
Formal Aspects of Computing (1989) 1:293-301 
�9 1989 BCS Formal Aspects 

of Computing 

Book Reviews 

T e m p o r a l  L o g i c s  a n d  T h e i r  A p p l i c a t i o n s ,  Anthony Galton (editor). Academic 
Press, 198Z 244 pages. Price s ISBN 0-12-274060 

This volume arose out of a conference on temporal logic and its applications run 
by the Centre for Theoretical Computer Science at Leeds University in January 
1986. It contains three papers based on presentations given at the conference 
supplemented by three additional papers containing closely related material. 

Temporal logics (there is more than one such logic) are now recognised as 
powerful tools for reasoning about dynamic systems such as distributed and 
reactive systems. In essence temporal logic deals with statements such as: 

eventually . . . .  
�9 a f t e r . . . ,  
henceforth. . ,  etc. 

Linguistically this means that we can argue formally about tenses other than the 
present: 

- it will be true that Jack was formally an undergraduate, 
- it used to be his ambition to be a snooker champion, 
- he will practice until he succeeds. 

In his introduction to the book, John Tucker cites the origins of temporal logic 
as being in philosophy. (Indeed he argues that this is further evidence why 
philosophy as an academic discipline should not be discarded whimsically - 
Here Here!!) However it is not noteworthy that, despite their backgrounds, all 
the contributing authors are currently working in Computer Science departments, 
not in Philosophy or Mathematics, and this serves to reinforce the impression 
that temporal logic is given purpose by, and owes much of its development to, 
activity in Computer Science and, in a less rigorous style, AL 

Essentially the book is in two parts, the first (written by the editor) is a 
comprehensive overview of  the basics of the subject as it stood circa 1986/7. Like 
most branches of Computer Science, as one might justifiably regard temporal 
logic, advances in - and variants o f -  temporal logic continue to evolve apace. 
Nevertheless, for those who are new to the subject it is a readable and thought 
provoking introduction. Readers not accustomed to logical arguments above the 
level of "symbol juggling" in first order predicate calculus may encounter difficul- 
ties and perhaps not appreciate the subtleties; but this is not a reflection on the 
author. The reader familiar with current verification proof methods for sequential 
programs should have relatively few problems and hopefully will be interested 



294 Book Reviews 

by the potential descriptive and analytical possibilities that the temporal operators 
promise. Intrinsic to the introduction is the charactedsation of time. At the very 
least we have discrete, continuous, linear and branching models of time. There 
is more to this than just counting! 

The rest of the book comprises self-contained papers that address either the 
application of temporal logics to certain areas of Computer Science or discuss 
more specialised variants of the logic. These papers not only serve to underline 
the diversity of the subject but hint at yet more links with Computer Science. 

Chapter 2, written by Howard Barringer, is a tutorial on the use of temporal 
logic in the compositional specification of concurrent systems and addresses the 
usual problems such as fairness and liveness. The exposition is centred an action 
language, its semantics and an associated proof system. This is not just a very 
readable account of work which is of interest and relevance to any one involved 
with the serious study of disturbed systems, but serves also as an introduction 
to his more extensive collaborative work with Kuiper and Pneuli. 

The next chapter, by Roger Hale, addresses temporal logic programming. 
Based strongly on the work of Moszkowski, Interval Temporal Logic is introduced 
and developed into the Tempura programming language. The classical "Towers 
of Hanoi" is discussed and solutions presented in various programming para- 
digms. The appropriateness of this example to illustrate a system which 
allows/supports/encourages concurrency is questionable, and the author seems 
to agree, but use of temporal logic makes it easier to reason about the solution. 

Fariba Sadri surveys three different approaches to temporal reasoning: 
Kowalski-Sergot, Lee-Coelho-Cotta, and Allen. The paper describes and com- 
pares the formalisations and goes on to argue that each could be modified to 
incorporate the features of the other two. 

Chapter 5 is written by Anthony Galton and concerns the Logic of Occurrence. 
The subject matter includes a formal treatment of tenses and on-going or complete 
events and, as to be expected, links to other work on so-called Event Logic. The 
paper then goes on to present a tentative development of event logic and its use 
to formalise temporal reference. 

The final paper is by Dov Gabbay and returns to the subject of programming 
in temporal logic. The approach taken is to incorporate modal and temporal 
connectivities into Pro log. The basic ideas in moving towards Temporal Prolog 
are discussed and illustrated by considering a selection of the new operators that 
are required; a fuller exposition of the extended language is promised elsewhere. 

The growing importance of temporal logic, in describing distributed systems 
and reasoning about them, means that the subject should be brought to the 
attention of a much wider audience. The discipline is still in its infancy and it 
will be some considerable time before it is mature enough to spawn a proper 
text which is suitable for teaching purposes. In the mean time this volume provides 
an introduction to the field which is accessible to the mathematically aware 
software engineer - but he will have to work hard to master the new concepts. 

John Cooke 
Loughborough 

Rewriting Techniques and Applications, J.-P. Jouannaud (editor). Academic 
Press, 1988. 216 pages. Price s ISBN 012 3909 600 

This is the book of the journal [Jou85] of the proceedings [Jou87]. To be more 



Book Reviews 295 

precise: selected papers from an international conference entitled "Rewriting 
Techniques and Applications", held at Dijon in May 1985, were revised, reworked, 
strictly refereed and assembled into a special issue of the Journal of Symbolic 
Computation. This volume is a reprint of that issue. 

It comprises eight papers. The first three (based on invited lectures at the 
original conference) are surveys/overviews of specific aspects of Term Rewriting 
and as such would be an excellent springboard for newcomers to the subject, 
especially research students. Some of the material is rather condensed but it is 
all very readable and extensive sets of references are included. The topics covered 
are: critical pairs and completion (by B. Buchberger), Thue Systems viewed as 
rewriting systems (by R. V. Book) and termination (by N. Dershowitz). 

These three papers account for half of the book. The remaining papers are 
shorter and more specialised. M. Rusinowitch examines the interrelationship 
between various simplification orderings. J. Hsiang demonstrates the application 
of term rewriting to the proofs of first order theorems - underlining the potential 
importance of term rewriting outside its currently perceived boundaries. The 
paper by K. A. Yelick is perhaps the most noteworthy from the technical stand- 
point. In it she presents a method for combining equational unification algorithms 
for certain classes of equational theories. The last two papers (by E. Tiden and 
S. Arnborg, and D. Benanav et al. respectively) deal with termination and 
NP-completeness of term rewriting in certain algebraic systems. 

Although the material is of a very high quality, there is nothing new here for 
the term rewriting community - but this is not the publisher's intention. The book 
is a worthwhile venture of the kind that should be encouraged; promoted 
adequately it will be of significant benefit to newcomers and as such it will 
increase interest in term rewriting. Academic and technical libraries ought to 
have a copy. 

References 
[Jou85] Jouannaud, J.-P. (ed.): Rewriting Techniques and Applications, LNCS 202, Springer-Verlag 

1985. 
[Jou87] Jouannaud, J.-P. (ed.): Rewriting Techniques and Applications. J. Symbolic Computation, 3 

(1/2) (1987). 

John Cooke 
Loughborough 

Algorithmic Information Theory, (3. J. Chaitin. Cambridge Tracts in Theo- 
retical Computer Science 1. Cambridge University Press, 198Z 175 pages. 
Price s I S B N  0521 343 062 

This book is for various reasons unusual. First of all, it is essentially a proof of 
a single theorem (i.e. Theorem D in Chapter 8). Secondly, the proof itself is a 
mixed one, i.e. the pure mathematical theory, developed to a large extent by the 
author himself (see [Cha66, Cha74, Cha87]) is used as a corpus of abstract ideas 
leading to a program written in a pure version of LISP which produces a huge 
exponential diophantine equation (of about 900,000 characters and 17,000 vari- 
ables), the "behaviour'" of which mimics coin tosses. As a whole, the book is a 
fascinating report of the author's adventure trying to answer some deep questions 
such as "what is a random real?" or "is number theory an experimental science?". 



296 Book Reviews 

The main conclusion (to put it into the author's words) is that there is in number 
theory "'a region in which mathematical truth has no discernible structure or 
pattern and appears to be completely random . . . .  This doesn't mean that the 
universe or mathematics are lawless, it means that some times laws of different 
kind apply: statistical laws". 

G/~del and Turing's seminal work concerning the existence of undecidable 
propositions essentially deals with the question whether an algorithm ever halts 
or, equivalently, whether an algorithm ever produces any output. Chaitin's idea 
is to ask a more complex question, namely whether an algorithm produces an 
infinite amount of  output or not. Using some clever ideas from [JoM84] and an 
old theorem of E. Lucas one obtains, in an algorithmic way, an exponential 
diophantine equation with one parameter p which has an infinity of solutions iff 
the pth bit of Chaitin's number f~ is 1; here 12 is the halting probability of a 
universal Turing machine, if an n-bit program has measure 2-". One proves that 
12 is an algorithmically random real in the sense that the first N bits of the 
base-two expansion of it cannot be compressed into a program shorter than N 
bits, from which it follows that the initial bits off /mimic the result of independent 
tosses of a fair coin. Moreover, an N-bit program cannot compute the positions 
and the values of more than N scattered bits of 12, not just the first N bits. 
Encoding the halting probability 12 into an exponential d~ophantine equation 
with a parameter p one deduces that no formal axiomatic theory is capable to 
settling whether the number of solutions of the equation is finite or infinite for 
more than a finite number of values of p. 

It is worth mentioning the great difference between asking, for an arbitrary 
diophantine equation, whether or not a solution exists rather than whether there 
are infinitely many solutions. Both questions are undecidable, but the latter is 
"more undecidable" than the former. The Algorithmic Information Theory offers 
a brilliant explanation of this fact. Indeed, if one considers an arbitrary diophan- 
tine equation with one parameter p and asks whether or not there is a solution 
for p = 0, 1 , . . . ,  N - 1, then the N answers to these N questions are not indepen- 
dent (due to the fact that the sets of solutions and of solvable diophantine 
equations are recursively enumerable it follows that we can determine - in an 
algorithmic way - which equations have a solution when p ranges from 0 to 
N - 1 in case we know how many of them are solvable), so these answers constitute 
only log2 N bits of information. In contrast, considering an appropriate diophan- 
tine equation and asking whether it has an infinite or finite number of solutions 
we get N independent answers. 

From a Computer Science point ofview the monograph is especially interesting 
in the innovations pertaining to Chaitin's version of LISP (only atoms are allowed 
to be one character long, EVAL (LISP universal function) must not lose control 
by entering into an infinite loop and the only way a syntactically valid LISP 
expression can fail to have a value is if it loops forever), the way in which register 
machines are simulated and the lower bound (of 127/128 ths) obtained for the 
particular construction of 12. The detailed study of binary random sequences 
(including a complexity-theoretic characterisation) as well as various information 
theoretic forms of G/~del's incompleteness theorem represent the mathematical 
side of the book, to a large extent the author's own contributions. 

Chaitin's monograph is a great success and we cannot help admiring it and 
highly recommending it to experts in the field. (This reviewer has worked hard 
to present Chaitin's basic results to undergraduate students in Computer Science 
at the Faculty of Mathematics of the University of Bucharest, and this work is 



Book Reviews 297 

still in progress during the writing of this review.) Let us add that Chaitin's 
seminal results are discussed in some monographs [Fin73, Sch71, Cal88] or in 
articles for a larger audience [Dar78, Cha88, De188, Ste88, CAM89]. At the same 
time the reader must be warned about the style of Chaitin's book (which is close 
to the style of his research paper [Cha74, Cha87]), many proofs are incomplete 
and little effort is paid to clarify the details. For example, the key Theorem I2 
deserves a more accurate statement and a formal proof. Theorems I4b and I8 
have unsatisfactory proofs (note that the set of canonical programs is immune). 
In a sense, his own statement concerning pure LISP is valid for the entire book. 
"This chapter can be quite difficult to understand, especially if one has never 
programmed in LISP before . . .  Initially the material will seem completely incom. 
prehensible, but all of  a sudden the pieces will snap together into a coherent 
whole". In spite of  the fact that we don't agree with [Gacnd] we think that 
the omission of some basic papers in the field (see [Ko165, Ko168, 
Mar66, Fin73, Sch71]) is a shortcoming of the book. Finally, the absence of 
Chaitin's famous equation from the book (due to its huge dimensions) begs for 
further investigations. 

References 
[Ca188] 

[CAM89] 

[Cha66] 

[Cha74] 

[Cha87] 

[Cha88] 
[Dav78] 

[De188] 

[Fin73] 

[Gacnd] 
[JoM84] 

[Kol65] 

[Kot68] 

[Mar66] 

[Sch71] 

[Ste88] 

Calude, C.: Theories of Computational Complexity, Annals of Discrete Mathematics 35, 
North-Holland, 1988. 
Calude, C. and Malitza, M.: The Impact of NIT's on Higher Education. In: Calude 
C. and D. Chitoran and M. Malitza (eds), The Introduction of New Information Tech- 
nologies in Higher Education, pp. UNESCO, CEPES, Bucharest, 1989. 
Chaitin, G. J.: On the Length of Programs for Computing Finite Binary Sequences. J. 
ACM, 13, 547-569 (1966). 
Chaitin, G. J.: Information-Theoretic Limitations of Formal Systems. J. ACM, 21, 
403-424 (1974). 
Chaitin, G. J.: Incompleteness theorems for random reals. Adv. Appl. Math., 8, 119-146 
(1987). 
Chaitin, G. J.: Randomness in arithmetic. Scientific American, 2567, 860-862 (1988). 
Davis, M.: What is a computation? In: L. A. Stein (ed.), Mathematics Today, Springer- 
Vedag, New York, 1978. 
Delahaye, J. P.: Un probi~me d'arithm6tique 616mentaire :~ jamais insoluble. La 
Recherche, 200, 860-862 (1988). 
Fine, T. L.: Theories of Probability: an Examination of Foundations, Academic Press, 
New York, London, 1973. 
Gacs, P.: Review of [Cha87], Mathematical Reviews 88h: 68038. 
Jones, J. P. and Matijasevich, Yu. 1.: Register Machine Proof of the Theorem on 
Exponential Diophantine Representation of Enumerable sets. Z Symbolic Logic, 49, 
818-829 (1984). 
Kolmogorov, A. N.: Three Approaches for Defining the Concept of "Information 
Quantity". Problems of Information Transmission, l, 3-11 (1965). 
Kolmogorov, A. N.: Logical Basic for Information Theory and Probability Theory. 
IEEE Trans., IT14, 662-664 (1968). 
Martin-L6f, E: The ~efinition of random sequences, Inform and Contro~ 9, 602-619 
(1966). 
Schnorr, C. P.: Zuf~lligkiieit und Wahrscheinlichkeit. Eine algorithmische Begrundung 
der Wahrscheinlichkeitstheorie, Springer-Verlag, Bedin, Heidelberg, New York, 1971. 
Stewart, l.: The ultimate in undecidabiHty. Nature, 232, 115-116 (1988). 

Crustian Calude 
Bucharest 



298 Book Reviews 

Logic and Computation: Interactive Theorem Proving with Cambridge LCF, 
L. C. Paulson. Cambridge Tracts in Theoretical Computer Science 2. Cam- 
bridge University Press, 1988. Price s ISBN 0521 346320 

LCF is the name of a logic, the Logic of  Computable Functions, developed by 
Vance Scott in 1969. This logic is a logic for a polymorphic lambda calculus and 
allows the treatment of higher order computable functions, non-termination and 
lazy computation. In order to perform proofs in this logic, Robin Milner created 
the Stanford LCF system (an interactive theorem prover). Although the system 
permitted the development of proofs the system had no capabilities for record- 
ing/coding proof strategies; each proof had to be performed by the user at the 
basic level supported by Stanford LCF. Milner decided to produce a theorem 
prover for LCF in which user strategies could be programmed. The result was 
Edinburgh LCF. 

Edinburgh LCF may be seen as a watershed in terms of  directions in theorem 
proving support. Its most radical departure was the notion that proofs are 
developed with a machine not as simply a proof tree, or as a series of  lemmas 
and theorems but as strategies or tactics for constructing the desired proof. These 
tactics can be thought of as the inverse of proof rules. Whereas proof rules take 
lists of theorems (the antecedents) to a theorem (the conclusion), tactics take a 
goal to a list of goals and a validation, where a goal is a formula that we desire 
to prove to be a theorem and a validation is a (forward) proof rule. Goals are 
broken down into simpler goals until we find that the goals correspond to axioms 
or already proved theorems. The validations are then composed to produce the 
desired proof of  the goal. 

The second major innovation in Edinburgh LCF was the programming 
language ML that was developed for the purpose of programming the tactics. 
ML has become an object of development in its own right in the revised form, 
SML, a rather clean and very powerful general purpose programming language. 
ML, like LCF, permitted the introduction of new types and the use of higher 
order functions, and these became a theme in the development of Edinburgh 
LCF and even more so in Cambridge LCF. 

Cambridge LCF is an update of Edinburgh LCF. The tactical programming 
language has changed from ML to SML and the logic LCF has been rounded 
out to include logical connectives missing (but essentially definable) in Edinburgh 
LCF. 

Larry Paulson's book is about the basis and use of the Cambridge LCF system. 
It starts with a brief survey and history of LCF like systems and much of the 
foregoing can be found therein (with, I hasten to add, a much more thorough 
and detailed explanation). It then moves on to three chapters on the basics of 
the LCF approach to theorem proving. The first of these, chapter 2, is an 
introduction to formal proofs in first order logic. Chapter 3 extends Chapter 2 
by introducing the lambda calculus and the logic of computable functions includ- 
ing fixed point induction and Chapter 4 introduces structural induction as a 
derived concept from fixed point induction. Both Chapters 3 and 4 introduce 
sufficient domain theory to justify the inference system development there. 

This first part of the book should answer anyone's curiosity about what LCF 
as a logic is all about and what pencil and paper proofs in LCF could be like. 
Indeed had this part alone been published the book would still be a valuable 
reference on the logical system. 



Book Reviews 299 

The second part (Chapters 5-10) of the book introduces Cambridge LCF as 
a system. This part is suitably detailed and contains sufficient exercises to allow 
someone to start using LCF to gain a feel for the system. There is little that can 
be said here about the book in detail for the general reader of this review, except 
that this section does describe the paradigm of tactical reasoning in detail and 
is well worth examination by any person interested in theorem proving. 

For the expert I must comment on Larry Paulson's Chapter 9 on re-writing 
and simplification. Re-writing is the basic workhorse of  Cambridge LCF and 
Chapter 9 shows the development of an approach, similar to tactics, for re-writing 
strategies. This approach allows the construction of new safe rewriting strategies 
and their combination into "larger" re-writing strategies in a completely analogous 
way to the production of tactics in the system. This more than anything else must 
be credited as a major development in the Cambridge LCF system. 

If I have any quibbles about the book at all, they are trivial ones of style. 
Occasionally Larry's English is somewhat terse and sometimes an in-line comment 
on the connection of a topic with, say, category theory, should perhaps have 
been relegated to a footnote. However, this cannot detract from the fact that this 
book will be of great value to anyone interested in theorem proving and indeed 
is a much needed book if the world is going to learn more about the LCF approach 
to theorem proving. 

Will Harwood 
Cambridge 

Lambda-Calculus, Combinators and Functional Programming, G. Revesz. 
Cambridge Tracts in Theoretical Computer Science 4. Cambridge University 
Press, 1988. Price s ISBN 0521 34589 8 
This book is about efficient graph reduction machines and along the way takes 
in the topics given in the title. It is of interest to those looking for a text which 
gives a theoretical basis for the implementation of functional languages but of 
less interest to those wishing to obtain an understanding of the topics given in 
the title. Mathematicians will find it of interest to .see how the topics are being 
applied while functional programmers should read it to get a better understanding 
of what they are doing. 

The prerequisites for the book are a general background in programming and 
mathematics with no particular knowledge requirements. The subject is developed 
clearly with discussion, examples and exercises (but no solutions). In the earlier 
part of the book a few forward references would have helped with motivation. 
For example, the Church-Rosser theorem is introduced on p. 25 and is vital to 
the parallel graph reduction algorithm given in Chapter 7; this is only obvious 
if you know it is. However, given the general clarity of the book, some interesting 
biographical notes to start discussions, some good exercises and one short but 
important bibliography, the book could form the basis of a second year under- 
graduate course. The author has implemented his system on IBM PC; given that 
the system was available, I am sure a course would be enjoyed by students. 

Chapter 1 sets the scene and provides good motivation for the work by relating 
it to developments in programming languages and mathematics. Chapter 2 intro- 
duces the lambda-calculus from a syntactic point of view (but the syntax is slightly 
non-standard) and introduces the idea of reductions. It is here that the whole 
flavour of the book is set with computation efficiency being stressed throughout. 
Chapter 3 extends the pure notation by introducing combinators and if then else. 



300 Book Reviews 

Arithmetic on numerals with simple operators is built to provide further syntactic 
conveniences. Recursion is discussed and the comforting notions of the Curry 
paradox and the need for the eta rule are introduced. The ideas of computational 
efficiency and syntactic convenience are furthered in Chapter 4 when lists (as in 
FP) are introduced. Evaluation of simple and infinite list operations motivates 
the idea of lazy evaluation. In Chapter 5 semantics are introduced (as reduction 
to normal form) with examples from FP and Miranda. 

At this point (p. 112 of  170 pp.) the theory is developed and we can down 
to some serious hacking. A sequential implementation of the PC system mentioned 
above is developed by considering program structure and graph reduction. A 
machine code is designed and evaluation by normal order reduction is described. 
Again considerations of efficiency lead the argument. The final chapter develops 
a shared memory parallel implementation and discusses the allocation of work 
to processors. A neat new garbage collection algorithm for cyclic structures should 
be of interest beyond the particular confines of graph reduction. 

If you or your students are interested in functional programming, I suggest 
you look at this book as it may well be suitable. The author does not try to be 
comprehensive but suceeds in producing a good computationally motivated 
introduction to the subject. 

Dan Simpson 
Brighton 

Software Productivity, Harlan D. Mills. Dorset House Publishing Company, 
1988, Price s ISBN 932 633 102. 
This book is a collection of papers produced by Harlan Mills during the years 
1968 to 1981. The papers have been simply bound together with no attempt to 
provide any continuity nor to link them in any way. This is a pity. 

The papers were written to explain various important topics of the time and 
to exhort IBM management in particular, and the world in general, to use the 
best available ideas to improve the quality of  software. In presenting the papers 
as is done here much of  the impact is lost. The same examples appear over and 
over again and a crisply made message loses its impact on a fourth or fifth reading. 

The papers concentrate on two ideas which were current in the 1970s, struc- 
tured programming and chief programmer teams. Structured and top down 
programming are given both mathematical and management treatments. The 
papers on programmers and their organisation discuss how such ideas could help 
IBM. It is unfortunate that the collection stops before we get to the cleanroom 
and an evaluation of its effects on productivity. 

Throughout the book we find Mills asking questions which are still valid 
today, and no doubt will also be valid tomorrow. In the earliest paper he points 
out that we need "a systematic set of properties which defines the value of a 
program" a search which guides all the work on software quality today. His 1974 
paper on "How to buy Quality Software" is still state of the art for most software 
procurers. His 1980 paper "Software Education Education" should be read by 
many of those purporting to convey software engineering course. Even a seemingly 
dated report such as "0S/360 Programming" has good advice for Unix hackers. 
Many of todays students will ask of the book "What's all the fuss about?"; it is 
a tribute to Mills' efforts that much of  what he proposed is now generally accepted 
as good practice. But it must be admitted that one has to search through a lot 
of wood to find the important trees and it is easy to lose motivation in so doing. 



Book Reviews 301 

The book is an interesting historical document but the information could have 
been presented in a quarter of the bulk. 

Most readers of this journal will be in sympathy with Mills' view that comput- 
ing will only progress when it builds upon a sound mathematical basis and his 
insistence that "packaged" methodologies are no substitute for thinking. When 
read individually the papers make these points well but lose much of their impact 
when presented in this volume; the rapier has been replaced by a blunt instrument. 

Dan Simpson 
Brighton 


