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Guessing the degree of difficulty of a problem before seeing its
solution is notoriously hard not only for beginners, but also for the
most experienced professionals. Can we develop a method to evaluate,
in some objective way, the difficulty of an open problem? This note
proposes such a measure which can be used for a fairly large class
of finitely refutable conjectures which includes, for example, Riemann
Hypothesis and the Goldbach’s Conjecture. According to our measure,
Riemann Hypothesis is more complex than Goldbach’s Conjecture. We
also show, in a non-constructive way, that the Collatz 3x + 1 Problem
is finitely refutable; consequently, our method cannot be applied, hence
stronger versions of this problem are studied.

1 INTRODUCTION

Guessing the degree difficulty of a problem before seeing its solution is
notoriously hard not only for beginners, but also for the most experienced
professionals.

The best illustration is the famous list of 231 open problems proposed
by Hilbert at the International Mathematical Congress in Paris on August
8, 1900 (see [1, 13, 16]), widely considered the most influential set of
problems for the last century mathematics.

Hilbert’s third problem, “give two tetrahedra that cannot be decomposed
into congruent tetrahedra directly or by adjoining congruent tetrahedra”, was

1Actually, 24, see [21].
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solved by Dehn [8] immediately after the Congress, and the paper including
its solution was published before the publication of the proceedings of the
Congress. This may suggest that the problem was not “that difficult”.

Hilbert’s eitgth problem includes two problems neither which was proved
nor disproved: the Riemann Hypothesis (one of the Clay Mathematical
Institute Millennium Problems, [22]; see more about this problem in
[12, 16–18]); its first solution will be awarded a prize worth 1 million
dollars) and the Goldbach’s Conjecture. While the Riemann Hypothesis is
more difficult to explain, Goldbach’s Conjecture, written in a June 7, 1742
letter to Euler, is easy to state: prove that “every positive even integer can
be expressed as the sum of two primes,” [10, 11].2

Finally, our last open question is Collatz 3x + 1 Problem, about which
Erdös commented that “mathematics is not yet ready for such problems”,
[14]. The problem asks to prove (or disprove) that for every seed a > 0,
there is an iteration N of the function T (x) = x/2, if x is even, and
T (x) = 3x + 1, if x is odd, such that T N (a) = 1.

Is there any mathematical way to evaluate the degree of difficulty of
any of these problems? In what follows we will propose a uniform method
to evaluate the difficulty of a finitely refutable problem. A conjecture is
finitely refutable if verifying a finite number of instances suffices to disprove
it (see [4]). Our refutable method uses a systematic enumeration (of the
problem’s search domain) that is guaranteed to find a counter-example if
one exists. If the search stops, then it refutes the conjecture; if the search
does not halt, then the conjecture is true.

Both Riemann’s Hypothesis and Goldbach’s Conjecture are finitely
refutable, so our method allows the evaluation of their difficulty: according
to our measure, the Riemann Hypothesis is more difficult than the Goldbach
Conjecture. Our analysis shows that Collatz 3x + 1 Problem, in its original
formulation, is finitely refutable, but our proof is not constructive, so our
method does not apply. However, two slightly stronger versions of this
problem are finitely refutable, so they can be studied with our method.

2 THE METHOD

The Halting Problem for Turing machines is the problem to decide whether
an arbitrary Turing machine T eventually halts on an arbitrary input x.
As a Turing machine T can be coded by a finite string, say code(T ), it
makes sense to ask whether we can design a Turing machine Thalt which
given code(T ) x, eventually stops and produces 1 if T (x) stops and 0 if
T (x) does not stop. Turing’s famous result states that this problem cannot
be solved by any Turing machine, i.e. there is no such Thalt .

2 At that time 1 was considered prime.
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It is perhaps surprising to note that many problems in mathematics can
be reformulated in terms of the halting/non-halting status of appropriately
constructed Turing machines. For example, consider Fermat’s Theorem,
stating that there is no integers x, y, z, n > 3 such that xn + yn = zn. It
is not difficult to see how to construct a Turing machine TFermat which
enumerates systematically all possible integers (for example, written in
binary) x, y, z, n > 3, checks whether xn + yn = zn, and stops if for some
values x, y, z, n the relation is true (which would mean that the program has
found a counter-example); otherwise, T generates a new 4-tuple x, y, z, n

and repeats the above procedure. Clearly, Fermat’s Theorem is equivalent
with the statement “TFermat never halts”, hence knowing that Fermat’s
Theorem is true we know that TFermat never halts. A possible (admittedly,
not very promising) way to prove Fermat’s Theorem is to show that TFermat

never halts. But this is not the point! The point is that we can measure the
difficulty of Fermat’s Theorem by the complexity of TFermat , for example,
by the number of bits necessary to specify TFermat in some fixed formalism.
Of course, there are many Turing machines equivalent to TFermat , so a
natural way to evaluate the complexity is to consider the least complex
such machine.

In what follows we work with self-delimiting Turing machines C: such a
machine reads the program’s data (in binary) from right to left only, never
going back, so its accepted programs (i.e., its domain) form a prefix-free
set. If, after finitely many steps, C halts with the program tape head
scanning the last bit of the input x, then the computation is a success, and
we write C(x) < ∞; the output of the computation is the binary string
C(x). Otherwise, the computation is a failure, we write C(x) = ∞, and
there is no output.

A classical result states the existence of a universal self-delimiting
Turing machine U : for every self-delimiting Turing machine C there is a
string p (depending upon U,C) such that U (px) = C(x), for all strings x.
The halting probability of U , denoted by �U (and called Chaitin’s Omega
number) is defined by �U = ∑

U (x)<∞ 2−|x|, where |x| denotes the length
of x. With the first N digits of �U we can solve the Halting Problem for
all programs x of length less than or equal to N .

Consider now a problem � for which we can construct a program C�

such that � is false iff U (C�) < ∞ (if such a program exists). We propose
to define the “difficulty” of a problem � by the minimal number of bits
of �U necessary to test whether C� stops on U .

Many problems, including Riemann Hypothesis and Goldbach’s
Conjecture, are finitely refutable, so they can be classified according
to our measure. Of course, not every problem is finitely refutable; an
example is the Twin Prime Conjecture (TPC) (see [7], p. 337):

∀n {∃p [p > n&p prime &p + 2 prime]}.
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However, the stronger Twin Prime Conjecture is finitely refutable:

∀n {∃p [n < p < 2n+4 &p prime &p + 2 prime]}.
If the program corresponding to the strong TPC never halts, then the TPC
is true; however, if the program does not halt, then we get no information
about the TPC.

Theoretically, the choice of U is irrelevant up to an additive constant, so
if a problem is significantly more complex than another one with respect
to a fixed universal self-delimiting machine, then it will continue to be
more complex for any other machine. However, the proposed measure is
uncomputable (see [2]), so in practice we just obtain an upper bound on
the number of digits of �U necessary to check whether U (C�) < ∞.

In practice, to evaluate the complexity of � we need to obtain effectively
the program C�, and to compute its size in bits: this gives an upper bound
on its complexity of C�, hence the difficulty of �.

3 A UNIVERSAL SELF-DELIMITING TURING MACHINE

In what follows we will briefly describe the syntax and the semantics
of a register machine program which implements a (natural) universal
self-delimiting Turing machine; it is a refinement of the languages described
in [3, 5].

Any register machine has a finite number of registers, each of which
may contain an arbitrarily large non-negative binary integer. The list of
instructions is given below in two forms: our compact form and its
corresponding Chaitin style version. The main difference between Chaitin’s
implementation and ours is in the encoding: we use 4 bits instead of 8
bits per character.

By default, all registers, labeled with a string of ‘a’ to ‘h’ characters,
are initialized to 0. It is a syntax error if the first occurrence of register j

appears before register i in a program, where j is lexicographic greater
than i. Also, all registers lexicographic less than j must have occurred.
Instructions are labelled by default with 0,1,2,. . . (in binary).

The register machine instructions are listed below. Note that in all cases
R2 denotes either a register or a binary constant of the form 1(0 + 1)∗ + 0,
while R1 and R3 must be register variables.

=R1,R2,R3 (EQ R1 R2 R3)

If the contents of R1 and R2 are equal, then the execution continues at
the R3-th instruction, where R3 = 0 denotes the first instruction of the
program. If they are not equal, then execution continues with the next
instruction in sequence. If the content of R3 is outside the scope of the
program, then we have an illegal branch error.
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&R1,R2 (SET R1 R2)

The contents of register R1 is replaced by the contents of register R2.

+R1,R2 (ADD R1 R2)

The contents of register R1 is replaced by the sum of the contents of
registers R1 and R2.

!R1 (READ R1)

One bit is read into the register R1, so the numerical value of R1 becomes
either 0 or 1. Any attempt to read past the last data-bit results in a run-time
error.

% (HALT)

This is the last instruction for each register machine program before the
raw data. It halts the execution in two possible states: either successfully
halts or it halts with an under-read error.

A register machine program consists of a finite list of labelled instructions
from the above list, with the restriction that the HALT instruction appears
only once, as the last instruction of the list. The input data (a binary string)
follows immediately after the HALT instruction. A program not reading the
whole data or attempting to read past the last data-bit results in a run-time
error. Some programs (as the ones presented in this paper) have no input
data.

To aid the presentation and development of the programs we use a
consistent style for subroutines. We use the following conventions:

1 The letter ‘L’ followed by characters (usually 1, . . . , 9) and terminated
by ‘:’ is used to mark line numbers. These are local within the
subroutine. References to them are replaced with the binary constant
in the final program.

2 For unary subroutines, registers a = argument, b = return line, c = answer
(a and b are unchanged on return).

3 For binary subroutines, registers a = argument1, b = argument2, c =
return line, d = answer (a, b and c are unchanged on return).

4 For subroutines, registers e, . . . , h are used for temporary values and
may be modified. Also, up to register ‘ah’ should be considered reserved
when using secondary level subroutines like isPrime and Explog.

5 For Boolean data types we use integers 0=false and 1=true.

4 GOLDBACH’S CONJECTURE

Goldbach’s Conjecture, which is part of Hilbert’s eighth problem, states
that all positive even integers greater than two can be expressed as the
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sum of two primes. The conjecture was tested up to 3 × 1017 by Oliveira
e Silva, [19].

The associated program is straightforward: we just enumerate all positive
even integers greater than two and for each we check the required
property (which is computable); the program stops if and only if it finds
a counter-example for Goldbach’s Conjecture. The program (in human
readable form) is the following:

&a,Goldbach
=b,c,a // b=c=0 so jumps to start of Goldbach algorithm

// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b
&d,0
=a,b,c
+d,1
&e,a
&f,b
&g,L1
&h,L2
L1: +e,1
+f,1
=e,b,c
=f,a,h
=a,a,g
L2: +d,1
=a,a,c

// Sub(a,b) returns a-b, where we assume a>=b
&d,0
=a,b,c
&e,b
&f,L1
L1: +d,1
+e,1
=a,e,c
=a,a,f

// Mul(a,b) returns a*b
&d,0
=a,0,c
=b,0,c
&e,L1
&f,1
+d,a
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L1: =f,b,c
+f,1
+d,a
=a,a,e

// Div(a,b) returns integer floor of a/b, assumes b>0
&g,L1
&h,L2
&aa,a // copy of a (variable not used in Cmp & Mul)
&ab,b // copy of b
&ac,c // copy of c
&ad,1 // initial answer
&c,L0
&d,Cmp
=a,a,d // call Cmp(a,b)
L0: &c,aa
=d,0,g
=d,2,h
&d,0 // else a < b so return 0
=a,a,c
L1: &d,1 // a=b so return 1
=a,a,c
L2: &c,L5
&ae,Mul
&a,ad
=a,a,ae
L5: &a,d // just computed ad*b
&b,aa
&c,L6
&ae,Cmp
=a,a,ae // call Cmp(ad*b,a)
L6: &b,ab // reset b
&ae,L3
=d,1,ae
&ae,L4
=a,a,ae
L3: +ad,1 // still <
=a,a,h
L4: &d,ad
&a,aa // unpop input parameters
&b,ab
&c,ac
=a,a,c
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// Mod(a,b) returns a mod b, assumes b>0
&af,a // copy of parameters
&ag,b
&c,L0
&d,Div
=a,a,d // call Div(a,b)
L0: &a,d
&c,L1
&d,Mul
=a,a,d // call Mul(a/b,b)
L1: &a,af
&b,d
&c,L2
&d,Sub
=a,a,d // call Sub(a,[a/b]*b)
L2: &b,ag
=a,a,c

// isPrime(a) where a >= 2
&d,0
&ah,a // parameter copy
&ba,L1
&bb,L2
&bc,c
&b,2
L1: =b,ah,bb // trial reached so a is prime
&bd,Mod
&c,L3
=a,a,bd // call Mod(a,b)
L3: &c,bc
=d,0,c // divisible by b so not prime
+b,1
=a,a,ba
L2: &d,1
&a,ah
=a,a,c

// start of Goldbach Conjecture testing program
&be,2
L0: +be,2 // enumeration of all even integers >= 4
&bf,2 // enumeration of all primes bf >= 2 and bf < be
&a,bf
&c,L1
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&bg,isPrime
=a,a,bg
L1: &e,L3
=d,1,e // if bf is prime
L2:+bf,1 // else increment
&d,L6
=bf,be,d // found counter example
&a,bf
&c,L1
=a,a,bg // check is prime again
L3:&bh,bf //enumerationofallprimesbh>=bfandbh<be
L5: &ca,bf
+ca,bh // sum of primes
&cb,L0
=be,ca,cb // found sum, test next be
L7: +bh,1
&cb,L2
=bh,be,cb // try next bf
&c,L4
&a,bh
=a,a,bg
L4: &e,L5
=d,1,e // if bh is prime
&e,L7
=a,a,e // else increment bh
L6: %

The machine executable version (see the Appendix) has 135 instructions
totaling length 871 4-bit characters, i.e. its size in bits is 3484.

5 RIEMANN HYPOTHESIS

Riemann Hypothesis is a famous conjecture included in Hilbert’s eighth
problem: this is the hypothesis that the non-trivial complex zeros of
Riemann’s zeta function, which is defined for Re(s) > 1 by

ζ (s) =
∞∑

n=1

1

ns
,

lie exactly on the line Re(s) = 1/2.
According to Matiyasevich [15], p. 119–121, the negation of the Riemann

hypothesis is equivalent to the existence of integers k, l,m, n satisfying the
following six conditions (here x | z means “x divides z”):
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1 n ≥ 600,
2 ∀y < n [(y + 1) | m],
3 m > 0& ∀y < m [y = m ∨ ∃x < n [¬ [(x + 1) | y]]],
4 explog(m − 1, l),
5 explog(n − 1, k),
6 (l − n)2 > 4n2k4,

where explog(a, b) denotes the predicate

∃x [x > b + 1& (1 + 1/x)xb ≤ a + 1 < 4(1 + 1/x)xb].

Theprogram is fairly straightforward, except for dealingwith explog(a, b),
which is computably enumerable only; in this case we have adopted a
dovetailing approach. Indeed, we just enumerate all 5-tuples k, l,m, n, T

satisfying conditions 1-3, 6 and the relativized conditions 4, 5:

4’ explog(m − 1, l, T ),
5’ explog(n − 1, k, T ),

where explog(a, b, T ) denotes the predicate

∃x [T > x > b + 1& (1 + 1/x)xb ≤ a + 1 < 4(1 + 1/x)xb].

In what follows we will present the program in human readable form
only; the machine executable version can be obtained immediately (as in
the case of Goldbach’s program).

&a,Riemann
=b,c,a // b=c=0 so jumps to start of Riemann algorithm

// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b
// Sub(a,b) returns a-b, where we assume a>=b
// Mul(a,b) returns a*b
// Div(a,b) returns integer floor of a/b, assumes b>0
// Mod(a,b) returns a mod b, assumes b>0

// Pow(a,b) returns aˆb where we assume a>0 and b>0
&d,a
=b,1,c // aˆ1 = a base case?
&g,a
&h,b // keep our own runtime stack for a,b,c
&aa,c
&ab,1
&ac,L1
&ad,L2
&c,L3
&b,a // get ready to compute a*a
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L2: +ab,1
&ae,Mul // replace with address of subroutine Mul
=a,a,ae
L3: &a,d
=ab,h,ac // stop when aˆb is computed
=a,a,ad
L1: &a,g
&b,h // unpop stack
&c,aa
=a,a,c

// Explog(a+1,b); uses global variable ah as upper bound
// to test if there exists ah >= x > b+1 such that
// (x+1)ˆ{xb} <= (a+1)xˆ{xb} < 4(x+1)ˆ{xb}
&d,0
=ah,0,c // return if no upper bound set
&ba,a // store parameters locally
&bb,b
&bc,c
&bd,b // start checking x at b+2
+bd,2
L1: &a,bd // compute x+1 and x*b and store into be and bf
&be,bd
+be,1
&a,bd
&b,bb
&c,L2
&d,Mul
=a,a,d
L2: &bf,d
&a,be // compute bg = (x+1)ˆ{bf}
&b,bf
&c,L3
&d,Pow
=a,a,d
L3: &bg,d
&a,bd // compute xˆ{bf} and this times a+1, yielding bh
&c,L4
&d,Pow
=a,a,d
L4: &a,d
&b,ba
&c,L5
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&d,Mul
=a,a,d
L5: &bh,d
&a,bg // test first <=
&b,bh
&c,L6
&d,Cmp
=a,a,d
L6: &a,L9
=d,2,a // if false try next x
&a,4 // else compute 4*bg
&b,bg
&c,L7
&d,Mul
=a,a,d
L7: &a,bh // test second <
&b,d
&c,L8
&d,Cmp
=a,a,d
L8: &a,L10
=d,1,a // test if found x
L9: +bd,1 // next x
&d,0
&a,L10
=bd,ah,a // exit if reach upper bound
&d,L1
=a,a,d
L10: &a,ba // return
&b,bb
&c,bc
=a,a,c

&ca,599 // start of Riemann Conjecture testing program
L1: +ca,1
&cb,600
L2: &ah,0
L3: &cc,0
L4: &cd,0
L5: &b,cb // compute ce=ca-cb-ah-cc-cd (=ca-b)
+b,ah
+b,cc
+b,cd
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&a,ca
&d,Sub
&c,L6
=a,a,d
L6: &ce,d
&cf,0 // check Cond 1
&d,L7
L9: +cf,1 // next y
=cf,cb,d // did we check all y<n (if yes, check Cond 2)
&a,cf
&b,cd
&c,L8
&d,Mod
=a,a,d
L8: &cg,L9
=d,0,cg // divides when a mod b is zero
&d,L10
=a,a,d
L7: &cf,1 // check Cond 2
LA2: &d,LA1
+cf,1 // next y
=cf,cd,d // did we check all y<m (if yes, check Cond 3)
&be,0
&d,L10
=cd,0,d // check m>0 (kludge!)
LA4: =be,n,d
+be,1 // did we try all x < n? (next m, if so)
&a,be
&b,cf
&c,LA3
&d,Mod
=a,a,d
LA3: &c,LA4
=d,0,c // divides so try next x
&d,LA2
=a,a,d // do next y
LA1: &a,cd // check Cond 3
&b,cc
&c,LA5
&d,Explog
=a,a,d
LA5: &c,L10
=d,0,c // if fail do next m
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&a,cb // check Cond 4
&b,ce
&c,LA6
&d,Explog
=a,a,d
LA6: &c,L10
=d,0,c // if fail do next m
&a,cb // check Cond 5
&b,ce
&c,LA9
&d,Mul
=a,a,d
LA9: &bg,d
+bg,bg // bg=2nk
&a,cc
&b,cb
&c,LA7
&d,Cmp
a,a,d
LA7: &c,LA8 // if l > n
=d,2,c
&a,cb // else l <= n
&b,bg
+b,cc
&c,LB0
&d,Cmp
a,a,d
LB0: &c,LX
=d,2,c // last condition passes
&c,L10 // else try next m
=a,a,c
LA8: &a,cc
&b,bg
+b,cb
&c,LB1
&d,Cmp
a,a,d
LB1: &c,LX
=d,2,c // 2nd way last condition passes
L10: &bg,cd // next m
+bg,cb
+bg,ah
+bg,cc
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&d,L11
=bg,ca,d // check at end of m loop
+cd,1 // else increment
&d,L5
=a,a,d
L11: &bg,cc // next l
+bg,cb
+bg,ah
&d,L12
=bg,ca,d // check at end of l loop
+cc,1
&d,L4
=a,a,d
L12: &bg,ah // next b
+bg,cb
&d,L13
=bg,ca,d // check at end of b loop
+ah,1
&d,L3
=a,a,d
L13: &d,L1 // next n and next s
+cb,1
=cb,ca,d
&d,L2
=a,a,d
LX: %

The register machine version of our Riemann hypothisis test consists
of 290 lines and 1953 characters (7780 bits), as an upper bound on the
complexity of the problem.

6 COLLATZ 3x + 1 PROBLEM

Recall that Collatz function is defined by T (x) = x/2, if x is even, and
T (x) = 3x + 1, if x is odd. The conjecture states that for every seed a > 0,
there is an iteration N such that T N (a) = 1, see [14]. Again, this conjecture
was tested and proved true up to 7 · 258, see Oliveira e Silva, [20].

First we note that a brute-force tester, i.e. the program which will
enumerate all seeds and for each of them will try to find an iteration
equal to 1, may never stop in two different cases: a) because the
conjecture is indeed true, b) because for some specific seed a0 there is
no N such that T N (a0) = 1. It is not clear how to differentiate these
cases; even worse, it is not clear how to refute b) by a brute-force
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tester.
Secondly, there is a non-constructive way to prove that there exists a

program CCollatz which never stops if and only if the conjecture is true.
Indeed, observe first that the set

Collatz = {a > 0 | T N (a) = 1, for some N ≥ 1}
is a computably enumerable set. Collatz 3x + 1 Problem requires to prove
that Collatz contains indeed all positive integers.

If Collatz is not computable, then the conjecture is false, and this can
be proven just by running the brute-force tester (which, we know, it will
eventually produce a counter-example because a) is ruled out). If Collatz

is computable, then we can write a program to check whether each integer
is in Collatz, so we can decide whether the conjecture is true or not. Of
course, this argument has no practical value, because we don’t know which
of the above programs should be chosen.

We examine two possibilities to attack the Collatz 3x + 1 Problem with
our method. In the first one we search for a repeating cycle (the other
possible case for finding a counter-example is when there is an infinite
sequence of distinct integers). Our first program looks for a seed that begins
such a cycle. This can be observed if the following statement is found to
be false:

∀a ≥ 5∀N > 0 [T N (a) �= a].

We set the starting position at a ≥ 5 since the repeating sequence
of numbers 1, T (1) = 4, T 2(1) = T (4) = 2, T 3(1) = T (2) = 1, . . . is not a
counter-example. The main program for our Collatz one-sided tester, given
below, systematically increases the maximum number of iterations to try
(register bb) as it expands the set of integers (register bc) to test. If this
program stops, then it disproves the original Collatz 3x + 1 Problem by
halting on a counter-example.

// start of Collatz loop checking program
// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b
// Sub(a,b) returns a-b, where we assume a>=b
// Mul(a,b) returns a*b
// Div(a,b) returns integer floor of a/b, assumes b>0
// Mod(a,b) returns a mod b, assumes b>0

&ah,Mod
&ba,5 // integer a to try
&bb,1 // number of iterations
&bc,2 // current maxtry
L0: +ba,1
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=ba,bc,L1
&bd,ba
&be,1
L2: =be,bb,L0
&a,bd
&b,2
&c,L3
a,a,ah // call Mod(a,2)
L3: &c,L4
=d,0,c // if even
&b,3 // else odd
&c,L5
&d,Mul
=a,a,d // compute a*3
L5: +d,1 // compute a*3+1
&bd,L7
=a,a,bd
L4: &c,L7
&d,Div
=a,a,d // compute a/2 (note b=2 from Mod call)
L7: &bd,d
&d,L6
=bd,ba,d // if found a counter-example halt
&d,L0
=bd,1,d // if we reach 1 then try next a
+be,1 // otherwise do another iteration
&d,L2
a,a,d
L1: +bc,1
+bb,1
&ba,1
=a,a,L0
L6: %

The final program has 127 lines of 808 characters, which totals a length
of 3232 bits.

The second approach solves a time-bounded version of the original
problem, namely:

∀a ≥ 2 ∃N [N ≤ 2a & T N (a) = 1].

If the corresponding program never stops, then it will prove the original
Collatz 3x + 1 Problem. Here is the program:

// start of Collatz time-bounded checking program
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// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b
// Sub(a,b) returns a-b, where we assume a>=b
// Mul(a,b) returns a*b
// Div(a,b) returns integer floor of a/b, assumes b>0
// Mod(a,b) returns a mod b, assumes b>0
// Pow(a,b) returns aˆb where we assume a>0 and b>0

&ah,1 // integer a to try
L7: +ah,1
L0: &a,2
&ba,ah // current value of T*(a)
&b,ba
&c,L1
&d,Pow
=a,a,d // compute bound 2ˆ a
L1: &bb,d
&bc,0 // iteration counter
L2: +bc,1
&a,ba // else compute next T()
&b,2
&c,L3
&d,Mod
a,a,d // call Mod(a,2)
L3: &c,L4
=d,0,c // if even
&b,3 // else odd
&c,L5
&d,Mul
=a,a,d // compute a*3
L5: +d,1 // compute a*3+1
&c,L6
=a,a,c
L4: &c,L6 // even case
&d,Div
=a,a,d // compute a/2 (note b=2 from Mod call)
L6: &ba,d
&d,L7
=ba,1,d // if passes test then try next a
&d,LX // while less than bound
=bc,bb,d // if not, found counter-example
&d,L2
=a,a,d // else next iteration of Collatz on a
LX: %
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The final program has 143 lines of 897 characters, which totals a length
of 3588 bits.

7 FINAL COMMENTS

Our analysis gives a new method of comparing the difficulties of two or
more finitely refutable problem. The main obstacle is the non-computability
of the measure. However, working with upper bounds one can obtain a
practical method for evaluating the complexity. Using this method we
showed that the Riemann Hypothesis is more difficult than the Goldbach
Conjecture. Two stronger versions of Collatz 3x + 1 Problem have been
also studied.

Trying to reduce the lengths of our programs should be possible; of
course, proving minimality is much more demanding.
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APPENDIX

Here is the final machine executable version of the Goldbach program, where
one reads the sequence of instructions down each of the three columns.
3

&a,1101000
=b,c,a
&d,0
=a,b,c
+d,1
&e,a
&f,b
&g,1001
&h,1110
+e,1
+f,1
=e,b,c
=f,a,h
=a,a,g
+d,1
=a,a,c
&d,0
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=a,b,c
&e,b
&f,10100
+d,1
+e,1
=a,e,c
=a,a,f
&d,0
=a,0,c
=b,0,c
&e,11110
&f,1
+d,a
=f,b,c
+f,1
+d,a
=a,a,e
&g,110000
&h,110010
&aa,a
&ab,b
&ac,c
&ad,1
&c,101011
&d,10
=a,a,d
&c,aa
=d,0,g
=d,10,h
&d,0
=a,a,c
&d,1
=a,a,c
&c,110110
&ae,11000
&a,ad
=a,a,ae

3

&a,d
&b,aa
&c,111011
&ae,10
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=a,a,ae
&b,bb
&ae,1000000
=d,1,ae
&ae,1000010
=a,a,ae
+ad,1
=a,a,h
&d,ad
&a,aa
&b,ab
&c,ac
=a,a,c
&af,a
&ag,b
&c,1001100
&d,100010
=a,a,d
&a,d
&c,1010000
&d,11000
=a,a,d
&a,af
&b,d
&c,1010101
&d,10000
=a,a,d
&b,ag
=a,a,c
&d,0
&ah,a
&ba,1011101
&bb,1100110
&bc,c
&b,10
=bd,ah,bb
&bd,1000111
&c,1100001
=a,a,bd
&c,bc
=d,0,c
+b,1
=a,a,ba
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&d,1
&a,ah
=a,a,c
&be,10
+be,10
&bf,10
&a,bf
&c,1101111
&bg,1010111
=a,a,bg
&e,1110111
=d,1,e
+bf,1
&d,10000110
=bf,be,d
&a,bf
&c,1101111
=a,a,bg
&bh,bf
&ca,bf
+ca,bh
&cb,1101001
=be,ca,cb
+bh,1
&cb,1110001
=bh,be,cb
&c,10000010
&a,bh
=a,a,bg
&e,1111000
=d,1,e
&e,10000100
=a,a,e
%
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