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Abstract 

Calude, C., and G. Istrate, Determining and stationary sets for some classes of partial recursive 
functions, Theoretical Computer Science 82 ( 1991) 15 l- 155. 

In analogy with the case of real functions we introduce and study the determining and stationary 
sets for some classes of unary p.r. functions, including the recursive and primitive recursive 
functions. As a by-product, a new characterization of Post simple sets is obtained, which offers 
a natural motivation for their name. 

1. Introduction 

LetX={a,,... , a,}, p 3 1, be a fixed set and let X* be the free monoid generated 
by X (e is the empty string). We shall deal only with unary partial functions 
f: X* 0, X*. The domain and the range of a partial function f are respectively 
denoted by dam(f) and range(f). Two partial functions J g are equal in case 
dam(f) = dom( g) and f(x) =g(x) for all XE dam(f); they are equal almost 
everywhere (written f = g a.e.) if dom(f ) A dom( g) is finite (A refers to the set- 
theoretic symmetric difference) and j(x) = g(x), for all but finitely many x in 
dam(f) n dam(g); finally, if E c dam(f) n dam(g) and f(x) = g(x) for all but 
finitely many x in E, then we say that f and g are equal almost everywhere on E 
(written f = g a.e. on E). 

For recursive function theory we refer to [ all use the usual 
abbreviations (i.e., p.r. and r.e. denote, respectively, partial recursive an 
enumerable). 
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The determining and stationary sets were introduced in [l] for classes of real 
functions (see for a monographical presentation [2]). In analogy with these studies 
we introduce the determining and stationary sets for a class F of partial functions 
f:X * .% X* A determining set for F is a subset E of X* such that two arbitrary 
elements X g in F are equal a.e. whenever they are equal a.e. on E. A subset E of 
X* with the property that a partial function f in F which is constant a.e. on E is 
constant a.e. is called a stationary set for F. The discrete nature of our partial 
functions motivates the introduction of the “a.e.” restriction, not present in the case 
of real functions. Clearly, every cofinite set is both a determining and a stationary 
set; it will be called a trivial determining (stationary) set. Accordingly, we will be 
mainly interested in the study of nontrivial determining (stationary) sets. 

esults 

Let W c X* be an infinite set and consider F to be a subset of all partial functions 
f:x*% X* such that dom( f) h W is finite. We shall assume that F contains the 
identity function I : W + X”, I(x) = x, the constantfunctions CY : W --+ X*, C,(x) = y, 
y E X v {e}, and is closed under concatenation (if J g E F, then h : dom( f) n 
dam(g) ---) X*, h(x) = f(x)g(x) is in F) and definition by cases (if f, g E F, then 
h : dom( f) n dam(g) + X*, h(x) = u1 iff(x) = g(x) and h(x) = e otherwise, is in F). 

The following classes of partial functions satisfy the above requirements: (i) the 
class of recursive functions, (ii) the class of primitive recursive functions, (iii) each 
class in Ackermann-Peter’s hierarchy (i.e., each class of unary functions in 
Grzegorczyk’s hierarchy; see [4]), (iv) the class of all p.r. functions f: X* s X* 
for which dom( f) A W is finite ( W is a fixed infinite r.e. subset of X*). Notice that 
in the case p = 1 concatenation coincides with addition. 

Fix now a family F satisfying the above requirements. First we prove two technical 
facts. 

The following partial functions are in F: 
(i) C,‘: W+ X”, C(x) =y for every yE X*, 

(ii) Sg, sg: Wv(e) --, X*, a(e) =sg(x) = a,, Sg(x) =sg(e) = e for every XE 
- e. ( 1 

(i) Use the closure under concatenation. 
(ii) One has Sg(x) = aI if I(x) = C(x), Sg(x) = e otherwise, sg(x) = u1 if Q(x) = 

C,(x), sg(x) = e otherwise; the closure under definition by cases assures that Sg, 
sgE F. Cl 

. (i) &ff E F, then the composition sg ofi :dom(f)u{e}-* X* 
e characteristic function (with respect to of each finite subset 

*, xA(x) = a, if xE and xA(x) = e otherwise, lies in 
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roof. (i) Obviously, ?@(f)(x) = al if f(x) = C,Jx), Q(f)(x) = e otherwise, and 
similarly for sg(f). 

(ii) In case A={x~,...,x~}c * we define xA(x) = sg(h,(x) . . . hk(x)), where 

hi(x) = a, 9 if CJX) = I(X) and hi(x) = e otherwise. •I 

eorem 3. Let E c W. libe following assertions are equivalent: 
(1) 7?ze set E is a stationary set for E 
(2) The set E is a determining set for F. 

(3) The set E is infinite and no injinite subset Gc - E has the characteristic 
function xG : W + X* in I? 

(4) The set E is infinite and no set H 3 E with W - H infinite has the characteristic 
fktction XH : W + X* in F. 

Proof. (l)*(2). Assume E is a stationary set for F. LetJ; g be two partial functions 
in F such that f = g a.e. on E. Define h : dom( f) n dam(g) + X* by h(x) = al if 
f(x) = g(x) and h(x) = e otherwise, and notice that h lies in F. Clearly, f = h a.e. 
iff h = a, a.e., so E is a determining set for F. 

(2) + (3). First we prove that E is infinite. If, ab absurdo, E would be finite, 
then, by Lemma 2, XE : W --, X* would be in F. So XE = Ca, on E, Ca, E F, but 
&(x) # Cal(x) for infinitely many x in W - E, contradztiag the hypothesis. 

Suppose now that G c W - E is an infinite set and XF : W + X* is in F. Let f E F 
anddefineg:dom(f) + X* by concatenation: g(x) = f(x)XF(x); clearly, g E F. For 
every x in E, x&x)=e, so g(x)=f(x) (Gc W-E). On the otner hand, g(y)= 
f(y)a, #f(y) for infinitely many y E G, a contradiction. 

(3)*(4). Let E c H with W-H infinite. Since G = W- Hc W-E, by (3), 
XG $ F. It follows that XH g F because XH =Sg(x& and Lemma 2. 

(4)=$( 1). If W- E is finite, then E is clearly a stationary set. Assume that W - E 
is infinite and suppose ab absurd0 that there exist f in F and u in * such 
that the set A = {x E W n dom( f) 1 f(x) # u) is infinite but the set 
{x E E n dom( f) 1 f(x) # u} is finite. Notice that the set D = A n ( W - E) is infinite, 
E c W-Dandy+,,: W + X* belongs to F (reason: xw_&x) = sg(h(x)xArrE(x)), 
where h: W+ X* is given by h(x) = a1 if f(x) = C”(x), h(x) = e otherwise, and 
A n E = B is finite, so by Lemma 2 its characteristic function is in F). 

The set H = W - D, W - H = D is infinite and XH E F, a contradiction. 0 

Let E c W. If E is a stationary (or, equivalently, determining) set for F, 
then XE is in F iff W - E is finite. 

By Lemma 2, if - E is finite, then XE =Sg(XW-E) is in Conversely, if 
E is a determining set for F and XE E F, then xE = C=, on E, SO XE = C,, a.e., i.e., 

- E is finite. 0 

Recall that a co-immune set is a set with immune co 
subset of its corn lement can be r.e. [7,8,9])- 

ent (i.e., no in ite 
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eorem 5. The nontrivial determining (stationary) sets for the class of recursive 
functions are exactly the co-immune subsets of X*. 

roof. Let E C- X* be 2 nontrivial determining set for the class of recursive functions. 
Suppose A= X* - E is an infinite r.e. set; in view of 2 well known result [4,7,8] 
there exists an infinite recursive subset B c A, thus contradicting Theorem 3(3). 
Conversely, if E is co-immune, then no infinite subset of X* - E can be r.e., hence 
recursive, so by Theorem 3(3) F is 2 determining set.  

ple 6. Every Post simple set (i.e. every r.e. co-immune set [8,9]) is 2 determin- 
ing set for the class of recursive functions. For example, the set of Kolmogorov 
nonrandom strings [4,7] is such 2 set. 

Example 7. Every bi-immune set (i.e. 2 set both immune 2nd co-immune [7,8]) is 
2 determining set for the class of recursive functions. Accordingly, the family of 
determining sets for the class of recursive functions has the power of the continuum. 

Theorem 8. The family of non trivial determinkg oetsjbr the class of recursive predica tes 
coincides with the family of co-immune sets. Agab, “determining” is equivalent to 
“stationary” for this class. 

roof. In contrast with the proof of Theorem 5, we cannot rely on Theorem 3 in 
this case. Given 2 nontrivial determining set E c X* and an infinite recursive subset 
G c X* - E we pick an arbitrary recursive predicate f : X * --, {a,, e} 2nd we con- 
struct the recursive predicate 

if xe G, 
if xEG 2nd f(x)=e, 

if xEG and f(x)=a,. 

Clearly, f(x) = g(x) for 211 x E E c X* - G, but f (x) # g(x) for infinitely many x in 
G. The converse implication follows from Theorem 5. 0 

. Theorems 5 and 8 show that classes having different recursive topological 
size (the recursive functions form 2 recursively second Baire category set, while the 
set of recursive predicates is recursively mcagre [3,4]) have the same family of 
determining sets. This is not 2 general phenomenon 2s Theorem 10 will prove. 

. A set E c X * is Post simple iff E is a nontrivial r.e. determining (station- 
ary) set for the class of recursive functions ( predicates). 

e may ask for the “simplest” determining sets for 2 class E Corollary 
9 shows that Post simple sets are really the “simplest” nontrivial determining sets 
for the family of recursive functions (predicates). 
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0. 7%e nontrikd determining (stationary) sets for the class of primitive 
recursive functiotas art exactly the sets containing in their complement no infinite 
primitive recursive set. 

roof. Use Theorem 3(3). @ 

emark. It is interesting to notice that there exist co-infinite recursive sets A c X* 
for which there is no infinite primitive recursive set B c A or B c X* -A [6]. 
Accordingly, the class of primitive recursive functions (a recursively meagre set [4]) 
has more determining sets than the family of recursive functions. 

Final comment. It will be interesting to characterize the determining and stationary 
sets for other classes of partial functions, particularly for various types of continuous 
functions [5] or morphisms. 
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