the ’70s, has recently received much attention [10,16,15,18] (also because of
connections with Lempel-Ziv encodings [15,18]). Further restricting the computational power, from context-free grammars
to finite automata (DFA), one obtains automatic complexity [22]. A similar descriptional complexity measure for languages
was considered in [21].

The first connections between finite-state machine computations and randomness have been obtained for infinite
sequences. In [1] it was proved that every subsequence selected from a (Borel) normal sequence by a regular language is also
normal. Characterisations of normal infinite sequences have been obtained in terms of finite-state gamblers, information
lossless finite-state compressors and finite-state dimension: (a) a sequence is normal if and only if there is no finite-state
gambler that succeeds on it [19,5], and (b) a sequence is normal if and only if it is incompressible by any information lossless
finite-state compressor [24].
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Computations with finite transducers are used in [13] for the definition of finite-state dimension of infinite sequences.
The NFA-complexity of a string [10] can be defined in terms of finite transducers that are called in [10] ‘‘NFAs with advice’’;
the main problem with this approach is that NFAs used for compression can always be assumed to have only one state.

In this paper we define the finite-state complexity of a finite string x in terms of an enumeration of finite transducers and
the input strings used by transducers which output x.

The main obstacle in developing a version of AIT based on finite transducers is the non-existence of a universal finite
transducer (Theorem 3.1). To overcome this negative result we show that the set of finite transducers can be enumerated by
a computable (even a regular) set (Theorems 2.1 and 2.2), and, based on this, we prove the Invariance Theorem (Theorem3.2)
for finite-state complexity. The finite-state complexity is computable and examples of finite-state complexities of some
strings are presented.

Our notation is standard [4,7]. If X is a finite set then X∗ is the set of all strings (words) over X with ε denoting the empty
string. The length of x ∈ X∗ is denoted by |x|.

1. Finite transducers

A generalised finite transducer [4] is a tuple T = (X, Y ,Q , q0,QF , E), where X is the input alphabet, Y the output
alphabet, Q is the finite set of states, q0 ∈ Q is the start state, QF ⊆ Q is the set of accepting states and E ⊆ Q ×X∗

×Y ∗
×Q

is the finite set of transitions. If e = (q1, u, v, q2) ∈ E, q1, q2 ∈ Q , u ∈ X∗, v ∈ Y ∗ is a transition from q1 to q2, we say that
the input (respectively, output) label of e is u (respectively, v). Also, when the states are understood from the context we
say that the transition e is labeled by u/v. Here we consider transducers where both the input and output alphabet is always
binary, that is, X = Y = {0, 1}.

A generalised transducer T is said to be a (deterministic sequential) transducer [4] if it has no transitions with input label
ε and for any q ∈ Q and i ∈ {0, 1} there exists a unique q′

∈ Q and v ∈ {0, 1}∗ such that (q, i, v, q′) is a transition of T . The
set of transitions of a deterministic sequential transducer is fully represented by a function

∆ : Q × {0, 1} → Q × {0, 1}∗. (1)

For a transducer all states are considered to be final. Hence a transducer can be given by a triple (Q , q0, ∆) where ∆ is as
in (1).

Let π1 (respectively, π2) denote the projection from Q × {0, 1}∗ to Q (respectively, to {0, 1}∗). In details, the function
T : {0, 1}∗ → {0, 1}∗ computed by the transducer (Q , q0, ∆) is defined by T (ε) = ε, T (xa) = T (x) · µ(δ̂(q0, x), a), where
δ(q, a) = π1(∆(q, a)), µ(q, a) = π2(∆(q, a)), q ∈ Q , x ∈ {0, 1}∗, a ∈ {0, 1}. Here the extension of δ, δ̂ : Q × {0, 1}∗ → Q
is defined by setting δ̂(q, ε) = q, δ̂(q, xa) = δ(δ̂(q, x), a), q ∈ Q , x ∈ {0, 1}∗.

Sometimes we use · to denote the concatenation of strings; that is the concatenation of strings x and y can be denoted
either as xy or x · y.

2. Regular enumerations of transducers

Weuse binary strings to encode transducers and prove that the set of all legal encodings of transducers is a computable, in
some cases even regular, language.We encode a transducer by listing for each state q and input symbol a ∈ {0, 1} the output
and target state corresponding to the pair (q, a), that is, ∆(q, a). Thus, the encoding of a transducer is a list of (encodings of)
states and output strings.

By bin(i) we denote the binary representation of i ≥ 1. Note that for all i ≥ 1, bin(i) always begins with 1; bin(1) =

1, bin(2) = 10, bin(3) = 11, . . .; by string(i) we denote the binary string obtained by removing the leading 1 from bin(i),
i.e. bin(i) = 1 · string(i). If Log(i) = ⌊log2(i)⌋, then |string(i)| = Log(i), i ≥ 1.

For v = v1 · · · vm, vi ∈ {0, 1}, i = 1, . . . ,m, we use the following functions producing self-delimiting versions of their
inputs (see [7]): vĎ = v10v20 · · · vm−10vm1 and v�

= (1v)Ď, where is the negation morphism given by 0 = 1, 1 = 0. It is
seen that |vĎ| = 2|v|, and |v�

| = 2|v| + 2.
In Table 1 we present the encodings of the first binary strings.
Consider a transducer T with the set of states Q = {1, . . . , n}. The transition function ∆ of T (as in (1)) is encoded by a

binary string

σ = bin(i1)Ě · string(i′1)
�
· bin(i2)Ě · string(i′2)

�
· · · bin(i2n)Ě · string(i′2n)

�, (2)

where ∆(j, k) = (i2j−1+k mod n, string(i′2j−1+k)), it , i
′
t ≥ 1, t = 1, . . . , 2n, j = 1, . . . , n, k ∈ {0, 1}. We denote by mmod n

the smallest positive integer congruent with m modulo n.1 In (2), bin(it)Ě = ε if the corresponding transition of ∆ is a
self-loop, i.e. π1(∆(j, k)) = j; otherwise, bin(it)Ě = bin(it)Ď.

The transducer T encodedbyσ is called T S0
σ , where S0 is the set of all strings (2)where 1 ≤ bin(ij) ≤ n for all j = 1, . . . , 2n.

1 In (2) we use it instead of it mod n in order to guarantee that the set of legal encodings of all transducers is regular, cf. Theorem 2.1.
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Table 1
S0 encoding.

n bin(n) bin(n)Ď string(n) string(n)� |bin(n)Ď| = |string(n)�|

1 1 11 ε 00 2
2 10 1001 0 0110 4
3 11 1011 1 0100 4
4 100 100001 00 011110 6
5 101 100011 01 011100 6
6 110 101001 10 010110 6
7 111 101011 11 010100 6
8 1000 10000001 000 01111110 8

Theorem 2.1. The set of all transducers can be enumerated by a regular language. More precisely, we can construct a regular
set S0 such that: (a) for every σ ∈ S0, T

S0
σ is a transducer, (b) for every transducer T one can compute a code σ ∈ S0 such that

T = T S0
σ .

Proof. We consider the languages X = {bin(n)Ď : n ≥ 1} = {11, 1001, 1011, . . .}, Y = {string(n)� : n ≥ 1} = {00, 0110,
0100, . . .} and we define the language

S0 = (((X ∪ {ε})Y )2)∗. (3)

The languages X and Y are regular, hence S0 is regular by (3).
The claim (a) follows from (2). For (b) we note that in view of the construction it is clear that every string σ ∈ S0 has a

unique factorisation of the form σ = x1 · y1 · · · x2n · y2n, for appropriate strings x1, . . . , x2n ∈ X ∪ {ε} and y1, . . . , y2n ∈ Y .
So, from σ we uniquely get the length n and the codes xs · ys, for s = 1, 2, . . . , 2n. Every xs can be uniquely written in the
form xs = bin(ts)Ď and every ys can be uniquely written in the form ys = string(rs)�.

Nextwe compute the unique transition encoded by xs ·ys = bin(ts)Ď ·string(rs)� according to (2). First assume that xs ≠ ε.
There are twopossibilities depending on sbeing oddor even. If s = 2i+1, for 0 ≤ i ≤ n, then∆(s, 0) = (ts mod n, string(rs));
if s = 2i, for 1 ≤ i ≤ n, then ∆(s, 1) = (ts mod n, string(rs)). The decoding process is unique and shows that the transducer
obtained from σ is T S0

σ = T . Secondly, if xs = ε, then ∆(s, 0) = (s, string(rs)) for an odd s, and ∆(s, 1) = (s, string(rs)) for
an even s. �

Given a string σ ∈ S0, an explicit encoding of the transition function of T S0
σ can be computed in quadratic time.

Example 2.1. Some simple examples are listed in Table 2. The first example is the smallest transducer; the last example is
the identity transducer.

The encoding used in Theorem 2.1 is regular but not too compact as the pair (i, string(j)) is coded by bin(i)Ď · string(j)�,
a string of length 2(Log(i) + Log(j)) + 4.

By using the encoding

xğ = 0|string(|x|+1)|
· 1 · string(|x| + 1) · x (4)

we obtain a more compact one. Indeed, instead of Table 1 use the encoding in Table 3, where

stringğ(n) = 0|string(|string(n)|+1)|
· 1 · string(|string(n)| + 1) · string(n),

bin#(n) = 1|string(|string(n)|+1)|
· 0 · string(|string(n)| + 1) · string(n),

and the pair (i, string(j)) is coded by bin#(i+ 1) · stringğ(j+ 1), a string of length 2 · Log(Log(i+ 1) + 1) + Log(i+ 1) + 2 ·

Log(Log(j + 1) + 1) +Log(j + 1) + 2 < 2(Log(i) + Log(j)) + 4 almost everywhere.
By iterating the formula (4) we can indefinitely improve almost everywhere the encoding of the pairs (i, string(j))

obtaining more and more efficient variants of Theorem 2.1.

Theorem 2.2. We can construct a sequence of computable sets (Sn)n≥1 such that: (a) for every σ ∈ Sn, T Sn
σ is a transducer, (b)

for every transducer T one can compute a code σ ∈ Sn such that T = T Sn
σ , (c) the difference in length between the encodings of

the pair (i, string(j)) according to Sn and Sn+1 tends to ∞ with n.

3. Finite-state complexity

Transducers are used to ‘‘define’’ or ‘‘represent’’ strings in the following way. First we fix a computable set S as in
Theorem 2.1 or Theorem 2.2. Then, we say that a pair (T S

σ , p), σ ∈ S, p ∈ {0, 1}∗, defines the string x provided T S
σ (p) = x;

the pair (T S
σ , p) is called a description of x. We define the size of the description (T S

σ , p) of x by

||(T S
σ , p)|| = |σ | + |p|.
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Table 2
Transducers S0 encodings.

Transducer Code Code length

∆(1, 0) = ∆(1, 1) = (1, ε) σ = 0000 4
∆(1, 0) = (1, ε), ∆(1, 1) = (1, 0) σ = 000110 6
∆(1, 0) = (1, 0), ∆(1, 1) = (1, ε) σ = 011000 6
∆(1, 0) = ∆(1, 1) = (1, 0) σ = 01100110 8
∆(1, 0) = ∆(1, 1) = (1, 1) σ = 01000100 8
∆(1, 0) = (1, 0), ∆(1, 1) = (1, 1) σ = 01100100 8

Table 3
S1 encoding

n bin(n) bin#(n) string(n) stringğ(n) length

1 1 0 ε 001εε = 1 1

2 10 1010 0 0100 4
3 11 1011 1 0101 4
4 100 10000 00 01100 5
5 101 10001 01 01101 5
6 110 10010 10 01110 5
7 111 10011 11 01111 5
8 1000 11011000 000 00100000 8

Based on the above, we define the finite-state complexity (with respect to the enumeration S) of a string x ∈ {0, 1}∗ by the
formula:

CS(x) = inf
σ∈S, p∈{0,1}∗


| σ | + | p | : T S

σ (p) = x

.

Comment 3.1. In the encoding S0 a string v occurring as the output of a transition in T S0 ‘contributes’ roughly 2 · |v| to the
size of an encoding ||(T S0 , p)||. With the encoding S1 the contribution is |v| + Log(Log(|v|) + 2.

Comment 3.2. In analogy with AIT one could define the conditional finite-state complexity of a string x relative to a string
p as the smallest encoding length of a transducer that on input p outputs x. We leave the study of conditional finite-state
complexity to a future paper.

How ‘‘objective’’ is the above definition? First, finite-state complexity depends on the enumeration S; if S and S ′ are
encodings then CS′ = f (CS ), for some computable function f .

Secondly, finite-state complexity is defined as an analogue of the complexity used in AIT, whose objectivity is given
by the Invariance Theorem, which in turn relies essentially on the Universality Theorem [7]. Using the existence of a
universal (prefix-free) Turingmachine one can obtain a complexitywhich is optimal up to an additive constant (the constant
‘‘encapsulates’’ the size of this universal machine). For this reason the complexity does not need to explicitly include the size
of the universal machine. In sharp contrast, the finite-state complexity has to count the size of the transducer as part of the
encoding length,2 but can be more lax in working with the pair (σ , p). The reason for this is that there is no ‘‘universal’’
transducer; still, the Invariance Theorem holds true.

Thirdly, our proposal does not define just one finite-state complexity, but a class of ‘‘finite-state complexities’’ (depending
on the underlying enumeration of transducers). At this stage we do not have a reasonable ‘‘invariance’’ result relating every
pair of complexities in this class. In the theory of left-computable ε–randomness [8], the difference between two prefix
complexities induced by different ε–universal prefix-free Turing machines can be arbitrarily large. In the same way here
it is possible to construct two enumerations S ′, S ′′ satisfying Theorem 2.2 such that the difference between CS′ and CS′′ is
arbitrarily large.

Below we establish in a slightly more general way that no finite generalised transducer can simulate a transducer on
a given input—not an unexpected result. For this we note the following two lemmas, and also that the pair (σ , w) can be
uniquely encoded into the string σ Ďw.

Lemma 3.1 ([4], Corollary 6.2). Any rational relation can be realised by a transducer where the transitions are a subset of
Q × (X ∪ {ε}) × (Y ∪ {ε}) × Q .

Lemma 3.2. For any functional generalised transducer T there exists a constant MT such that every prefix of an accepting
computation of T that consumes input x ∈ {0, 1}+ produces an output of length at most MT · |x|.

2 One can use this approach also in AIT [20].



5672 C.S. Calude et al. / Theoretical Computer Science 412 (2011) 5668–5677

Proof. The statement follows from the observation that no functional generalised transducer can have a cycle where all
transitions have input label ε. �

Theorem 3.1. Let S be an enumeration satisfying Theorem 2.1.3 There is no functional generalised transducer U such that for all
σ ∈ S and w ∈ {0, 1}∗, U(σ Ďw) = T S

σ (w).

Proof. For the sake of contradiction assume that U exists and without loss of generality we assume that the transitions of
U are in the normal form of Lemma 3.1. LetMU be the corresponding constant given by Lemma 3.2.

Let σi ∈ S, i ≥ 1, be the encoding of the single-state transducer where the two self-loops are labeled by 0/0i and 1/ε, i.e.
∆(1, 0) = (1, 0i), ∆(1, 1) = (1, ε).

Define the function g : N → N by setting

g(i) = |σ
Ď
i | · MU + 1, i ≥ 1.

Let Di be an accepting computation of U that corresponds to the input σ i
Ď
· 0g(i), i ≥ 1. Let qi be the state of U that occurs

in the computation Di immediately after consuming the prefix σ i
Ď of the input. Since U is in the normal form of Lemma 3.1,

qi is defined.
Choose j < k such that qj = qk. We consider the computation D of U on input σ

Ď
j · 0g(k) that reads the prefix σ

Ď
j as Dj and

the suffix 0g(k) as Dk. Since qj = qk this is a valid computation of U ending in an accepting state.
On prefix σ

Ď
k the computation Dk produces an output of length at most MU · |σ

Ď
k | and, hence, on the suffix 0g(k) the

computation Dk (and D) outputs 0z where

z ≥ k · g(k) − |σ
Ď
k | · MU(k − 1) · g(k).

The last inequality follows from the definition of the function g . Hence the output produced by the computation D is longer
than j · g(k) = |T S

σj
(0g(k))| and U does not simulate T S

σj
correctly. �

Conjecture 3.1. No two-way finite transducer can simulate an arbitrary transducer T S
σ when it receives σ as part of the input

(in the sense of Theorem 3.1).

For the rest of this section we fix an enumeration S satisfying Theorem 2.2.

Proposition 3.1. For every string x, y ∈ {0, 1}∗ there exist infinitely many transducers T S
σ such that T S

σ (x) = y.

In spite of the negative result stated in Theorem 3.1 the Invariance Theorem from AIT is true for C . To this aim we define
the complexity associated with a transducer T S

σ by

CT Sσ
(x) = inf

p∈{0,1}∗


| p | : T S

σ (p) = x

.

Theorem 3.2 (Invariance). For every σ0 ∈ S we have CS(x) ≤ CT Sσ0
(x) + |σ0|, for all x ∈ {0, 1}∗.

Proof. Using the definitions of CS and CT Sσ0
we have:

CS(x) = inf
σ∈S, p∈{0,1}∗


‖(T S

σ , p)‖ : T S
σ (p) = x


= inf

σ∈S, p∈{0,1}∗


|σ |+|p|: T S

σ (p) = x


≤ |σ0|+ inf
p∈{0,1}∗


|p| : T S

σ0
(p) = x


= CT Sσ0

(x) + |σ0|. �

Corollary 3.1. If T S
σ0

(x) = x, then CS(x) ≤ |x| + |σ0|, for all x ∈ {0, 1}∗. In particular, using Example 2.1 (last transducer) we
deduce that CS0(x) ≤ |x| + 8, for all x ∈ {0, 1}∗.

Comment 3.3. In view of Corollary 3.1 in the definitions of finite-state complexity we can replace inf by min.

Corollary 3.2. The complexity CS is computable.

In Tables 4 and 5 we present a few initial values of CS0 and CS1 , respectively. ‘‘Complementary’’ strings are omitted. A plot
containing the values of CS0 and CS1 appears in Fig. 1.

Conjecture 3.2. The computational complexity of testing whether the finite-state complexity of a string x is less or equal to n is
in NP; it is open whether this decision problem is NP-hard. (See also [3,15].)

3 We use a regular enumeration to avoid that the non-existence of a universal transducer is simply caused by the fact that a finite transducer cannot
recognise legal encodings of transducers.
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Fig. 1. Plot of comparative data in Tables 4 and 5

Table 4
Finite-state complexity (w.r.t. S0) of all strings in lexicographic order from ε to
01111.

x CS0 (x) (σ , p) x CS0 (x) (σ , p)

ε 4 (0000, ε) 00000 11 (000110, 11111)
0 7 (000110, 1) 00001 13 (01000110, 11110)
00 8 (000110, 11) 00010 13 (01000110, 11101)
01 9 (00011100, 1) 00011 13 (01000110, 11100)
000 9 (000110, 111) 00100 13 (01000110, 11011)
001 11 (01000110, 110) 00101 13 (01000110, 11010)
010 11 (01000110, 101) 00110 13 (01000110, 11001)
011 11 (01000110, 100) 00111 13 (01000110, 11000)
0000 10 (000110, 1111) 01000 13 (01000110, 10111)
0001 12 (01000110, 1110) 01001 13 (01000110, 10110)
0010 12 (01000110, 1101) 01010 13 (01000110, 10101)
0011 12 (01000110, 1100) 01011 13 (01000110, 10100)
0100 12 (01000110, 1011) 01100 13 (01000110, 10011)
0101 10 (00011100, 11) 01101 13 (01000110, 10010)
0110 12 (01000110, 1001) 01110 13 (01000110, 10001)
0111 12 (01000110, 1000) 01111 13 (01000110, 10000)

4. Quantitative estimates

Here we establish basic upper and lower bounds for the finite-state complexity of arbitrary strings, as well as for strings
of particular types. For the rest of this section we use the enumeration S0 and we write Tσ and C instead of T S0

σ and CS0 .

Theorem 4.1. For n ≥ 1 we have: C(0n) ∈ Θ(
√
n).

Proof. It is sufficient to establish that

2 · ⌊
√
n⌋ ≤ C(0n) ≤ 4 · ⌊

√
n⌋ + α, (5)

where α is a constant.
For the upper bound we note that 0n can be represented by a pair (T , p) where T is a single state transducer having two

self-loops labeled, respectively, 0/0⌊
√
n⌋ and 1/0, and p can be chosen as a string 0⌊

√
n⌋+y1z , where 0 ≤ y ≤ 1, 0 ≤ z ≤ ⌊

√
n⌋.

By our encoding conventions the size of (T , p) is at most 4 · ⌊
√
n⌋ + α where α is a small constant.

To establish the lower bound, consider an arbitrary pair (T ′, p′) representing 0n. If v is the longest output of any transition
of T ′, then |v|·|p′

| ≥ n. On the other hand, according to our encoding conventions ||(T ′, p′)|| ≥ 2·|v|+|p′
|. These inequalities

imply ||(T ′, p′)|| ≥ 2 · ⌊
√
n⌋. �

Using a more detailed analysis, the upper and lower bounds of (5) could be moved closer to each other. Because the
precise multiplicative constants depend on the particular enumeration S0, it may not be very important to try to improve
the values of the multiplicative constants.
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Table 5
Finite-state complexity (w.r.t. S1) of all strings in
lexicographic order from ε to 01111.

x CS1 (x) (σ , p)

ε 16 (1010010010100100, ε)
0 17 (1010010010100101, 1)
00 18 (1010010010100101, 11)
01 18 (10100100101001110, 1)
000 19 (1010010010100101, 111)
001 19 (10100101101001110, 01)
010 19 (10100101101001110, 10)
011 20 (10100101101001100, 011)
0000 19 (10100100101001101, 11)
0001 20 (10100101101001110, 001)
0010 20 (10100101101001110, 010)
0011 21 (10100101101001100, 0011)
0100 20 (10100101101001110, 100)
0101 19 (10100100101001110, 11)
0110 20 (101001110101001111, 01)
0111 21 (10100101101001100, 0111)
00000 20 (10100101101001101, 011)
00001 21 (10100101101001110, 0001)
00010 21 (10100101101001110, 0010)
00011 22 (10100101101001100, 00011)
00100 21 (10100101101001110, 0100)
00101 20 (10100101101001110, 011)
00110 22 (10100101101001100, 00110)
00111 22 (10100101101001100, 00111)
01000 21 (10100101101001110, 1000)
01001 20 (10100101101001110, 101)
01010 20 (10100101101001110, 110)
01011 21 (101001100101001110, 110)
01100 22 (10100101101001100, 01100)
01101 21 (101001100101001110, 101)
01110 22 (10100101101001100, 01110)
01111 22 (10100101101001100, 01111)

The argument used to establish the lower bound in (5) gives directly the following:

Corollary 4.1. For any x ∈ {0, 1}∗, C(x) ≥ 2 · ⌊
√

|x|⌋.

Recall that H denotes the prefix-complexity in AIT [7]. The bounds (5) imply that the inequality H(xx) ≤ H(x) + O(1)
from AIT does not hold for finite-state complexity:

Corollary 4.2. There is no constant α such that for all strings x ∈ {0, 1}∗, C(xx) ≤ C(x) + α.

The mapping 0n
→ 02·n is computed by a transducer of small size. Hence we deduce:

Corollary 4.3. For a given transducer T there is no constant α such that for all strings x ∈ {0, 1}∗, C(T (x)) ≤ C(x) + α.

In Corollary 4.3 we require only that α is independent of x, that is, the value α could depend on the transducer T . As in
Theorem 4.1 we get estimations for the finite-state complexity of powers of a string.

Proposition 4.1. For u ∈ {0, 1}∗ and n ≫ |u|,

C(un) ≤ 2 · (⌊
√
n⌋ + 1) · |u| + 2⌊

√
n⌋ + α, (6)

where α is a constant independent of u and n.

Proof. Let T be the single state transducer with two self-loops labeled, respectively, by 0/u⌊
√
n⌋ and 1/u. The string un has

a description (T , 0⌊
√
n⌋+y1z), where 0 ≤ y ≤ 1, 0 ≤ z ≤ ⌊

√
n⌋. By our encoding conventions

||(T , 0⌊
√
n⌋1z)|| = 2 · (⌊

√
n⌋ + 1) · |u| + 4 + ⌊

√
n⌉ + y + z.

Note that, when encoding self-loops, the state name is not part of the encoding and a self-loop with output string w
contributes 2|w| + 2 to the length of the encoding. The claim follows from the upper bounds for y and z. �

The upper bound (6) is useful only when n is larger than |u|2 because using a single state transducer with self-loop 0/u
we get an upper bound C(un) ≤ 2 · |u| + n + α, with α constant.
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Fig. 2. Transducer T in the proof of Corollary 4.4.

Corollary 4.4. We have: C(0n1n) ∈ Θ(
√
n).

Proof. The lower bound follows from Corollary 4.1. The string 0n1n has description

(T , 0⌈
√
n⌉−1+y11z10z21⌈

√
n⌉−1+y2),

where 0 ≤ y1, y2 ≤ 1, 1 ≤ z1, z2 ≤ ⌈
√
n⌉ and T is the transducer given in Fig. 2.

Note that unlike the construction used in Theorem 4.1, the transducer in Fig. 2 begins by outputting strings 0⌈
√
n⌉−1

(instead of 0⌊
√
n⌋). This is done in order to guarantee that z1 can be chosen to be at least 1 also when n is a perfect square.

Thus, C(0n1n) ≤ 8 · ⌈
√
n⌉ + α, where α is a constant. �

Comment 4.1. FromCorollary 4.4we note that the finite-state complexity of 0n1n is within a constant factor of its automatic
complexity, as defined in [22]. This can be viewedmerely as a coincidence since the two descriptional complexity measures
are essentially different and have, in general, very different upper and lower bounds. For example, the automatic complexity
of 0n is constant (independent of n), while, in line with AIT, the finite-state complexity of 0n is not constant, as we shave
shown to be Θ(

√
n).

The following result gives an upper bound for finite-state complexity of the catenation of two strings.
Proposition 4.2. For any ω > 0 there exists d(ω) > 0 such that for all x, y ∈ {0, 1}∗,

C(xy) ≤ (1 + ω) · (4C(x) + C(y)) + d(ω).

Here the value d(ω) depends only on ω, i.e., it is independent of x and y.
Proof. Let (T , u) and (R, v) be minimal descriptions of x and y, respectively. Let u = u1 · · · um, ui ∈ {0, 1}, i = 1, . . . ,m and
recall that uĎ = u10u20 · · · um−10um1.

Denote the sets of states of T and R, respectively, as QT and QR, and let Q ′

T = {q′
| q ∈ QT }.

We construct a transducerW with set of states QT ∪ Q ′

T ∪ QR as follows.

(i) For each transition of T from state p to state q labeled by i/w (i ∈ {0, 1}, w ∈ {0, 1}∗), W has a transition from p to q′

labeled by i/w and a transition labeled 0/ε from q′ to q.
(ii) Each state q′

∈ Q ′

T has a transition labeled 1/ε to the starting state of R.
(iii) The transitions originating from states of QR are defined inW in the same way as in R.

Now |uĎ| = 2 · |u| and

W (uĎv) = T (u)R(v) = xy.

It remains to verify that the size of the encoding ofW is, roughly, at most four times the size of T plus the size of R.
First assume that

(*) the states ofW could have the same length encodings as the encodings used for states in T and R.

We note that the part ofW simulating the computation of T has simply doubled the number of states and for the new states
of Q ′

T the outgoing transitions have edge labels of minimal length (0/ε and 1/ε). An additional increase in the length of the
encoding occurs because each self-loop of T is replaced inW by two transitions that are not self-loops. It is easy to establish,
using induction on the number of states of T , that if all states of T are reachable from the start state and T has t non-self-loop
transitions, the number of self-loops in T is at most t + 2.

Thus, by the above observations with the assumption (*), C(xy) could be upper bounded by 4C(x) + C(y) + dwhere d is
a constant. Naturally, in reality the encodings of states of W need one or two additional bits added to the encodings of the
corresponding states in T and R. The proportional increase of the state encoding length caused by the two additional bits for
the states of QT ∪ Q ′

T , (respectively, states of QR) is upper bounded by 2 · (⌈log(|QT |)⌉)
−1 (respectively, 2 · (⌈log(|QR|)⌉)

−1).
Thus, the proportional increase of the encoding length becomes smaller than any positiveω whenmax{|QT |, |QR|} is greater
than a suitably chosen threshold M(ω). On the other hand, the encoding of W contains at most 2 · (2|QT | + |QR|) ≤

6·max{|QT |, |QR|}occurrences of substrings encoding the states. Thismeans that by choosing d(ω) = 12·M(ω) the statement
of the lemma holds also for small values of |QT | and |QR|. �
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The proof of Proposition 4.2 relies on an estimation that the part of the transducer W simulating the computation of R
has an encoding at most 4 times the size of the encoding of R. The additional increase is caused by the complication that
each self-loop is simulated by two non-self-loops and the encoding of transitions that are not self-loops needs to include
the state names. Using a more detailed analysis the constant 4 could likely be improved.

It is known that deterministic transducers are closed under composition [4], that is, for transducers Tδ and Tγ there exists
σ ∈ S such that Tσ (x) = Tδ(Tγ (x)), for all x ∈ {0, 1}∗. Using the construction from ([4] Proposition 2.5, page 101, (translated
into our notation)) we give an upper bound for |σ | as a function of |δ| and |γ |.

Let Tδ = (Q , q0, ∆) and Tγ = (P, p0, Γ ), where ∆ is a function Q × {0, 1} → Q × {0, 1}∗ and Γ is a function
P×{0, 1} → P×{0, 1}∗. The transition function∆ is extended in the naturalway as a function ∆̂ : Q×{0, 1}∗ → Q×{0, 1}∗.

The composition of Tγ and Tδ is computed by a transducer Tσ = (Q × P, (q0, p0), Ξ) where Ξ : Q × P × {0, 1} →

Q × P × {0, 1}∗ is defined by setting for q ∈ Q , p ∈ P , a ∈ {0, 1},

Ξ ((q, p) , a) =


π1


∆̂ (q, π2 (Γ (p, a)))


, π1 (Γ (p, a))


, π2


∆̂ (q, π2 (Γ (p, a)))


.

The number of states of Tσ is upper bounded by |δ| · |γ |.4 An individual output of Tσ consists of the output produced by
Tδ when it reads an output produced by one transition of Tγ (via the extended function ∆̂). Thus, the length of the output
produced by an individual transition of Tσ can be upper bounded by |δ| · |γ |. These observations imply that

|σ | = O(|δ|2 · |γ |
2).

The above estimate was obtained simply by combining the worst-case upper bound for the size of the encoding of the
states of Tσ and the worst-case length of individual outputs of the transducers Tδ and Tγ . The worst-case examples for these
two bounds are naturally very different, as the latter corresponds to a situation where the encoding of individual outputs
‘contributes’ a large part of the strings δ and γ . The overall upper bound could be somewhat improved using amore detailed
analysis.

Comment 4.2. Intuitively, the following property would probably seem natural or desirable. If u is a prefix of v, then
C(u) ≤ C(v) + α where α is a constant independent of u and v. However, the finite-state complexity of v does not, at
least not directly, give an upper bound for the finite-state complexity of prefixes of v because the minimal description of v
may involve a transducer where an individual transition t produces a very long output, and there seems no straightforward
way to replace a prefix of the last application of t without increasing the length of the encoding by a nonconstant amount.

Open problem 4.1. Obtain a reasonable upper bound for C(u) in terms of C(v) when u is a prefix of v.

5. Incompressibility and lower bounds

As in the case of incompressibility in AIT we define a string x to be finite-state i–compressible (i ≥ 1) if C(x) ≤ |x| − i. A
string x is finite-state i–incompressible if C(x) > |x| − i; if i = 1, then the string is called finite-state incompressible.

Lemma 5.1. There exist finite-state incompressible strings of any length.

Lemma 5.1 relies on a standard counting argument and does not give a construction of incompressible strings. By relying
on results on grammar-based compression we can get lower bounds for finite-state complexity of explicitly constructed
strings.

A grammar G, or straight-line program [12,16,18], used as an encoding of a string has a unique production for each
nonterminal and the grammar is acyclic. That is, there is an ordering of the nonterminals X1, . . . , Xm such that the
productions are of the formX1 → α1, . . . , Xm → αm, whereαi contains only nonterminals from {Xi+1, . . . , Xm} and terminal
symbols. The size of the grammar G, size(G), is defined to be

∑m
i=1 |αi|.

Grammar-based compression of a string xmay result in exponential savings compared to the length of x. Comparing this
to Corollary 4.1, we note that the size of the smallest grammar generating a given string may be exponentially smaller than
the finite-state complexity of the string. Conversely, any string x can be generated by a grammar with size O(C(x)).

Lemma 5.2. There exists a constant d ≥ 1 such that for any x ∈ {0, 1}∗, {x} is generated by a grammar Gx where size(Gx) ≤

d · C(x).

Proof. The construction outlined in [10] for simulating an ‘‘NFA with advice’’ by a grammar is similar. For the sake of
completeness we include here a construction.

Assume x is encoded as a transducer-string pair (Tσ , p), where p = p1 · · · pn, pi ∈ {0, 1}. The initial nonterminal of the
grammarGx has a productionwith right side (p1, si1)(p2, si2) · · · (pn, sin)where sij is the state of Tσ reached by the transducer
after consuming the input string p1 · · · pj−1, 1 ≤ j ≤ n. After this the rules for nonterminals (pi, s) simply simulate the output
produced by Tσ in state s on input pi.

4 Strictly speaking, this could be multiplied by (log log |δ|)·(log log |γ |)

log |δ|·log |γ |
to give a better estimate.



C.S. Calude et al. / Theoretical Computer Science 412 (2011) 5668–5677 5677

Let Q be the set of states of Tσ and, as usual, denote the set of transitions by ∆ : Q × {0, 1} → Q × {0, 1}∗. The size of
Gx, that is the sum of the lengths of right sides of the productions of Gx, is

size(Gx) = |p| +

−
q∈Q ,i∈{0,1}

|π2(∆(q, i))|. �

Note that size(Gx) is defined simply as the sum of lengths of productions of Gx while C(x) uses a binary encoding of a
transducer T . In cases where minimal representations use transducers with fixed length outputs for individual transitions
and large numbers of states, size(Gx) is less than a constant times C(x) · (log C(x))−1.

A binary de Bruijn word of order r ≥ 1 is a string w of length 2r
+ r − 1 over alphabet {0, 1} such that any binary string

of length r occurs as a substring of w (exactly once). It is well known that de Bruijn words of any order exist, and have an
explicit construction [11,23].

Theorem 5.1. There is a constant d such that for any r ≥ 1 there exist stringsw of length 2r
+ r −1with an explicit construction

such that C(w) ≥ d · |w| · (log(|w|))−1.

Proof. It is known that any grammar generating a de Bruijn string of order r has size Ω( 2r
r ) [2]. Grammars generating a

singleton language are called string chains in [2], see also [12]. The claim follows by Lemma 5.2. �

Conjecture 5.1. De Bruijn words are finite-state incompressible.

6. Conclusion

In this paper we have developed the first steps of a variant of AIT based on finite transducers. The finite-state complexity,
central to the new theory, is computable and satisfies a strong form of Invariance Theorem. In contrast with descriptional
complexities from AIT, there is no a priori upper bound for the number of states used for minimal descriptions of arbitrary
strings.

We have studied finite-state complexity from a theoretical point of view. In some sense the compression capabilities of
finite transducers areweak, as indicated by the fact that the complexity of unary strings of length n isΘ(

√
n). It remains to be

seenwhether this complexitymeasure could be useful in applications, as has been the case for grammar based compression.
Some open questions have been discussed throughout the paper. There are many possible continuations; for example, it

will be interesting to check whether finite-state random strings are Borel normal [7]. A natural extension of the work could
consider an analogous descriptional complexity measure based on two-way finite transducers and its relationship to the
current measure.
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