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COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI
23. TOPOLOGY, BUDAPEST (HUNGARY), 1978.

ON THE CATEGORY OF CECH TOPOLOGICAL SPACES

C. CALUDE —M. MALITZA

A Cech (topological) space is a set endowed with an extensive and
monotone operator. The Cech spaces (which generalize the usual topologi-
cal spaces) are in many cases not operational because it is not yet known
the form of the Cech product topology.

In the present paper we will show that this problem can be solved by
categorical methods, by studying the category of Cech spaces (where mor-
phisms are Cech continuous functions). We shall prove that this category
has finite limits and colimits and exponentiation; however, it is not an ele-
mentary topos in the sense of Lawvere — Tierney [4] because it has
no subobject classifier.

1. INTRODUCTION

Let X be asetand let ¢: 2(X)~ 2(X) be a function defined on
the power set of X. Let us consider the following conditions:

1

=
Mo’
pes

= ¢,
(2) A S (A4) forevery 4 C X,

wl¢
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(3) If AS B then 0(4) S o(B) forall A,B EX’
(4) p(AUB)=p(A)U o(B) forall 4,B C X,

(5) For any family of subsets of X, {4,},_,, ¢ (ig] Ai) = igl p(4)),
(6) w(p(A4))=9(4) forany 4 < X.

The couple (X, ), where ¢ has the properties (1), (2) and (3) is
called a Cech (topological) space [2]. A Cech space which verifies the con-
dition (4) is called, following [2], an A-space (if ¢ verifies the conditions
(1), (2) then (4) implies (3) but converse fails [5]). An A-space which has
the property (6) is a Kuratowski (topological) space. A Cech space (or an
A-space, or a Kuratowski space) is.total if the condition (5) holds.

We have the following picture (all inclusion relations are proper):

Cech spaces

Kuratowski Total
spaces Kuratowski
spaces

Total Cech
spaces

A function f: (X, gpl) - (Y, gpz) from two Cech spaces is contirvluous
if for every A S X, flo,(A) < p,(f(4)), [2]. We denote by Top C (re-
spectively, Top 4, Top K, Top C, Top TK) the category of Cech spaces
(respectively, the category of A-spaces, Kuratowski spaces, Total Cech or
Kuratowski spaces), where the objects are just the spaces which give the
name of the category and morphisms are continuous functions.

i
=
4
:




The category of Kuratowski spaces is well known [3]. The categories
of Total Cech (Kuratowski) spaces are isomorphic with the category of re-
flexive (reflexive and transitive) relations, where the morphisms are the
relation-preserving functions; these categories are studied in [1]. Most of
our results are generalizations of those of [1].

2. FINITE LIMITS AND COLIMITS

We check the existence of finite limits and colimits in Top C. In view
of an well known result [3] we study only the existence of products (co-
products), equalizers (coequalizers) and terminal (initial) objects.

Proposition 1. The category Top C has finite products.

Proof. The product of Cech spaces (X I gol.), i=1,2 1is the Cech
space  (X; X X,,¢;), where for every CQX1 XX,, ¢(O)=
=@, (m (CNX ¢, (m,(C)): 7, stand for the set-theoretic projections.

It is clear that ¢, satisfies the conditions (1), (2) and (3). The projec-
tions are just the set-theoretic projections ; (they are continuous because
7:(p3 () = ¢, (m,(C)) forany CS X, X X,).

Let (Y,p) bea Cech space and let p;: (Y, ¢)~> (X;, ¢;) be two ar-
bitrary morphisms. Then, there exists an unique morphism p: (Y, ¢)~>
- (X, X X,, ¢5) such that m,p = p;. The morphism p is defined by the
relation: p(y) = (), p,(¥)). From the relations:

p(O) ={@, ), p, N1y € p(O)},
@3 (2(C) = @ (M (PO X 9, (1, (p(C))) =
=, @,(O) X ¢, (0, (C))

we derive the inclusion p(p(C)) € ©5 (P(C)), which shows that p is con-
tinuous.

Remark 1. The family of A-spaces (in particular, the class of
Kuratowski spaces) is not closed under the construction from Proposition
1. Let us take X, =11, 2}, X, ={3,4} and ¢, the identity of 2(X,).
Let M=1{(1,3),(2,4)} and N= {(1,4)}. We have:
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9;(MUN)=MUNU{(2,H}#MUN = o, (M) U oy (N)

thatis ¢, does not satisfy the property (4).
Proposition 2. The category Top C has finite coproducts.

Proof. Let (X, ;) betwo Cech spaces. Their coproduct is the space
{1} x X, v {2} X X5, ¢,), where

04 (O)= {1} X (X, N m,(C) U {2} X 9, (X, N 7, ().
The injections are in; x)=({, x).
Proposition 3. The category Top C has equalizers.

Proof. The equalizer of the pair
!
X, w) == (X5, 9,)

is the Cech space (Y, <p3), where Y={x|x¢€ X1 , Jix)y=g(x)} and P,
is the restriction of ¢, to Y, with the set-theoretic injection.

Proposition 4. The category Top C has coequalizers.

Proof. The coequalizers of the pair of morphisms
!
X1 0) =2 (X, 9))

is the Cech space (Z, ¢4) defined as follows. Z is the quotient space
X,/p, where p is the smallest equivalence relation which contains the
relation p = {(fix), gx)) | x € X}, and o, (B) = {[x]|x € p,(B)}; [x] is
the p-class of x and B={y|[y]€ B}. The surjection p: (X,,9,) =
= (Z,¢,) is defined by p(y) = [y].

First we shall prove that Y, satisfies the conditions (1), (2), (3). Ob-
viously, ¢,(¢)=¢ and BC @, (B) forevery BS Z Nowlet BS C be
two arbitrary subsets of Z. Then, we have BC C, ¢, (B) S ¢, (L) and
finally, ¢, (B) = ¢, (O).

Now we prove that p is continuous. In view of the relation B = p(B)
we have:




plp,B) = {lx]1x € p,(B)} = {[x] |x € 0, (BN} = ¢, (P(B).

It is clear that pf=pg. Let gq: (X2,<p2)~+ (V,¢) be such that
gf = qg. Then, there exists an unique h: (Z,¢,) (V,y¢) such that
hp =¢q. As in the set-theoretic case h([¥]) =q(y). Let we€ h(cp4(M));
then, there exists [y]€ ¢, (M) such that w = h([y]D = q(»). In view of
the equality ¢(q(#)) = p(h(M)) and of the continuity of ¢ it results
w € @(h(M)), thatis h i continuous.

Remark 2. In Top C ({a), ¢,) and (9, ap(b) are terminal, respective-

ly, initial objects.

Remark 3. The family of A-spaces is not closed under the con-

structions in Propositions 2-4.

We conclude with:

Theorem 1. The category Top C has finite limits and colimits.

3. EXPONENTIATION
We prove the following resuit:
Theorem 2. The category Top C has exponentiation.

Proof. Let (X, api), i=1,2,3 be Cech spaces. We shall prove the

. v X,, . e
existence of a Cech space (X;, ap3)( 2:92) such that there is a bijection

hom (X, ;) X (X,, 9,), (X3, ¢3)) =
‘ Y.
= hom ((Xla‘Pl), (X39‘p3)( 2 ¢2))
natural in (X1>‘P1) and (X3,ga3).

The object (Xa,‘ap3)(X2"02) is defined as (X;(2 ,p,) where
X -
X =1{f (X, 0,)) > (X5, 031 f continuous}

ahd -

0, (M) = {g: (X,,9,) > (X3,9;) | g continuous,
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there exists FE€EM  such that for any
A4CX,, glp,(4)) € @, (fl4))}.

It is easy to check that ¢, has the properties (1),(2) and (3) that is

(X;Y2 »94) isanobject of Top ('

Let 1 (X » P ) X (X »9,) > (X3,<p3) be continuous. We define

nl/(f)(x)(y)=f(x,y) for all xeXl, yeXz.

We shall prove that ¥(1): (X, ,50,)~ (X2, o,
MEX,, V(DG D) S o, (UHGD). Lot »

form x= viH(x"), x'e ¢, (M),
show that

) is continuous, i.e. for any
€ Y(N(p, (M)); x is of the
To prove that x e 0, (YO M) is to

(a) x: (X »9,) > (X, @) is continuous,

(b} there exists #: X ,&pz)—> (X ,¢3), he Yy(HWM) for which
VNG (0, (4)) € 0, (B(4)) forany 4 C x,.

We prove (a). Let B EXZ and let z € Y(H)(x ’)(302 (B)). Clearly z
is of the form z= vOHHE) = x', 2"y with z'e ¢,(B). In view of
the hypothesis f is continuous, that is for all 7C x 1 XXy, fle (1) <
< v3 (AD)); ¢, 1is the closure of the product space (Proposition 1). Now

let T={x}x B; we have flo ({x'}x B) C o3 (f{x'} X B)), where
v ({x'}X B)= ¢ (x") X 0, (B).

Thus

03 (X(B)) = o, (YW(N(x")(B)) = p3 (fx', B))

and

2= YNNG € o, (WH (") (B)).

If in the proof of (a) we take 4 = x we also have proved (b).

As in the set-theoretic case one

proves that ¢ is a bijection natural
in the first and third argument.

Proposition 5. Any exponential Cech space is total.
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Proof. Let (X;> »;) be two Cech spaces and let (X;Y v ¢;) be the
exponential object. We shall prove that for any family {A].}]. <7 Of subsets

X ,
of X) ! we have: o, (]'gl A].) = jg} 03 (4,).

Let g€y, [jg] A].]; 8 (Xy,9) > (X,,p,) is continuous and
there exists fe& 'UI A]. such that for all A SXI, g(‘p1 “nc p, (f(4)).

je

Thus, there exists f and k€, fe A, such that g(p, (4)) Qcpz (f4)),
forany A4 SXI. Hence g€ ¢, (4,) ngj @, (A].).

Corollary. Any exponential space is of the form (X, ¥r ), where R
is a reflexive relation on X and o A)={x|x€X there exists ye A,
with y R x}.

The proof is a consequence of Proposition 5 and Theorem 1 in [1].

Remark 4. TopCV’ is not an elementary topos in the sense of
Lawvere — Tierney because in Top c (as in Top TK) there is no sub-

object classifier (it is only possible to classify the induced subspaces not
all subspaces).
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