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The Deluge of Spurious Correlations in Big Data

Cristian S. Calude1 • Giuseppe Longo2,3
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Abstract Very large databases are a major opportunity for science and data analytics is a

remarkable new field of investigation in computer science. The effectiveness of these tools

is used to support a ‘‘philosophy’’ against the scientific method as developed throughout

history. According to this view, computer-discovered correlations should replace under-

standing and guide prediction and action. Consequently, there will be no need to give

scientific meaning to phenomena, by proposing, say, causal relations, since regularities in

very large databases are enough: ‘‘with enough data, the numbers speak for themselves’’.

The ‘‘end of science’’ is proclaimed. Using classical results from ergodic theory, Ramsey

theory and algorithmic information theory, we show that this ‘‘philosophy’’ is wrong. For

example, we prove that very large databases have to contain arbitrary correlations. These

correlations appear only due to the size, not the nature, of data. They can be found in

‘‘randomly’’ generated, large enough databases, which—as we will prove—implies that

most correlations are spurious. Too much information tends to behave like very little

information. The scientific method can be enriched by computer mining in immense

databases, but not replaced by it.
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...fatti non foste a viver come bruti, ma per seguir virtute e canoscenza. Dante Alighieri, Inferno, Canto

XXVI.

1 Data Deluge

Speaking at the Techonomy conference in Lake Tahoe, CA in August 2010, E. Schmidt,

then Google CEO, estimated that every two days humanity creates a quantity of data

equivalent to the entire amount produced from the dawn of time up to 2003 (Schmidt

2010).

According to Grossman (2015), every day humanity generates 500 million tweets, 70

million photos on Instagram, and 4 billion videos on Facebook.

Under the title ‘‘What is big data?’’ IBM researchers estimate in IBM (2011) that

Every day, we create 2.5 quintillion bytes of data—so much that 90% of the data in

the world today has been created in the last two years alone. This data comes from

everywhere: sensors used to gather climate information, posts to social media sites,

digital pictures and videos, purchase transaction records, and cell phone GPS signals

to name a few. This data is big data.

From scarcity and difficulty to find data (and information) we now have a deluge of

data.

2 Data Science is the End of Science

In June 2008, C. Anderson, former editor-in-chief of Wired Magazine, wrote a provocative

essay titled ‘‘The End of Theory: The Data Deluge Makes the Scientific Method Obsolete’’

in which he states that ‘‘with enough data, the numbers speak for themselves’’. ‘‘Corre-

lation supersedes causation, and science can advance even without coherent models,

unified theories’’, he continues. Anderson is not unique in stressing the role of petabytes,

stored in the cloud, in replacing the scientific method. Succinctly, George Box’s maxim

that all models are wrong, but some are useful is replaced by all models are wrong, and

increasingly you can succeed without them.1

The idea behind this new ‘‘philosophy’’ is that sufficiently powerful algorithms can now

explore huge databases and can find therein correlations and regularities. Independently of

any analysis of ‘‘meaning’’ or ‘‘content’’ of such correlations—which are notions very

difficult to define—rules for prediction and, possibly for action, are then provided by the

machine. The strength and generality of this method relies on the immense size of the

database: the larger the data, the more powerful and effective is the method grounded on

computationally-discovered correlations. Consequently, there is no need to theorise,

understand, criticise ... the sense of the discovered correlations: ‘‘No semantic or causal

analysis is required’’. According to Anderson, petabytes allow us to say: ‘‘Correlation is

1 Anderson attributed the last sentence to Google’s research director Peter Norvig (2008), who denied it:
‘‘That’s a silly statement, I didn’t say it, and I disagree with it.’’
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enough .... We can throw the numbers into the biggest computing clusters the world has

ever seen and let statistical algorithms find patterns where science cannot’’.

A moderate, yet criticised,2 position was taken by the NSF (2010):

Computational and Data-Enabled Science and Engineering (CDS&E) is a new

program. CDS & E is now clearly recognizable as a distinct intellectual and tech-

nological discipline lying at the intersection of applied mathematics, statistics,

computer science, core science and engineering disciplines ...We regard CDS&E as

explicitly recognizing the importance of data-enabled, data-intensive, and data

centric science. CDS&E broadly interpreted now affects virtually every area of

science and technology, revolutionizing the way science and engineering are done.

Theory and experimentation have for centuries been regarded as two fundamental

pillars of science. It is now widely recognized that computational and data-enabled

science forms a critical third pillar.

The big target of the ‘‘data-enabled, data-intensive, and data centric science’’ new

‘‘philosophy’’ is science itself. The scientific method is built around hypotheses derived

from observations and ‘‘insight’’. It actually started when humans looking at the stars and

the moon tried to understand the sky by myth and theory, an endeavour which gave us not

only knowledge, but also human sense to our biological life. Theories are then constructed

while new objects of knowledge, such as electromagnetic waves or quanta, are proposed

and studied. Experiments help to falsify hypotheses or their theoretical consequences and,

when this is possible, suggest mathematical models.

The position pioneered by Anderson and his followers explicitly announces the

‘‘End of Science’’. Why? Because, according to them, science founded on models is

relatively arbitrary and often wrong as it is based on adductive and deductive praxis, as

well as excessive critical thinking that leaves room even for aesthetic judgements (for

example, ‘‘appreciations of symmetries’’ in the broadest sense, from Euclid to H. Weyl

and R. Feynman, to modern biology, see Longo and Montévil 2014). The conclusion is

that

science as we know it will be replaced by robust correlations in immense databases.

3 The Power and Limits of Correlations

In general, ‘‘co-relation’’ denotes phenomena that relate covariantly, that is, they vary

while preserving proximity of values according to a pre-given measure. ‘‘Co-relation’’ is

essentially ‘‘co-incidence’’, that is, things that occur together.

For example, a correlation can be a relationship between two variables taking (numeric)

values. If one variable value increases, then the other one also increases (or decreases) ‘‘in

the same way’’. For example, ‘‘as the temperature goes up, ice cream sales also go up’’ or

‘‘as the temperature decreases, the speed at which molecules move decreases’’ or ‘‘as

attendance at school drops, so does achievement’’ or ‘‘as weather gets colder, air condi-

tioning costs decrease’’.

Correlations can be useful because of their potential predictive power: use or act on the

value of one variable to predict or modify the value of the other.

2 See more in Andrews (2012).
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From about the 10th century BC onwards, in the region from Korea and China to Mor-

occo, early astronomers detected various regularities, from which they were able to compute

future observations of astronomical bodies. The observations and computational methods

were gradually improved over the millennia, so that by about 1200 some astronomers could

make reliable predictions of solar eclipses (Montelle 2011). In the 10th century AC, Chinese

doctors remarked that mild smallpox infection could prevent more severe illnesses. They

were later able to confirm this correlation by successfully experimenting with smallpox

inoculation on large numbers of individuals (Needham 2008, pp. 114–174).

We must acknowledge the extraordinary insights of these very early observations of

non-obvious correlations and their practical relevance. More scientific knowledge has been

added to them: (a) Clairaut’s mathematical derivation of the orbit of Halley’s comet, and

its delays, on the grounds of Newton’s laws and equations, in the 18th century, (b) the

understanding of microbial infections and vaccines in the 19th century. These works could

frame the original correlations into relatively robust theories that gave them ‘‘scientific

meaning’’. This scientific method, which allows unification and generalisation, can also

detect correlations that may be considered spurious—like the relation between the orien-

tation of a comet’s tail and the Emperor’s chances of a military victory.

In a 1992 study at the University of Illinois (Correlation and prediction 1992) 56,000

students were asked about their drinking habits and grades. The results indicate a corre-

lation between these two variables: the more a student drinks, the more her/his GPA goes

down. Based on the established correlation one could predict that a student who drinks a

bottle of wine every day would be likely to flunk out of school.

Pitfalls of exaggerating the value of prediction based on correlated observables have

been discussed in the literature for many years. For example, the conclusion of Ferber’s

(1956) analysis is:

Clearly the coefficient of correlation is not a reliable measure for [the practical

problem of selecting functions (hypotheses) for predictive purposes], nor does there

appear to be at the present time any alternative single statistic adequate in this respect

relating to the period of observation. Unsettling as it may seem, there does not appear

to be any statistical substitute for a priori consideration of the adequacy of the basic

hypothesis underlying a particular function.

Even more importantly, it is well-known that correlation does not imply causation. In

the analysis of the Illinois survey referred above, one notes (Correlation and prediction

1992):

However, a correlation does not tell us about the underlying cause of a relationship.

We do not know from the Illinois data whether drinking was correlated with lower

grades because (1) alcohol makes people stupid, or (2) the students who tend to drink

tend to be poorer students to begin with, or (3) people who are hung-over from a

drinking binge tend to skip class, or (4) students in academic trouble drink in order to

drown their sorrows, or some other reason. There can be hundreds of possible

explanations for a correlation: the number is limited only by your imagination and

ingenuity in thinking up possible reasons for a relationship between two variables.

Then the purely syntactic/relational perspective, with no ‘‘understanding’’, is lucidly

spelled out in (Correlation and prediction 1992):

For purposes of making a prediction, the underlying reason for a correlation may not

matter. As long as the correlation is stable—lasting into the future—one can use it to
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make predictions. One does not need an accurate cause-effect explanation to make a

prediction. As long as a ‘‘pattern’’ (correlation) continues into the future, we can use

it to make a prediction, whether or not we understand it.

What a correlation does not tell you is why two things tend to go together. Maybe

alcohol consumption is not the root cause of bad grades, in the Illinois study. Perhaps

the students who drank never opened their books and never studied, and that is why

they got bad grades. We do not know. The study did not seek to explore underlying

causes of the correlation.

The following example quoted from O’Grady (2015) is worrying:3

A 2010 study Reinhart and Rogoff (2010) conducted by Harvard economists Carmen

Reinhart and Kenneth Rogoff reported a correlation between a country’s economic

growth and its debt-to-GDP ratio. In countries where public debt is over 90 percent

of GDP, economic growth is slower, they found. The study gathered a lot of

attention. Google Scholar listed 1218 citations at the time of writing, and the statistic

was used in US economic policy debates in 2011 and 2012 (Sessions 2011)4.

The study isn’t conclusive, though—in fact, it’s far from it. As noted by John Irons

and Josh Bivens of the Economic Policy Institute, it’s possible that the effect runs the

other way round, with slow growth leading to high debt. Even more worryingly, the

research didn’t hold up on replication (Thomas Herndon and Pollin 2014). But by the

time that became clear, the original study had already attracted widespread attention

and affected policy decisions.

As a last example in Fig. 1 we present a hilarious high correlation.

In spite of long-known facts pointing to the contrary, the core of the recent argumen-

tation is that because of the possibility of mining huge databases, correlation supersedes

causation. Shortcomings of this position have been discussed in the literature. For

example, Poppelaar’s blog from 5 April 2015 titled ‘‘Do numbers really speak for them-

selves with big data?’’ Poppelars (2015) concludes that

With data, enough computing power and statistical algorithms patterns will be found.

But are these patterns of any interest? Not many of them will be, as spurious patterns

vastly outnumber the meaningful ones.5 Anderson’s recipe for analysis lacks the

scientific rigour required to find meaningful insights that can change our decision

making for the better. Data will never speak for itself, we give numbers their

meaning, the Volume, Variety or Velocity of data cannot change that.

3 This example points to another important issue: no data collecting is strictly objective—see the analysis
in Grjebine (2015) of Reinhart and Rogoff’s bias in their collection of data in several countries for 218
years.
4 European policy makers largely referred to that paper till 2013. For example, O. Rehn, EU Commissioner
for Economic Affairs (2009–13) referred to the Reinhart-Rogoff correlation as a key guideline for his past
and present economic views (Smith (2013), address to ILO, April 9, 2013) and G. Osborne, British
Chancellor of the Exchequer (since 2010), claimed in April 2013: ‘‘As Rogoff and Reinhart demonstrate
convincingly, all financial crises ultimately have their origins in one thing [the public debt].’’ (Lyons 2013).
5 See also the huge collection of spurious correlations (Spurious 2015) and the book (Vigen 2015) based on
it, in which the old rule that ‘‘correlation does not equal causation’’ is illustrated through hilarious graphs.
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The nomothetic studies that seek relationships between demographic variables and

cultural traits by mining very large, cross-cultural datasets (Roberts and Winters 2013) is

another example among many discussed in the literature, see Floridi (2012), Frické (2015),

Kitchin (2014), Calude (2015).

Our analysis of the big data-driven ‘‘philosophy’’ will be presented in mathematical

terms. Specifically, we will use (a) ergodic theory to show that one cannot reliably predict

by ‘‘analogy’’ with the past, even in deterministic systems, chaotic or not, and (b) Ramsey

theory to prove that, given any arbitrary correlation on sets of data, there exists a large

enough number (size) such that any data set larger than that size realises that type of

correlation. Since this large-enough data set is arbitrary, it could have been obtained by a

random number generator (series of coin tosses or measurements of quantum fluctuations

of the vacuum),6 which, by design, excludes any underlying structure or rule (Calude 2002;

Calude and Longo 2015) that could justify action through possible future extensions. Note

that it is exactly the size of the data that allows our result: the more data, the more

arbitrary, meaningless and useless (for future action) correlations will be found in them.

Thus, paradoxically, the more information we have, the more difficult is to extract

meaning from it. Too much information tends to behave like very little information.

4 The Goal of the Paper

Our goal is not to criticise the fields of data science, data mining or data analytics per se.

As discussed in the previous section, the correlational method is a scientific praxis with

roots going far back in human history. It is also clear that learning how to analyse

extremely large data sets correctly and efficiently will play a critical role in the science of

the future, and even today. Rather, our aim is to document the danger of allowing the

search of correlations in big data to subsume and replace the scientific approach.

Our analysis will first use an argument from dynamical systems in Cecconi et al.

(2012), then employ results from Ramsey theory (Graham et al. 1990) and algorithmic

information theory (Calude 2002; Downey and Hirschfeldt 2010), theories7 which provide

Fig. 1 A correlation with r ¼ 0:952407 (Spurious correlations 2015)

6 This was informally observed also in Smith (2014, p. 20): ‘‘With fast computers and plentiful data, finding
statistical relevance is trivial. If you look hard enough, it can even be found in tables of random numbers’’.
7 They are branches of finite combinatorics and the theory of algorithms, respectively.
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the foundations of the behaviour—power and limits—of the algorithms, in particular of

those dealing with large sets of numbers.

5 Ergodic Theory

One of the main ideas supporting data analytics is that a series of correlations will continue

or iterate similarly along the chosen parameter (recurrence). If, for example, time is the

main parameter (as in Fig. 1), then the correlation will extend into the future by iterating a

similar ‘‘distance’’, typically, between the chosen observables. The recurrence of corre-

lation is a rather natural phenomenon which applies to many familiar events, like diurnal

and seasonal cycles and their observables consequences. This idea and the belief in

determinism—from the same antecedents follow the same consequents—more or less

implicitly justify the prediction methods based on the recurrence of regularities.

The debate on recurring (time) series has a long history, going back to the end of

the 19th century studies in the geometry of dynamical systems (Poincaré) and statis-

tical physics (Boltzmann). Poincaré proved the unpredictability of deterministic non-

linear systems: physical dynamics (orbits) where minor fluctuations (i.e. below mea-

surement) could yield measurable but unpredictable evolutions (the origin of chaos

theory, see Devaney 2003; Calude and Longo 2015). Moreover, he also proved the

fundamental ‘‘recurrence theorem’’ in ergodic theory.8 This theorem roughly states that

in any deterministic system, including chaotic systems, the future, soon or late, will be

analogous to the past (will somehow iterate). More precisely, for every subset A of

non-null measure and for every probability-preserving transformation (dynamics) T,

almost every point of A will return again to A, after a sufficiently long but finite

number of iterations of T—called Poincaré recurrence time. Probabilities are special

types of measures, so we can formally state the result using the framework of prob-

ability theory:

Poincaré Recurrence Theorem Let T : X ! X be a measure-preserving transfor-

mation of the probability space ðX;B; lÞ and let A be a set in B with measure

lðAÞ[ 0.9 Then with l-probability equal to one, the orbit fTnðxÞg1n¼0 of an element

x 2 A returns to A infinitely often.

This is a ‘‘stability’’ or predictability result, as it guaranties that almost any orbit will

eventually iterate in a similar way (and this for ever, again and again). In other words,

every orbit will come close to a previous value, with probability one (almost certainty),

even in the presence of chaos. This mathematical result seems to confirm the data science

approach: if the system is believed to be deterministic, one can avoid the mathematical

analysis and just ‘‘follow the (implicit) rule or regularity’’: by recurrence, it will dictate the

future. As a consequence, in large databases, whose data come from an underlying (though

unknown) deterministic dynamics, one expects that a regularity will show up again and

again, hence allowing prediction and action.

A more subtle detail comes from the following classical result proved in Kac (1947):

8 A branch of mathematics which studies dynamical systems with an invariant measure and related
problems.
9 The measure of A, lðAÞ, is the probability of A.
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Kac’s Lemma The average recurrence time to a subset A in Poincaré recurrence

theorem is the inverse of the probability of A.

This means that the ‘‘smaller’’ A is, the lower are its probabilities to be hit by the orbit or

the longer it takes to get back to it.

Consider now a ‘‘relational orbit’’ in a database, that is, a series of values v1; v2; . . .; vp
relating p observables. The analyst does not know or does not want to know the possible

law that determines the underlying dynamics, yet she cannot exclude the possibility that

there is a law (to be given, for example, as a system of equations or an evolution function).

In this case, the probabilities to find again values close to the vi’s in a small set A

containing vi’s are very small and, thus, the recurrence time is very long.10 Moreover,

recent developments of Kac’s lemma in Cecconi et al. (2012) show that in any deter-

ministic system as above, these probabilities decrease exponentially also with the size

(dimension) of the phase space (observables and parameters) and the recurrence time

increases exponentially with that size. Similarly, if the (underlying) equations or evolution

function are non-linear, in particular chaotic and presenting attractors, then the probability

referred above decreases exponentially also with the dimension of the attractors (Cecconi

et al. 2012).11 Actually, the paper (Cecconi et al. 2012) proves that the dimension of the

phase space is at least as important as chaos for the unpredictability of deterministic

dynamics and concludes:

When the number of effective degrees of freedom underlying a dynamical process is

even moderately large, predictions based solely on observational data soon become

problematic, as in the case of weather forecasting.12

In real life problems, both dimensions—of the phase space and attractors—are large.

Thus it is very unlikely or it takes a long recurrence time for an orbit (thus a regularity, a

pattern) to iterate again. Furthermore, in databases one may decide to correlate only a few

observables (for example, n ¼ 2 in Fig. 1), yet one cannot exclude that these observables

depend on many more parameters—indeed this happens in cases where (causal) depen-

dence is far from unique.

In conclusion, there is no way to reliably predict and act by ‘‘analogy’’ with the past, not

even in deterministic systems, chaotic or not, specifically if they model real life phe-

nomena. The data miner may believe that if a regularity shows up, it could have some

‘‘effective’’ role in prediction and action, in particular if the database is ‘‘big’’ as to reach

the above recurrence limits.13 No, this is of no use, as we will show in the following

sections: big databases have regularities, but they are mostly ‘‘spurious’’, a notion that we

will define using algorithmic randomness. Mathematically, we will show that spurious

correlations largely prevail, that is, their measure tends to one with the size of the database.

The proof of this result uses a different approach which does not need the hypothesis of

determinism and is complementary to the one adopted in this section.

10 Ehrenfest’s example (Walkden 2010) is a simple illustration. Let an urn U1 contain 100 numbered balls
and U2 be an empty urn. Each second, one ball is moved from one urn to the other, according to the
measurement of events that produce numbers from 1 to 100. By Kac’s lemma, the expected return time to

(almost) all balls in U1 is of (nearly) 2100 s, which is about 3� 1012 times the age of the Universe.
Boltzmann already had an intuition of this phenomenon, in the study of the recurrence time in ergodic
dynamics, of gas particles for example, see Cecconi et al. (2012).
11 The dimension of an attractor is the number of effective degrees of freedom.
12 Our footnote: see Lynch (2008), Chibbaro et al. (2014).
13 For example, with one dimension far exceeding the age of the Universe in seconds, yotta of yottabytes.
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6 Ramsey Theory

This theory, named after the British mathematician and philosopher Frank P. Ramsey,

studies the conditions under which order must appear. Typical problems in Ramsey theory

are (see more in Graham and Spencer 1990; Graham et al. 1990):

Are there binary (finite) strings with no patterns/correlations?

How many elements of some structure must there be to guarantee that a given

regularity holds?

Ramsey theory answers the first question in the negative by providing a precise answer

to the second. Significantly, Graham and Spencer subtitled their Scientific American pre-

sentation of Ramsey theory (Graham and Spencer 1990) with the following sentence:

Complete disorder is an impossibility. Every large set of numbers, points or objects

necessarily contains a highly regular pattern.

Our analysis will use two Ramsey-type results. In both cases correlations—let us call

them Ramsey-type of correlations—appear only because of the size of the data.

Let s1. . .sn be a binary string. A monochromatic arithmetic progression of length k is a

substring sisiþtsiþ2t. . .siþðk�1Þt, for 1� i and iþ ðk � 1Þt� n with all characters equal for

some t[ 0. The string 01100110 contains no arithmetic progression of length 3 because

the positions 1, 4, 5, 8 (for 0) and 2, 3, 6, 7 (for 1) do not contain an arithmetic progression

of length 3. However, both strings 011001100, and 011001101 do: 1, 5, 9 for 0 and 3, 6, 9

for 1 and this change was obtained by adding just one bit. In fact, all 512 binary strings of

length 9 have a monochromatic arithmetic progression of length 3.

The theorem below states that all sufficiently long strings of digits/colours, taken from a

finite set, have ‘‘long enough’’ arithmetic progressions of the same digit, i.e. a sequence of equi-

distributed positions of the same digit/colour (monochromatic) of a pre-given length (Graham

et al. 1990). The importance of the theorem lies in the fact that all strings display one of the

simplest types of correlation: a sequence of equi-distributed positions of the same value.

Finite Van der Waerden theorem For any positive integers k and c there is a positive

integer c such that every string, made out of c digits or colours, of length more than c
contains an arithmetic progression with k occurrences of the same digit or colour, i.e.

a monochromatic arithmetic progression of length k.

The Van der Waerden number W(k, c) is the smallest c such that every string, made out

of c digits or colours, of length cþ 1 contains a monochromatic arithmetic progression of

length k. How big is W(k, c)? For binary strings, one has W(3, 2)=9. In Gowers (2001) it

was proved that Wðk; 2Þ\22
22

2kþ9

, but conjectured to be much smaller in Graham (2007):

Wðk; 2Þ\2k
2

.

In the examples above, for the sake of simplicity, only binary relations (n ¼ 2) have

been considered, such as smallpox inoculation and resistance to infection in a large set of

individuals, or the number of marriages and the number of drowned people, over many

years. In what follows we will use the finite Ramsey theorem (Paris and Harrington 1977)

to study the more general case of n-ary relations. Ramsey theorem deals with arbitrary

correlation functions over n-ary relations, as, in principle, in a database one can correlate

sets of n elements, for any fixed n� 2.
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First we illustrate the Ramsey theorem with the classic ‘‘party problem’’.14 Suppose a

party has six people. Consider any two of them. They might be meeting for the first time, in

which case we call them mutual strangers, or they might have met before, in which case

we call them mutual acquaintances.15 The problem asks whether in every party of six

people either: a) at least three of them are (pairwise) mutual strangers or b) at least three

of them are (pairwise) mutual acquaintances? The problem is equivalent to the statement

that in the complete graph in Fig. 2—which has six vertices and every pair of vertices is

joined by an edge—every colouring of edges with red and blue necessarily contains either

a red triangle or a blue triangle.

The answer is affirmative. To prove we just need to choose any vertex in Fig. 2, say A,

and note that there are five edges leaving A, each coloured red or blue. Then the pigeonhole

principle says that at least three of them must have the same colour, hence a

Fig. 2 Party graph (Ahn 2015)

Fig. 3 Red triangle in the party
graph (Ahn 2015)

14 Appeared in Putnam Mathematical Competition in 1953 and in the problem section of the American
Mathematical Monthly in 1958 (Problem E 1321).
15 This is a Ramsey type problem: the aim is to find out how large the party needs to be to guarantee similar
pairwise acquaintanceship in (at least) one group of three people.
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monochromatic triangle will appear. In Fig. 3 the edges are AF, AE, AD, AC, AB,

coloured in order with blue, red, red, red, red, blue: the triangle AEC is monochromatic as

is coloured in red.

We do not know whether in the party there is a group of three people who are pairwise

mutual strangers or a group of three people who are pairwise mutual acquaintances, but we

know that a group of three people with the same type of pairwise acquaintanceship always

exists. Clearly, this result is true for any party with more than six people.

We continue with a piece of notation. If A is a finite set then ½A�n is the set of all subsets of
A containing exactly n elements (n-ary relations or n-sets on A). In order to guide intuition,

the number c may also be viewed as a number of ‘‘colours’’ partitioning a set. For example,

if A ¼ fx; y; z; ug and n ¼ 2 then ½A�2 ¼ ffx; yg; fx; zg; fx; ug; fy; zg; fy; ug; fz; ugg; an

example of partition of ½A�2 with c ¼ 3 colours, red, blue and yellow, is

fffx; yg; fx; zg; fz; ugg; ffy; zg; fy; ugg; ffx; uggg (if fx; yg; fx; zg; fz; ug are coloured with
red and fy; zg; fy; ug are coloured with blue, then fx; ug is coloured with yellow). Any of the
six permutations of the colours red, blue and yellow produces a valid colouring.

Finite Ramsey theorem For all positive integers b, n, c there is a positive integer c
such that for every finite set A containing more than c elements and for every

partition P : ½A�n ! f1; 2; . . .; cg there exists a subset B of A containing b elements

whose n-sets are monochromatic, i.e. P(x) has the same value (colour) for every x in

½B�n.

We note the general framework and the strength of both theorems: the first deals with

arbitrary, long enough well-orderings, the second with n-ary relations on arbitrary, large

enough sets. In particular, given any positive integers b, n, c, the finite Ramsey theorem is

valid for all sets A containing more than c elements, and for every partition P of the set of

subsets of n elements of A into c colours. In all cases we do not know in advance what

colour will be given to the elements of interest; however, due to the finiteness of both

theorems, in every particular instance we can algorithmically find all the monochromatic

elements and their colourings.

7 Correlations Everywhere

We will first use the regularity of arithmetic progressions in the total order analysed by Van

der Waerden theorem, then the colouring of arbitrary sets of arbitrary objects studied by

the finite Ramsey theorem.

The Van der Waerden theorem shows that in any coding of an arbitrary database of a

large enough size into a string of digits, there will be correlations of a pre-determined

arbitrary length: the same digit sitting on a long sequence of equi-distributed positions.

These equi-distributed positions of the same digit are not due to the specific information

coded in the data nor to a particular encoding: they are determined only by the large size of

the data. Yet, the regular occurrence, for a pre-chosen number of times, of an event may be

considered by the data miner as a ‘‘law’’ or as sufficient information to replace a law.

For correlations, assume that the database associates one digit or colour, out of c

possible ones, according to a fixed correlation function (for example, 7 or red is produced

for fishermen the month when marriages and drownings are correlated, 3 or green for

cheese producers as it correlates quarterly cheese consumption with some other statistical

data). Then the data miner can consider the correlation relevant if it occurs at a regular
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pace (an arithmetic progression) for at least k times. Of course, the string of length c, where
the arithmetic progression appears, may be given in time or space or in any

countable order.

Thus, by Van der Waerden theorem, for any k and c, the required length k for one of

these occurrences or correlations will be surely obtained in any string of length greater than

c, whatever (possibly spurious) criteria are chosen for correlating events. Moreover, and

this is very important, as the string of length greater than c is arbitrary, its values, out of
the c possible colours, may be chosen in any ‘‘random’’ way: by throwing a dice or

measuring a quantum observable. Yet, at least one correlation, as a monochromatic

arithmetic progression of the desired length, will be found in the string. We will discuss

later the chances of stepping on an algorithmic random string.

Next we use the finite Ramsey theorem to look in more general terms into this phe-

nomenon. Instead of dealing with a well-ordering of a pre-given coding by numbers, we

search for large enough regularities in sets of n elements taken from arbitrary, but large

enough, sets. So, it is no more the regularity of appearance in a well-ordering of an

arbitrary string that is searched for, but the structuring, according to an arbitrary partition,

of n-ary relations of elements from an arbitrary set.

Let D be a relational database. In full generality, we may consider that a correlation of

variables in D is a set B of size b whose sets of n elements form the correlation (the set of n-

ary relations on B, or n values that are considered to be correlated, or monochromatic

using the language of colours). In other words, when a correlation function—defined

according to some given criteria (proximity or, conversely, apartness of some observable

values or whatever)—selects a set of n-sets, whose elements form a set of cardinality b,

then they become correlated. Thus, the process of selection may be viewed as a colouring

of the chosen set of b elements with the same colour—out of c possible ones. We insist that

the criterion of selection—the correlation function—has no relevance here, it is arbitrary:

it only matters that, for some reason which may be spurious, all n-sets of a set with b

elements have the same colour, that is, turn out to be correlated. Then Ramsey theorem

shows that, given any correlation function and any b, n and c, there always exists a large

enough number c such that any set A of size greater than c contains a set B of size b whose

subsets of n elements are all correlated—that is, monochromatic. In other words: Do we

want a size b set of values that are correlated by sets of n elements out of c possibilities, for

whatever b, n and c you choose? Ramsey theorem gives us a large enough number c such
that in any set with more elements than c; if we choose in any way a partition of n-sets into

c classes, we are guaranteed to find a correlation of size b and arity n. We do not know a

priori what will be the colour of the monochromatic set, in the same way as the data miner

does not know in advance which correlation will pop out from the data. However, in every

particular instance we can algorithmically find all the monochromatic elements and their

colourings.

The analysis above, as well as the one in the following section, are independent of any

possible (or not) law-like origin (determination) of the processes modelled in the database,

as it is only based on cardinality (number of elements in the database). This analysis

complements the one in Sect. 5. Moreover, the arguments also reinforce each other, as the

search for regularities require, by the previous results on the low probabilities of recur-

rences in deterministic systems, very large databases.
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8 The Deluge of Spurious Correlations

In the previous section we have showed how Ramsey-type of correlations appear in all

large enough databases. How ‘‘large’’ is the set of spurious correlations?

First and foremost, the notion of ‘‘spurious correlation’’ was not (yet) defined: how can

one answer then the above questions?

According to Oxford Dictionary (2015), the adjective spurious means

Not being what it purports to be; false or fake. False, although seeming to be

genuine. Based on false ideas or ways of thinking.

This (dictionary) definition is semantic, hence it depends on an assumed theory: one

correlation can be spurious according to one theory, but meaningful with respect to another

one. To answer the question posed in the beginning of section in the strongest form, we

need a definition of ‘‘spurious’’ which is independent of any theory (using formal

deductions, mathematical calculations, computer algorithms, etc.).

In order to satisfy the above broad constraint we define a spurious correlation in a very

restrictive way:

a correlation is spurious if it appears in a ‘‘randomly’’ generated database.

A spurious correlation in the above sense is also ‘‘spurious’’ according to any possible

definition because, by construction, its values are chosen at ‘‘random’’, as all data in the

database. As a consequence, such a correlation cannot provide reliable information on

future developments of any type of behaviour. Of course, there are other reasons making a

correlation spurious, even within a ‘‘non-random’’ database. However, to answer the

question posed in this section it will be enough to show that most correlations are ‘‘spu-

rious’’ even according to our restricted definition, when dealing with large enough sets of

numbers (big data). Clearly, this is a fortiori true if one broadens the definition of spurious

correlation.

As any database can be seen as a string in Van der Waerden theorem or a set in Ramsey

theorem, our analysis will be based on algorithmic information theory, a mathematical

theory studying (algorithmic) randomness for individual objects, in particular, strings and

(finite) sets of numbers (Calude 2002; Downey and Hirschfeldt 2010). This theory is based

on classical computability, that is the general theory of algorithms, the foundation of

todays computing (Cooper 2004). As hinted above and discussed at length in Calude and

Longo (2015), randomness is defined as ‘‘unpredictability relative to an intended theory’’.

Since theories predict by computing from their formal frames (axioms, equations, evolu-

tion functions, ...), algorithmic randomness provides a general notion of randomness which

works for any theory.

Using this approach we will answer the question: How ‘‘large’’ is the set of spurious

correlations, in the above sense? Surprisingly, spurious correlations form the majority, in

fact a quantifiable majority of correlations.

As the notion of algorithmically randomness is given in terms of ‘‘incompressibility’’,

we start with a familiar example of ‘‘compressibility’’. We use compressing/decompressing

programs such as zip, gzip, compress, etc., to obtain a compressed version of a given

(arbitrary) file. These programs have two tasks: (a) to try to obtain—via compression—a

shorter variant of the original file, and (b) to be lossless, that is, to guarantee that no

information is lost during both processes of compression and decompression. How do they

work? The answer is important for our discussion: a compression program searches for
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regularities in the input file and uses them to compute a shorter description of the file and

the decompression program reconstructs the original file from its description.

The algorithmic complexity evaluates the size of the compressed file. For this it is

enough to work only with decompression programs for finite strings. Here is an axiomatic

framework to introduce this type of complexity. A function K from binary strings to binary

strings satisfying the following three conditions is called an algorithmic complexity.

1. Conservation of information: For every computable function f there exists a constant

c—depending only on f—such that for every string x we have Kðf ðxÞÞ�KðxÞ þ c:
2. Weak computability: There is a program enumerating all pairs of strings and positive

integers (x, n) such that KðxÞ� n.16

3. Localisation: There exist two constants c and C such that the number of strings x with

KðxÞ\n is greater than c � 2n and smaller than C � 2n.
Fix U a universal Turing machine and denote by KUðxÞ ¼ minfjyjUðyÞ ¼ xg. Then KU

satisfies the above three axioms17 and, conversely, if K satisfies the above three axioms,

then there exists a constant M—depending only on U and K—such that for all x,

jKðxÞ � KUðxÞj �M.

Let K ¼ KU . A string x is m-compressible if KðxÞ� jxj � m. This means that there is an

input y of length jyj � jxj � m such that UðyÞ ¼ x. In other words, U was able to find

patterns in x to compress it to a shorter description y. It is not difficult to see that for all

non-negative integers m� n, the number of strings x of length n having KðxÞ\n� m is

less or equal to 2n�m � 1. Taking m ¼ 0 we get the following interesting fact: for every

non-negative integer n there exists a string x of length n such that KðxÞ� n.18 Such a string

is incompressible by U: there is no y shorter than x such that UðyÞ ¼ x. One can prove—

see Calude (2002), Downey and Hirschfeldt (2010)—that incompressible strings have most

properties associated with randomness, hence they are called algorithmic random.19 The

compressibility power of a universal Turing machine U is much higher than that of any

practical algorithm—gzip, compress, etc.—, but by Ramsey theory, still limited: there are

correlations U cannot detect. This is the surprising meaning of Ramsey type theorems,

such as those used in this paper: no matter how one algorithmically defines randomness for

strings or finite sets of numbers, they always contain regularities, since any long/large

enough string/set contains regularities.

Algorithmically random finite sets can be defined naturally (Vereshchagin 2007). These

sets have intriguing regularities. Here is an illustration for Boolean matrices which are

relevant for databases. With the exception of a finite set, the rank of every algorithmically

random Boolean matrix of size n� n—thought over the field F2 ¼ f0; 1g—is greater than

n/2. Otherwise we could select n/2 columns of the matrix such that all other columns are

linear combinations of the selected ones. Further, based on this observation we could

compress the original matrix to a string of 3=4 � n2 þ O ðn log nÞ bits instead of n2

required by algorithmic randomness (see Shen (2015) for a proof and Khoussainov (2016),

Manin (2016) for other relevant results).

Fix a real number a in the open interval (0, 1). A string x of length n can be compressed

by an bits if its complexity KðxÞ� n� an. The number of strings x of length n which are

16 The function K is incomputable.
17 Traditionally, KU is called Kolmogorov complexity associated to U.
18 The number of strings x of length n having KðxÞ� n� m is greater or equal to 2n � 2n�m þ 1.
19 In view of results discussed in Sect. 6, they cannot have all properties associated with randomness.
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compressible by an bits is smaller than 2ð1�aÞn � 1, hence the probability that a string x of

length n has KðxÞ\n� an is smaller than 2�an, a quantity which converges exponentially

to zero when n ! 1. In other words, for large n, very few strings of length n are com-

pressible or, dually, most strings are algorithmically random.

Here is a simple illustration of this phenomenon. According to Hoffman (2015) the best

average rate of algorithmic compressibility is about 86:4% (i.e. a string x is compressed

into a file Zip(x)20 which has about 86:4% of the length of x). The probability that a binary

string x of (relatively short) length 2048 is reduced by 13.6% is smaller than

2�
136
1000

�2048\10�82, a very small number.21

9 Conclusions

The analysis presented in this paper suggests that the slogan or ‘‘philosophy’’ declaring that

correlation supersedes causation and theorising is mathematically wrong. Scientists and

philosophers have always worried about fallacies one commits by looking at correlations

only: Cum hoc ergo propter hoc22 and the related Post hoc ergo propter hoc23 fallacies are

illustrative. For example, economists are wary of uncritically using correlations: that’s why

they perform further statistical tests, e.g. the Granger causality test, knowing well that even

this is not enough to yield knowledge of genuine causality.

Our work confirms the intuition that the bigger the database which one mines for

correlations, the higher is the chance to find recurrent regularities and the higher is the risk

of committing such fallacies. We first showed that if the ‘‘world’’ modelled in a big

database is somehow law-like in the multi-dimensional universe of events it describes, then

the probability that a series of related observable values (regularity) iterates again is non

zero, but extremely low: recurrence may occur, but only for immense values of the

intended parameters and, thus, an immense database.

But, then, one steps into the results in the subsequent sections: given k and c (Van der

Waerden theorem) or (b, n, c) (Ramsey theorem), there is a (large) c, such that any data set
of size more than c contains a regularity with the characteristics given by the given

parameters independently of any law-like assumption on the underlying phenomena

described by the elements of the database. Moreover, as proved in Sect. 8, the larger is c,
the more probable becomes that the sets larger than c are ‘‘randomly’’ generated. Even

using a restrictive definition of spurious correlation—one that appears in an algorithmically

random database—we showed that the overwhelming majority of correlations are spurious.

In other words, there will be regularities, but, by construction, most of the time (almost

always, in the mathematical sense), these regularities cannot be used to reliably predict and

act.

[Natural] ‘‘[S]ciences are essentially an exercise in observing correlations, then

proposing explanations for them’’, (Gisin 2014). They operate with three types of corre-

lations: two types of local correlations, that can be accounted for in terms of either an

influence of one event on another (‘‘if it is rainy, then the ground is wet’’), or common local

causes (‘‘gum disease, oral cancer, loss of taste, mouth sores and bad breath are likely to

20 For every x, Zip(x) is an incompressible string for Zip, but for some x, Zip(x) is compressible by U.
21 1082 is approximately the number of hydrogen atoms in the observable Universe.
22 Latin: with this, therefore because of this.
23 Latin: after this, therefore because of this.
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affect youths with smoking habits’’) and non-local correlations (like quantum correlations

of entangled qubits). Non-local correlations have much more complex physico-mathe-

matical explanations than local correlations. But as we showed, there are also the

‘‘Ramsey-type of correlations’’, which abound, and cannot be accounted for anything else

except size. Even worse, the last type of correlations cannot be algorithmically distin-

guished from the others.

The theory of algorithms, which gave us computers and algorithmic analyses (of

databases, in particular), also provides the tools for understanding the limits of a pure

algorithmic analysis of big data. Our limiting or ‘‘negative’’ results, as it often happens

(Longo 2008), do not ‘‘destroy’’ data science, but open the way for more reflections. Big

data correlations do not make causation obsolete nor do they cause Democritus’s type of

science to die, but they pose the challenge to integrate the new algorithmic tools with the

classical ones in an extended scientific method.

The fundamental Greek practice of scientific observation, thinking and debating on

different theoretical interpretations of phenomena was enriched by the experimental

method (since Galileo) and mathematics (since Descartes and Newton). Suggestions to

narrow down the scientific methods to just the collection of ‘‘empirical evidences’’ or to the

use of mathematics—‘‘in a discipline there is as much science as there is mathemat-

ics’’24—didn’t get much support. The new ‘‘philosophy’’ proposed by big data is similar.

Big data analytics cannot replace science and, symmetrically, no theory can be so good to

supplant the need for data and testing. Implicit or, better, explicit and revisable theorising

should accompany meaningful measurements of ‘‘evidences’’ and mathematical modelling,

as well as reliable analyses of databases.25

Despite the looming threat of spurious correlations, there are many examples of suc-

cessful use of data analytics in robust scientific studies (see Rajaraman and Ullman 2011;

Stanton 2012; Schutt and O’Neil 2014; Reed and Dongarra 2015). Thus, we interpret

Dante’s verse in the epigraph of this paper as ‘‘we cannot rely on computational brute-force

(‘‘come bruti’’), but we must pursue scientific commitment and knowledge (‘‘virtute e

canoscenza’’).
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