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A b s t r a c t .  For all complexity measures in Kolmogorov complexity the 
effect discovered by P. Martin-LSf holds. For every infinite binary se- 
quence there is a wide gap between the supremum and the infimum of 
the complexity of initial fragments of the sequence. It is assumed that  
that  this inevitable gap is characteristic of Kolmogorov complexity, and 
it is caused by the highly abstract nature of the unrestricted Kolmogorov 
complexity. 
We consider the complexity of inductive inference for recursively enu- 
merable classes of total  recursive functions. This object is considered as 
a rather simple object where no effects from highly abstract  theories are 
likely to be met. Here, similar gaps were discovered. Moreover, the ex- 
istence of these gaps is proved by an explicit use of the theorem by P. 
Martin-LSf. 
In our paper, we study a modification of inductive inference complexity. 
The complexity is usually understood as the maximum of mindchanges 
over the functions defined by the first n indices of the numbering. Instea~l 
we consider the mindchange complexity as the maximum over the first 
n functions in the numbering (disregarding the repeated functions). Lin- 
ear upper and lower bounds for the mindchange complexity are proved. 
ttowever, the gap between bounds for all n and bounds for infinitely 
many n remains. 
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1 I n t r o d u c t i o n  

1.1 K o l m o g o r o v  c o m p l e x i t y  

Consider K ( n ) ,  C(n )  and other functions which measure various versions of 
Kolmogorov complexity for words, natural  numbers and other objects. These 
functions are not computable.  Moreover, even if we are not so much interested in 
the Kohnogorov complexity of individual objects but we wish only to understand 
the order of magnitude of the growth of these functions, we discover with some 
surprise that  even functions like 

K'~aX(n) = m a x  / i ( i )  
0_<i<_~ 

are highly chaotic. The first result of this kind was the theorem by P. Mart in 
L•f [15]. Let h(n)  be an arbitrary total  recursive function such that  the series 

Z 2-hCn) 

diverges. Then for every 0-1 valued function f it is true that  for infinitely many 
values of n 

K B ( f  ['~]) <_ n -- h(n)  

This theorem showed that, there does not exist a maximally  complicated 
binary sequence every initial fragment of which would have the complexity 

K B ( f  [nl) = n 

If we consider a complicated binary sequence, at the best we have 

K B ( f  [~]) = n 

for infinitely many values of n but for infinitely many other values of n we have 

K s ( f  [~l) _< n - h(n) 

This implies that  for all the functions expressing Kolmogorov complexity we 
are to consider seperately the complexity for  nearly all n (or more precisely, for  
all n but a finite number of them ) and the complexity for infinitely many  n . 

Indeed, J. B~rzdir~ [2] proved many results on Kolmogorov complexity of  
initial fragments of binary sequences describing recursively enumerable sets, and 
in all these results the complexity of the recursively enumerable set for  nearly 
all n was essentially higher than the complexity for  infinitely many n . Var- 
ious modifications of the problem were considered and various versions of the 
Kolmogorov complexity were used. 

We consider the mindchange complexity in Inductive Inference. This notion 
seems to be much simpler than the unrestricted Kolmogorov complexity. Hence, 
one can expect that  the gaps between the upper and lower bounds for nearly all 
n and for infinitely many n may not exist. However they exist! (cf. [4]) 
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This is not a coincidence. The proofs of the lower bounds make use of the 
theorem by P. Martin-L6f in an explicit way. 

The unexpected nature of this relation is exactly in the fact that Inductive 
Inference of recursively enumerable families of total recursive functions is usually 
considered as something very simple while effects like the one discovered by P. 
Martin-LSf are expected only in highly complicated abstract worlds. What  really 
happens in the proofs of these bounds is a reduction from the Martin-LSf effect 
in Kolmogorov complexity theory to Inductive Inference. 

A posteriori the possibility to perform such a reduction is not at all sur- 
prising. It remains to remember that  the very first A.N.Kolmogorov's paper 
on Kolmogorov complexity [14] was named "Three  approaches to the quanti- 
tative definition of information". One of these three approaches was based on 
predictability which is very much related to Inductive Inference. However, we 
are somewhat far from a complete understanding of this relation between Kol- 
mogorov complexity and Inductive Inference. 

The way to better understanding of these phenomena leads through more 
detailed study of both fields. One of directions for such a study is defining re- 
finements of both notions and analysing relations between them. The first success 
in this direction was [1] where a different type of Kolmogorov complexity was 
applied to inductive inference from imprecise information to obtain new results. 

In this paper, we define a new variation of inductive inference complexity. 
Both upper and lower bounds differ considerably from bounds for complexity 
measures studied before. Logarithmic bounds of [4] are replaced by linear bounds. 
However, the gap between upper and lower bounds still remains and is even 
bigger! 

1.2 I n d u c t i v e  I n f e r e n c e  

The complexity of Inductive Inference is usually measured in mindchanges. 
Mindchange complexity is a natural complexity measure, no less natural than 
time or tape complexity in the Theory of Computation.  This way, we can con- 
sider in Inductive Inference essentially the same complexity problems as in the 
Theory of Computation.  For instance, there are languages recognizable in poly- 
nomial time,exponential time, etc., and there are classes of total recursive func- 
tions identifiable with no mindchanges, with one mindchange, . . . ,  with finitely 
many mindchanges. 

Unfortunately for Inductive Inference, time complexity classe can be named 
by malay types of functions (polynomial, exponential, double-exponential, etc.), 
but it is rather difficult to name complexity classes in inductive inference using 
functions different from constants. One can say that  a class U of total recursive 
functions is identifiable with 7 mindchanges, but  what meaning has a "logarith- 
mic number of mindchanges" ? Logarithmic of what? 

For this reason, the researhers in Inductive Inference have mainly focused 
on the investigation of constant bounds. The first result in this direction was 
that[5], for any a E IN, there is a set of functions that  can be identified with 
a + 1 mindchanges but  cannot be identified with a mindchanges. It was followed 
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by many other results on constant bounds which can be found in the proceed- 
ings of ALT(Algorithmic Learning Theory) and COLT(Computat ional  Learning 
Theory) conferences (ef. [8, 11, 13]). 

In this paper, we consider nonconstant bounds. For recursively enumerable 
classes U, it is easy to define complexity classes with nonconstant complexity 
bounds. In this case U = {ri} and "identification with logarithmic number of 
mindchanges" means "every f E U is identified with at most log n mindchanges, 
where n is the minimal r-index of f . "  Complexity of identification of recursively 
enumerable classes was first considered in [4]. The results from [4] and many 
other related results are contained in the survey [6]. Recent results on this topic 
can be found in [1, 7]. 

In the general case the number of mindchanges can be a rather complicated 
function of the r-index i. There can be three different kinds of lower bounds: 

1) "'for all n, the number of mindchanges in identification of r~ exceeds g(n)," 
2) "for all n, there is a function ri with i _< n such that the number of mind- 

changes in identification of ri exceeds g(n)," 
3) "for infinitely many n, there is a function r~ such that the number of mind- 

changes in identification of rn exceeds g(n)." 

The lower bounds of type 1) are impractical. If at least one function f has 
infinitely many r-indices, there is no hope to prove a lower bound exceeding 
constants. Bounds of type 2) and 3) are two different complexity measures and 
both of them are interesting. Each of them has a matching upper bound type. 
Together, we get 4 meaningful types of bounds: 2 types of upper bounds and 2 
types of lower bounds. 

The main results in [6] were a logarithmic upper bound of the mindchanges 
for arbitrary recursively enumerable class U of total recursive functions and 
large gaps between (upper and lower) bounds for all initial segments of natural 
numbers and for infinitely many initial segments of natural numbers. The most 
surprising effect in [6] was the fact that  these large gaps were direct corollaries 
of a similar effect in Kolmogorov complexity proved by P. Martin-L6f [15]. (For 
more information on Kolmogorov complexity, refer to the textbook [14].) 

We noticed that in Theorem 9 below the number of mindchanges depends 
not on the r-indices involved but rather on how many distinct functions there 
are among the first n functions rl, r~ , . . . ,  rn. However, the more sophisticated 
algorithms used to prove the upper bounds in [4] have this property no more. 
Hence, we decided to study all 4 bounds (lower and upper bounds both for all 
initial segments and for infinitely many initial segments) in the case when we 
understand the "initial sgment of length n" not as ( r l , . . . ,  r~} but  rather as the 
minimal ( r l , . . . ,  ry} containing at least n distinct functions. 

Our results can be characterized as follows. The logarithmic upper bounds[4] 
for the old notion of initial segments are no more valid, they are replaced by 
linear bounds. However, the gaps between "for all initial segments" and "for 
infinitely many initial segments" are even larger. 
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2 T e c h n i c a l  P r e l i m i n a r i e s  

IN = {0, 1 , . . .}  denotes the set of natural numbers, card(S) denotes the cardi- 
natity of a set S. We use standard recursion-theoretic notation (cf. textbooks 
[17, 18]). 

We consider recursively enumerable classes U of total recursive functions with 
some given numbering r.  

D e f i n i t i o n  1. A class of total recursive functions U is called recursively enu- 
merable, if there exists a recursive function g(i, x) such that 

t. For each f E U there exists i such that  g(i, x) = f (x)  for all x. 
2. For each positive integer i there exists a function f E U such that  g(i, x) = 

f(x)  for all x. 

The function g(i, x) introduces the numbering r of the class U: r = {ri}, where 
T~(x) = g(i, x).  

An enumerated class is the pair (U, r )  of a class U and a numbering r.  
We fix some numbering of all tuples of non-negative integers using non- 

negative integers. The number of ( x l , . . . ,  x,~) is denoted by ( x l , . . . ,  xn). For a 
function f ,  f~ denotes ( f ( 0 ) , . . . ,  f(n)). 

The inductive inference of total recursive functions works as follows. 
A black box computes some function f E U and outputs f(0) ,  f ( 1 ) , . . . .  An 

inductive inference algorithm or strategy F receives fn and outputs some hy- 
pothesis. The hypothesis is either a program computing some function or an 
index of the function in the numbering r (cf. Definition 1). We expect that the 
sequence of hypotheses produced on f0, f l ,  f 2 , . . ,  converges to a correct G6del 
number ['or f (x)  (or correct r-index). 

D e f i n i t i o n  2. A strategy is an arbitrary partial recursive function of one argu- 
ment. 

F ( ( f (0 )  . . . . .  f(n))) (or F(f~))  denotes the hypothesis issued by the strategy 
F after reading f(0)  . . . . .  f(n). 

We shall consider three types of identification: 

1. Identification of GSdel numbers. 
Informally, GSdel numbers[16, 17] are programs in some universal program- 
ming language (GSdel numbering[16, 17]). The task of the strategy is to 
find a program computing the input function f .  Before finding the correct 
program, the strategy is allowed to make arbitrary (but finite) number of 
incorrect guesses. The strategy makes a mindchange when it replaces one 
hypothesis with another. More formally, we have 

D e f i n i t i o n 3 .  [9, 10] A strategy F identifies a G6del number of a function 
f ,  if there exist N and t such that  F ( f  ~) = t for all n > N and t is a correct 
GSdel number of f(x).  
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D e f i n i t i o n  4. A strategy F identifies a class U if F identifies all functions 

f E  U. 

D e f i n i t i o n  5. Tile number of mindchanges of F on a function f is the num- 
ber of n such that  F ( f  n) 7k F(fn+l). It  is denoted FEX(f) .  

We define 
, E X  Fu: (n) = max{FEX(ri)l i E { 1 , . . . ,  m}}, 

where m is the minimal number  of the n-th different function in numbering 
r .  We shall consider F~Er x as a measure of complexity for s t rategy F .  

2. Prediction (or NV-identification). 
In prediction, the task of a s t rategy is slightly different. Instead of finding a 
correct program for f ,  the strategy has to predict the next value f (n  + 1) 
of f after reading f(0) ,  . . . ,  f(n). The strategy sueceds on f if it predicts 
correctly all but finitely many values f ( n +  1). More formal definition follows. 

D e f i n i t i o n 6 .  [4, 3] A strategy F predicts a function f in the limit, if 
(a) For all n > O, F ( f  '~) is defined. 
(b) There exists an N such tha t  for all n > N,  F ( f  '~) = f (n  + 1). 

D e f i n i t i o n  7. A strategy F predicts in the limit a class U if it predicts in 
the limit all functions f E U. 

D e f i n i t i o n  8. The number of errors of a strategy F on a function f is the 
number of integers i such that  F ( f  i) ~k f ( i  + 1). It is denoted F g v ( f ) .  

Similarly, as we defined F{Er x using F E x ( f ) ,  we now define F{} NV using 
FNv(f). 

3. Identification of r-indices. 
The definitions are similar to identification of GSdel numbers. The only 
difference is that  we require that  the hypothesis F((f(O), . . . ,  f(n)})  should 
be an index of f in tile numbering r,  not a G6del number. We also define 
the counterpart  of F~ Ex and denote it f't~,,. 

A straight-forward identification by the enumerat ion [9, 10] gives the first 
(trivial) result.. 

T h e o r e m 9 .  For every enumerated class (U, r) there exists a strategy F such 
that F[r:(n) < n -  1. 

A similar result holds for identification of G6del numbers and prediction. 

L e m m a  10. For each strategy F identifying r-indices of class (U, r) there exists 
a strategy G identifying Gb'del numbers such thai for all n 

GEX , u:  In: < F[r,r(n) 
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Proof. If  a T-index is known, then GSdel number  can be computed by some 
algorithm. So, the strategy G can work as the strategy F,  compute the T-index 
and then obtain the GSdel number from the v-index. [] 

L e m m a  11. [6] For each strategy F predicting a class (U, v) there exists a strat- 
egy G identifying G5del numbers such that for all n 

E X  F N V t n ~  Gv: (n) < v :  ~ : 

These two lemmas show that  from a complexity viewpoint, the identification 
of GSdel numbers is the simplest of three identification types. If  we wish to prove 
lower complexity bounds for all three types, it is enough to prove them for the 
identification of GSdel numbers. 

3 Linear  Lower  B o u n d s  

T h e o r e m  12. There exists an enumerated class of recursive functions (U, r), 
such lhat for each strategy F which identifies class (U, v) there exist numbers 
cl, c2 (Cl > 0) such that for all n 

E X  
F~,  r ( n )  ~_ c l n  - c2 

Sketch of proof. We use a subroutine which takes some strategy F and enumerates 
2 m functions such that  there are at most  m + 1 different functions among these 
2 m, and the strategy F makes at least m mindchanges on one of these functions 
(or F does not identify one of these functions). This subroutine works as follows: 

It  simulates the strategy F on function f ( x )  -- 0 and, while F has issued no 
conjecture, it defines the values of all 2 m functions equal to 0. (After the first 
step of simulation it defines f l (0)  . . . . .  f2m(0) = 0, after the second step 
f l (1)  . . . . .  f2m(1) = 0, and so on.) 

After F has issued its first conjecture, the subroutine defines the first free 
value of functions equal to 0 for half of the functions and equal to 1 for the other 
half of the functions: 

fl (k) ..... f2,,~-i (]¢) = 0 

f2,~-,+1(k) .... = f2,,,(k) = 1. 

Then the subroutine simulates F on these functions and, while F does not change 
its conjecture, defines the values of f l ,  • •., f2~ equal to 0. 

If F does not change its conjecture, then the conjecture is wrong either on 
the functions f l , . . . ,  f2m-1 or on the functions f 2 m - l + l , . . . ,  f2m. So, if F does 
not change its conjecture, it does not identify some of the functions f l , . . . ,  f2=. 

If  F changes its conjecture on the functions f l , . . . ,  f2-,-1, we define 

f2m--l..[.l(X) = ... = f~m(X) : 0 

for all x for which the values of f2~ -~+1 , . . . ,  f2m are not defined yet. So, it turns 
out that  all 2 m-1 functions f 2 m - ~ + l , . . . , f 2  T M  on which F does not change its 
conjecture are equal. 
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Then we choose k such that f l ( k ) , . . ,  f2m-1 (k) are not defined yet and define 
fi(k) = 0 for half of the functions f l ( k ) , . . . ,  f2m-l(k) and f~(k) = 1 for the other 
half. We wait until F changes its conjecture on some of f l  ( k ) , . . . ,  f2m-, (k). Then 
we define equal to 0 all undefined values of all functions on which F does not 
change its conjecture. Functions on which F changes conjecture are split into 
two halves once again. We repeat such splitting m times and obtain 2 m functions 
such that there are m + 1 different functions among them and F makes at least 
m mindehanges on one of them. 

If F does not change its conjecture on functions f l , . . . ,  f2 m-l, but changes 
it on f2m-l+l , . . . ,  f2m, we proceed similarly. 

Next, we define our recursively enumerable class (U, r)  on which each strategy 
F makes a linear number of mindchanges. 

We split the set IN = {0, 1 . . . .  } into segments So, S I , . . . .  The segment So 

consists of the first 2 20 consecutive numbers, the segment S1 consists of the next 
2 21 consecutive numbers and so on. The segment Si consists of 2 2~ consecutive 
numbers. 

We take some numbering of all partial recursive strategies F0, F1, . . . .  We 
associate the segments So, $2, $4, . . .  with the strategy F0, the segments S1, S~, 
$9, . . .  with the strategy F1, the segments $3, $11, $19, . . .  with the strategy F2 
and so on. 

2 ~' functions r i , , . . . ,  ~,+22,_1 with indices from the segment Si = {i ~, • . . ,  i l+ 

2 2' - 1} are defined as 2 ~'' functions constructed by the subroutine described 
above for the strategy Fj which is associated with Si. 

So, among these 2 2~ functions there are at most 2 i 4- 1 different ones and Fj 
makes at least 2 i mindchanges on one of them. 

If we take any n which is so large that, among first n different functions, 
there are all functions with indices from some S~ associated with Fj, we can 

conclude that Fj makes at least n / (2  ~+1) mindchanges on one of the first n 
different functions. We omit the details of the proof here. [] 

Lemmas 10 and 11 imply that similar results hold for prediction and identi- 
fication of T-indices, too. 

Similarly to Theorem 12, Theorem 13 can be proved. 

T h e o r e m  13. There exists an enumerated class of recursive functions (U, r), 
such that for each strategy F which identifies class (U, r) there exist infinitely 
many n such that 

EX o(n) (n) > 

Sketch of proof. The proof of this theorem is similar to the proof of Theorem 12. 
The only difference is that, to prove this theorem, we should take segments Si 

n 2 

of length2 2 , n o t  2 2". [] 

4 I m p r o v e d  I n f e r e n c e  A l g o r i t h m s  

Theorems 12 and 13 show that the linear upper bound given by Theorem 9 can- 
not be considerably improved. Theorem 13 implies that the upper bound of 
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Theorem 9 is the best possible upper bound "for all initial segments". 
However, if we consider the upper bounds "for infinitely many initial seg- 

ments", some improvements are possible. Namely, the fact that  there exists a 
class (U, 7) such that  for infinitely many "bad" n the inequality EX F~,~ (n) _> 
n - o(n) holds (Theorem 13) does not mean that  there does not exist such 
"good" n that  Ex F~, r (n) is less than -~,yn n or even ~ .  We have proved 

T h e o r e m  14. Let (U, v) be an enumerated class. There exists a strategy G that 
predicts U so that 

N V  n Gu,~ (n) <__ ~ + o(n) 

for infinitely many n. 

P,vof. We start  with defining an auxilary function M. 

L e m m a  15. There is a recursive function M(x )  such that 

1. M(O) = 1; 
2. For each n >_ O, there are at least M(n)  2 different functions among rl, . . . ,  

TM(n+I )"  

Proof. M ( n  + 1) can be computed from M(n)  as follows: 
Take some number M > M(n)  and compute how many different tuples are 

among (7"1(0),..., r l ( M ) ) , . . . ,  (VM(0), . . . ,  rM(M)).  If there are at least M(n)  2 
different tuples, then M(n  + 1) = M. Otherwise, increase M by 1 and try again. 

To compute M(n) ,  we first compute M(0),  then compute M(1) from M(0),  
then compute M(2) and so on, until M(n)  is computed. [] 

We use the function M(n)  to define 2 identification strategies: 
T h e  s t r a t e g y / ; i .  Find the smallest i such that  f (0)  = vi (O) , . . . ,  f (n )  = vi(n). 
and output  ri(n + 1) as a prediction of f ( n  + 1). 
T h e  s t r a t e g y  F~. 

1. Find the smallest i such that  f (0)  = vi(0) . . . .  , f (n )  = ri(n). 
2. Find an m such that  M ( m )  < i < M ( m  + 1). 
3. Search for j < M ( m  + 1) such that  

(vj(O) . . . .  , ~-j(n)) = ( f (O) , . . . ,  f (n ) )  

and ri(n + 1) ~ rj(n + 1). If there is no such j ,  then give vi(n + 1) as the 
prediction for f ( n  + 1). Otherwise, give rj(n + 1) as the prediction. 

N(m)  denotes the number of different functions among 7-1, v~, . . . ,  I'M(rn ). 

L e m m a 1 6 .  For any i E {1,2} and m E IN, Fi makes at most N(m)  prediction 
er~vrs on any of the functions r l , . . . ,  rM(m). 
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Proof. If  FI or F2 predicts  r~:(n) incorrectly, there  exists  an another  funct ion rj 
such t ha t  j < M ( m ) ,  r i(0) = Tj(O), r/(1) = T j ( 1 ) , . . . ,  r i ( n - -  1) = r j (n - -  1), but  
~i(n) ¢ ~ ( ~ ) .  

There  are N ( m )  different funct ions among  r l ,  ~ , . . . ,  TU(m). So, there are at  
mos t  N ( m )  numbers  n such tha t  one of  our s t ra tegies  makes  an error predic t ing 
r i (n) .  This  proves the lemma.  [] 

L e m m a 1 7 .  For each m one of ls'l and F2 makes at most N~2n + N ( m  - 1) 
errors on each of the functions 71 . . . .  , rM(m). 

Proof. Let i E { i , . . . ,  M ( m ) } .  If  i < M ( m -  1), each s t ra tegy  makes  at  mos t  
N ( m  - I)  errors ( L e m m a  16). i t  r emains  to consider i > M ( m  - 1). 

Let n(i) be the largest  number  such t ha t  

r,(0) = ~ ( 0 ) , . . . ,  r~(n(i)) = Tj(~(/)). 

tbr some j <_ M ( m  - 1). By L e m m a  16, each s t r a t egy  makes  at  mos t  N ( m  - 1) 
errors on vj. Hence, each s t ra tegy  makes  a t  mos t  N ( m - 1 )  errors predic t ing ri(O), 
ri(1) . . . . .  vi(n(i)).  I t  remains  to e s t ima te  the number  of  errors while r i ( n ( i ) ÷  1), 
r i (n( i )  + 2), . . .  are predicted.  We consider two cases: 

1. For each i G { 1 , . . . ,  M(rn)} ,  F1 makes  at mos t  ~ errors when v i (n ( i )+ l ) ,  
ri(n(i)  + 2) . . . .  are predicted.  
L e m m a  is evident  in this case. 

2. There  exists an i G {t,  M ( m ) }  such tha t  F1 makes  more  t han  N(m) 
errors predict ing r i (n( i )  + 1), vi(n(i) + 2 ) , . . . .  
Let E be the number  of errors of F1 on ri(n(i)  + 1), ri(n(i)  + 2), . . . .  Let 
n l , . . . ,  nE be the numbers  (in increasing order)  such tha t  vi(nl)  . . . .  r i(nE) 

N(m) are predicted incorrectly. We have E > 
t;'1 searches for the smallest, j sat isfying vj(O) = vi(O), r / (1)  = ri(1),  . . . ,  
rj(n - 1) = r i (n  - 1) and ou tpu t s  ri(n) as its predict ion.  So, if it makes  
predicts  Ti(nk) incorrectly, there exists jk < i such tha t  7-/(0) = vj~(O), . . . ,  
ri(n.~. - 1) = rj~(nk - 1), but  r i (nk)  ~ Tjk(nk ). We find the smal les t  such Jk 
tbr any k E {1 . . . . .  E}.  Then,  j l  < J2 < ---  < jE. 

P r o p o s i t i o n 1 8 .  Let k E { 1 , . . . , E } ,  n > n(i) and n ¢ nk. I f  F2 predicts 
r jk(n ) incorrectly, there exists j E { 1 , . . . ,  M(rn )}  such that 
(a) Tj(0) = rjk(O), . . . ,  r j ( n -  1) = r j k ( n -  1), but r j (n)  ¢ r j~(n) ,  and 
(b) rj is not equal to any of r j l , .  . ., rjE. 

P,vof. We consider two cases: 
(a) jk is the smal les t  r - index  consistent wi th  r jk(O), . . .  , rjk(n - 1). 

If  F., makes  an error, there exists j < M ( m )  such tha t  rj (0) = rj~ (0), 
. . . .  r j (n  - 1) = rj~(n - 1), but  rj(n)  7£ rj~(n). 
Then,  j > jk.  rj 7£ rj . . . . .  , rj ¢ rjk_,, because  j l  < . . .  < j k -1  < jk.  
By the definit ion of  j l , . . .  JE, rjk (nk) is the first different value of  rjk and 
rj~+~ . . . .  , r j , .  ( I t  follows f rom rjk (nk ) ¢ vi(nk ) and ri(nk ) = rjk+l  (r.~ ) 2 
. . . .  r ~ ( n k ) . )  
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However, n is the first different value of vl and rjk and n # nk. Hence, 

(b) jk is not the smallest T-index consistent with v j~(0) , . . . ,  vjk(n - 1). 
If F2 makes an error in this case, there exist two different functions vii, ri: 
with r-indices smaller than jk such that  both vil and vi2 are consistent 
with the fragment of vj seen by the strategy and via(n) # vi2(n). We 
select two such functions with the smallest il and i2. Without  the loss 
of generality, we assume that  il < i2. 
/'2 predicts vi:(n). This prediction is incorrect, vi2 is the sought function 
vj. vi2 is not equal to vjk+~,... ,  Us,  because i2 < Jk, but  jk < j~+l < . . . .  
Next, we prove that vi~ is not equal to vj~, . . .  ,vjk_~. 
If i < k, then the first different values of vjk and vj, are vjk(ni ) and 
vj,(ni). So, if vi~ = vj,, then n = m. By the definition of ji, ji is the 
smallest T-index consistent with v j , (0 ) , . . . ,  vj,(ni - 1). Hence, if n = Hi, 
then the function vi~ is equal to vj,, but vi2 is not. 

[] 

So, the number of errors of F2 on vj~ is less than or equal to the number of 
different functions among vl, . . . ,  VM(m) such that  none of them is equal to 
vj . . . . .  , vjE plus 1. Hence, the number of errors on Vjk(n(i ) + 1), Vjk(n(i ) + 
2) . . . .  is at most 

N ( m ) - E + I < N ( m )  ~ + 1 -  ~ + l . g ( m )  N(m)  

If i E {1,. ,M(m)} ,  but i ¢ jk, the proof that  F2 makes at most N(m) 
errors is similar. 

[] 

By Lemma 17, there is i E {1, 2} such that  

N(m)  
(Fi)NVr(i(m)) < ~ + N ( r n -  1) 

for infinitely many m. By the definition of M(n),  

N(n)  > i 2 ( n  - t )  > N2(n - 1), 

N(m)  N(m)  N(m)  
( F i ) ~ ' ( N ( m ) )  _< ~ + N ( m  - 1) < - - ~  + ~ -  2 - -  -4- o(N(m)).  

We have proved that,  for infinitely many m, Fi makes at most ~ + o(N(m)) 
prediction errors on the first N(m) different functions from vl, r2, . . . .  [] 

Coro l l ary  19. For each class (U, v) there exists a strategy F such that 

EX n ( . )  < + o(n) 

for infinitely many n. 

Proof. Follows from Theorem 14 and Lemma 11. [] 
For r-indices the proof desribed above is not valid. As we show in Section 5, 

the argument similar to Theorem 14 cannot give similar result for v-indices. 
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5 L o w e r  B o u n d s  f o r  S e t s  o f  S t r a t e g i e s  

In proof  of  Theorem 9 we const ructed  a s t ra tegy which identified any class (U, v) 
making no more than  n mindchanges  on each of  first n functions. In Theorem 14 
we constructed 2 strategies, one of  which identified class (U, v) making  no more  
than  2 + o(n) mindchanges.  W h a t  can we do with 3 or more  strategies? Can we 
achieve bet ter  upper  bounds?  

No, we cannot .  Methods  f rom proof  of  Theorems  9 and 14 cannot  be im- 
proved so far tha t  they will give bet ter  upper  bounds.  To prove this, we need to 
change the definition of strategy. 

Strategy, as we defined earlier, is a part ial  recursive funct ion of  one argument .  
Identification algori thms of  Theorems  9 and 14 are more general, because they 
use two arguments :  the class (U, v) (by looking up the values of  vi(j)) and the 
previous values of funct ion f ( x )  ( ( f ( 0 ) , . . . ,  f (n))) .  The formal definition in this 
case is as follows: 

D e f i n i t i o n 2 0 .  A uniform s t ra tegy is part ial  recursive funct ion of  two argu- 
ments  F(1, x). The a rgument  I is a Ghdel number  of  the funct ion g(i, x) (Defini- 
t ion 1), the a rgument  x is ( f ( 0 ) , . . . ,  f (n)) .  

This definition allows the s t ra tegy  not  only to compute  the values of  ri(j), 
it also allows to analyse the a lgor i thm according to which these values are com- 
puted. However, this does not help in improving Theorem 14. 

T h e o r e m 2 1 .  For each finite set of uniform strategies F 1 , . . . ,  Frn identifying 
Gb'del numbers, there exists a class (U, r) containing infinitely many functions 
such that for each strategy Fi ( i = 1, . .  ., m) which identifies class U, ( Fi )u,rEX (n) >_ 
~ o(lz) for al ln.  

Proof. Suppose a t eam of general strategies F 1 , . . . ,  Fm is given. 
At first we construct  a class (U, r)  by giving an a lgor i thm for a funct ion 

g(i, x, l) with an addit ional  parameter  l (see Definition 1). We give l as the first 
a rgument  to the s t ra teg ies -  Fk(l, (f['~])), 1 < k < m. 

We divide the functions v0, r l , . . ,  in two infinite disjoint subclasses: P0, Pl, • • • 
and n0, al . . . . .  ai is r22,, the remaining are p-functions, with growing order of  
indices. 

The a lgor i thm for the class is as follows: 
INIT. 

For all 5'C_ F assign 

f 0, if card(5:) >_ m/2 ,  or card(5:) = m/2  and 1 E 5: 
Prey[5:] 

1, otherwise 

t ~ - - 0  
X0 +-- 0 

I ~-- {0, 1, 2 , . . . }  
Go to S T E P  0. 



256 

STEP r. 
Start  the following parallel processes: 

1. Define p~+lj+t(xo) = 0 and p2~+lj+t+2,(xo) = 1 for all j .  
Define p2rj+t(x) = 0 for x = x0 + 1, xo + 2 , . . . .  
A*--@ 
Go to 2. 

2. On functions {erj I J E I} construct a counter-class to the strategies Fk E A, 
similar to the class we are building now. Counter-class to an empty  set 
of strategies is a class of constant 0 functions. Constructing counter-class, 
record a-indices of those functions that  are already defined on at least one 
point in set J. 
Go to 3. 

3. For each k ~ A start  computing,  on which of the two branches (p~=l) and 

Pt+. ) X = X0, X0 + 1 , . . . ,  strategy Fk changes its current hypothesis (on 
STEP  0 we also compute the hypothesis made by Fk on the empty  segment 
0,  to establish a mindchange). 
If that  happens for some Fk,, then assign to Yk' the value of argument  x, on 
which it made the mindchange, and go to 4. 

4. Cancel the construction of counter-class on a-functions. 
Define aj(x) = 0 for all j E J and for all x, if aj(x) is undefined yet. 
I ~ - I \ J  
A 
If A = F, go to 5. Otherwise go to 2. 

5. Cancel definition of p2~j+t(x) for x > x0. 
Assign to Y0 the maximal value of argument,  for which at least one of these 
functions is already defined. 

Bo ~- "~kJFk made the last mindchange on the branch (p~U~])~-" 

B1 ~-- A \ Bo 
If  Prev[Bo] = O, then u ~ t + 2 r, otherwise u *-- t and t ~ t + 2 r. 
Define p2,,+lj+u(x) = 0 for all j and for all x > Xo, if these values are 
undefined yet. 
Prev[Bo] ~-+ Prey[B1] 
Go to 6. 

6. y ~ - - l +  max  y~ 
0 < k < m  

Define p2,+lj+~(x) = 0 for all j and x0 < x < y. 
X0 s-- y 

Go to STEP v + 1. 

It follows from the recursion theorem that  there exists l' such that  g(i, x, l') = 
~l' (i, x), where ~ is the Ghdel numbering used in Definition 20. Thus this func- 
tion (defining the class (U, r ) )  gives its own Ghdel number  as the first parameter  
to the strategies. 

In this algorithm F is the set of the indices of  all strategies; A enumerates 
those strategies that  have made a mindchange at the current step; B0 enumerates 
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those strategies tha t  made  this rnindchange on the branch tha t  had pj (x0) = 0; 
B1 the same for the branch tha t  had pj (x0) = 1. I is the set of  those c~-indices 
tha t  we have not spoiled at previous steps; it always contains all the natura l  
numbers ,  except a finite amount  of them.  In J we record those ~-indices, whose 
values we have defined and thus spoiled, if we have to cancel the current  process 
on c~-functions. By y we establish tha t  the next x0 is large enough,  so tha t  all 
the fixed mindchanges  have happened  on smaller initial segments  and all values 
o f  p2,+lj+t are undefined at this point.  

At  each step we choose one of  the two sets B0 and B1, and make the strategies 
with indices f rom it to  do a new mindchange  o n  p2.+lj+t, i. e. on all the different 
functions,  considered at this step, except one tha t  equals to p2,+lj+~ for all j .  
In the array P r e v  we record for each subset of  F, if it was chosen the last t ime 
it was encountered,  and we choose the subset iff it, was not  chosen this last time. 
If  such subsets are encountered the first time, we choose the largest one. 

Suppose each of  m strategies makes a mindchange  on at least one of  two 
branches at each step. As in two subsequent  choices for the same subsets all m 
strategies are chosen, and at the first choice for these subsets the largest subset is 
chosen, we conclude tha t  the mean  of  tile number  of  strategies chosen at one step 
is at  least m / 2 .  As at each new choice we int roduce exact ly  one new different 
function,  the total number  of mindchanges made  by all m strategies on the first 
n + 1 different p-functions is at least m_. n One s t ra tegy can have greater number  

2 ' 
of mindchanges  than  another  only on account  of  those dividings in subsets tha t  
have occurred an odd number  of  times. As the number  of dividings of  an m 
element set in two subsets is 2 m - 1  each s t ra tegy makes at least 

(~. m)/2 2~-~ = 2 _  2-~-~ 
m 2 

mindchanges  on one of  the first n + 1 p-Nnct ions  for all n. As at each choice 
every second of  the considered p-Nnct ions  is made  to be one and the same 
function,  but  other  functions ( that  will be considered at the next step) are made  
different fi'om it, the number  of  different functions among  the first n p-functions 
is [log 2 nJ + 1 or [log 2 n] + 1, while the number  of  c~-functions inbetween them 
is o(log 2 n), thus we get the needed est imation.  

Now suppose tha t  at  some step not  all of  the strategies make a mindchange 
on a.t least one of  the branches. Then  a lgor i thm remains  at  this step forever. 
The  p-functions are gradual ly defined equal to  0 for all x > x0, so there is only a 
finite amoun t  of  different functions a m o n g  them,  and the complexi ty  funct ion is 
decided on ~-functions,  on which a similar class is built  for a smaller amoun t  of  
strategies (for those tha t  made a mindchange) .  Thus  we get the needed, apply ing  
this theorem recursively (the basis for recursion is given by 0 strategies and a 
class consisting of  constant  0 functions).  D 

From L e m m a  11 it follows tha t  similar theorem holds for the prediction,  too.  
For the identification of  r-indices even the s t ronger  result holds. 

T h e o r e m  22. For each finite set of  uni form strategies F1, . . . , Fm identifying r-  
indices there exists a class (U, r) containing infinitely many  funct ions such that 
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for each stralegy Fi (i = 1 , . . . ,  m) which identifies class U : F~,r(n ) > n - o(n) 
for all n. 

Skef.ch of proof. The proof is rather similar to the previous one. Consider uniform 
strategies F 1 , . . . , F m .  The class U, as previously, consists of "usual" pn and 
"rare" c~n functions (the amount  of rare functions among the first n functions 
does not exceed o(n) this time), and we use the recursion theorem on it to make 
the strategies work on itself. 

We define pk(O) = 0 and c%(0) = 1 for all k, to make these subclasses 
explicitly different. Then we gradually define pn(x) = 0 for x = 1 ,2 , . . .  and at 
the same t ime wait for the strategies to make their hypotheses on the initial 
segment (0). While not all of them have given out a hypothesis, we construct 
a class of the rare functions similar to the one we are defining now - for those 
strategies that  have given out their hypotheses. 

Suppose that  all m strategies have given out their hypotheses: h i , . . . ,  hm. 
Then we choose some x large enough and define: rhi(X) = 1 for those i, for 
which Vh~ is a p-function. We also define pk(x) = 1, where k is the least index, 
for which we have not yet defined Pk to infinity. On all other points we define 
these functions by 0 (so they are equal). Thus all m strategies have given a 
correct hypothesis only on one function. On all other functions we repeat  this 
procedure by giving the strategies 0 x, 0~+1, . . .  as inputs and waiting on them to 
change their previous (wrong) hypotheses. 

If  all strategies change their wrong hypotheses on all initial segments O n , 
then all strategies make at least n on (n + 1)-st different p-function. If  some 
strategy does not change its wrong hypothesis, it does not identify the class U. 
In this case, the amount  of diffrent p-functions is finite, and the subclass for the 
strategies that  worked properly on p-functions is constructed on a-functions. [3 

This theorem shows that  the counterpart  of Theorem 14 for r-indices cannot 
be proved similarly as Theorem 14. 

So, a t tempts  to generalize Theorem 14 meet serious difficulties. If we wish 
n upper bound where c > 2, we need to consider an infinite number  to prove 7 

of strategies. In all proofs on the complexity of  inductive inference known to 
us, only finite number  of strategies are considered. So, some new methods are 
needed. On the other hand, if there exists a class such that  each strateegy needs 
n_ mindchanges when working on this class, to prove it we also need some new 2 
methods. The idea of proof from Theorem 12 will not work in this case. 
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