
Balance Machines: Computing = Balancing

Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

Department of Computer Science
The University of Auckland

Auckland, New Zealand
{jaru003,cristian,mjd}@cs.auckland.ac.nz

Abstract. We propose a natural computational model called a balance
machine. The computational model consists of components that resemble
ordinary physical balances, each with an intrinsic property to automati-
cally balance the weights on their left, right pans. If we start with certain
fixed weights (representing inputs) on some of the pans, then the balance–
like components would vigorously try to balance themselves by filling the
rest of the pans with suitable weights (representing the outputs). This
balancing act can be viewed as a computation. We will show that the
model allows us to construct those primitive (hardware) components that
serve as the building blocks of a general purpose (universal) digital com-
puter: logic gates, memory cells (flip-flops), and transmission lines. One
of the key features of the balance machine is its “bidirectional” operation:
both a function and its (partial) inverse can be computed spontaneously
using the same machine. Some practical applications of the model are
discussed.

1 Computing as a “Balancing Feat”

A detailed account of the proposed model will be given in Section 2. In this
section, we simply convey the essence of the model without delving into technical
details. The computational model consists of components that resemble ordinary
physical balances (see Figure 1), each with an intrinsic property to automatically
balance the weights on their left, right pans. In other words, if we start with
certain fixed weights (representing inputs) on some of the pans, then the balance–
like components would vigorously try to balance themselves by filling the rest of
the pans with suitable weights (representing the outputs). Roughly speaking, the
proposed machine has a natural ability to load itself with (output) weights that
“balance” the input. This balancing act can be viewed as a computation. There is
just one rule that drives the whole computational process: the left and right pans
of the individual balances should be made equal. Note that the machine is designed
in such a way that the balancing act would happen automatically by virtue of
physical laws (i.e., the machine is self-regulating).1 One of our aims is to show
that all computations can be ultimately expressed using one primitive operation:
1 If the machine cannot (eventually) balance itself, it means that the particular in-

stance does not have a solution.

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschrift), LNCS 2950, pp. 36–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Balance Machines: Computing = Balancing 37

balancing. Armed with the computing = balancing intuition, we can see basic
computational operations in a different light. In fact, an important result of
this paper is that this sort of intuition suffices to conceptualize/implement any
computation performed by a conventional computer.

Fig. 1. Physical balance.

The rest of the paper is organized as follows: Section 2 gives a brief intro-
duction to the proposed computational model; Section 3 discusses a variety of
examples showing how the model can be made to do basic computations; Sec-
tion 4 is a brief note on the universality feature of the model; Section 5 reviews
the notion of bilateral computing and discusses an application (solving the classic
SAT problem); Section 6 concludes the paper.

2 The Balance Machine Model

At the core of the proposed natural computational model are components that
resemble a physical balance. In ancient times, the shopkeeper at a grocery store
would place a standard weight in the left pan and would try to load the right pan
with a commodity whose weight equals that on the left pan, typically through
repeated attempts. The physical balance of our model, though, has an intrinsic
self-regulating mechanism: it can automatically load (without human interven-
tion) the right pan with an object whose weight equals the one on the left pan.
See Figure 2 for a possible implementation of the self-regulating mechanism.

In general, unlike the one in Figure 2, a balance machine may have more than
just two pans. There are two types of pans: pans carrying fixed weights which re-
main unaltered by the computation and pans with variable (fluid) weights that
are changed by activating the filler–spiller outlets. Some of the fixed weights
represent the inputs, and some of the variable ones represent outputs. The in-
puts and outputs of balance machines are, by default, non–negative reals unless
stated otherwise. The following steps comprise a typical computation by a given
balance machine:



38 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

X Y

1 2

X + Y

“filler” outlet

“spiller” outlet

(fluid) source

push buttons

variable weightfixed weight

Fig. 2. A self-regulating balance. The source is assumed to have (an arbitrary amount
of) a fluid–like substance. When activated, the filler outlet lets fluid from source into the
right pan; the spiller outlet, on being activated, allows the right pan to spill some of its
content. The balancing is achieved by the following mechanism: the spiller is activated
if at some point the right pan becomes heavier than left (i.e., when push button (2)
is pressed) to spill off the extra fluid; similarly, the filler is activated to add extra
fluid to the right pan just when the left pan becomes heavier than right (i.e., when
push button (1) is pressed). Thus, the balance machine can “add” (sum up) inputs x
and y by balancing them with a suitable weight on its right: after being loaded with
inputs, the pans would go up and down till it eventually finds itself balanced.

– Plug in the desired inputs by loading weights to pans (pans with variable
weights can be left empty or assigned with arbitrary weights). This defines
the initial configuration of the machine.

– Allow the machine to balance itself: the machine automatically adjusts the
variable weights till left and right pans of the balance(s) become equal.

– Read output: weigh fluid collected in the output pans (say, with a standard
weighting instrument).

See Figure 3 for a schematic representation of a machine that adds two quantities.
We wish to point out that, to express computations more complex than addition,
we would require a combination of balance machines such as the one in Figure 2.
Section 3 gives examples of more complicated machines.

3 Computing with Balance Machines: Examples

In what follows, we give examples of a variety of balance machines that carry out
a wide range of computing tasks—from the most basic arithmetic operations to



Balance Machines: Computing = Balancing 39

+

+

. . .

represents two (or more) pans

represent fixed weightssmall letters, numerals

capital letters represent variable weights

Symbol Meaning
a b

A

weights on both sides of this “bar”
should balance

whose weights add up
(these weights need not balance each other)

Fig. 3. Schematic representation of a simple balance machine that performs addition.

solving linear simultaneous equations. Balance machines that perform the oper-
ations increment, decrement, addition, and subtraction are shown in Figures 4, 5,
6, and 7, respectively. Legends accompanying the figures give details regarding
how they work.

Balance machines that perform multiplication by 2 and division by 2 are
shown in Figures 8, 9, respectively. Note that in these machines, one of the
weights (or pans) takes the form of a balance machine.2 This demonstrates that
such a recursive arrangement is possible.

We now introduce another technique of constructing a balance machine: hav-
ing a “common” weight shared by more than one machine. Another way of visual-
izing the same situation is to think of pans (belonging to two different machines)
being placed one over the other. We use this idea to solve a simple instance of
linear simultaneous equations. See Figures 10 and 11 which are self–explanatory.

An important property of balance machines is that they are bilateral comput-
ing devices. See [1], where we introduced the notion of bilateral computing. Typ-
ically, bilateral computing devices can compute both a function and its (partial)
inverse using the same mechanism. For instance, the machines that increment
and decrement (see Figures 4 and 5) share exactly the same mechanism, except

2 The weight contributed by a balance machine is assumed to be simply the sum of
the individual weights on each of its pans. The weight of the bar and the other parts
is not taken into account.



40 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

+

1x

Z

Fig. 4. Increment operation. Here x represents the input; Z represents the output.

The machine computes increment(x). Both x and ‘1’ are fixed weights clinging to the

left side of the balance machine. The machine eventually loads into Z a suitable weight

that would balance the combined weight of x and ‘1’. Thus, eventually Z = x + 1, i.e.,

Z represents increment(x).

+

1X

z

Fig. 5. Decrement operation. Here z represents the input; X represents the output.

The machine computes decrement(z). The machine eventually loads into X a suitable

weight, so that the combined weight of X and ‘1’ would balance z. Thus, eventually

X + 1 = z, i.e., X represents decrement(z).

for the fact that we have swapped the input and output pans. Also, compare
machines that (i) add and subtract (see Figures 6 and 7) and (ii) multiply and
divide by 2 (see Figures 8 and 9).

Though balance machines are basically analog computing machines, we can
implement Boolean operations (AND, OR, NOT) using balance machines, pro-
vided we make the following assumption: There are threshold units that return
a desired value when the analog values (representing inputs and outputs) exceed
a given threshold and some other value otherwise. See Figures 12, 13, and 14
for balance machines that implement logical operations AND, OR, and NOT re-
spectively. We represent true inputs with the (analog) value 10 and false inputs
with 5; when the output exceeds a threshold value of 5 it is interpreted as true,
and as false otherwise. (Instead, we could have used the analog values 5 and 0
to represent true and false; but, this would force the AND gate’s output to a
negative value for a certain input combination.) Tables 1, 2, and 3 give the truth
tables (along with the actual input/output values of the balance machines).



Balance Machines: Computing = Balancing 41

+

yx

Z

Fig. 6. Addition operation. The inputs are x and y; Z represents the output. The

machine computes x + y. The machine loads into Z a suitable weight, so that the

combined weight of x and y would balance Z. Thus, eventually x+y = Z, i.e., Z would

represent x + y.

+ z

x Y

Fig. 7. Subtraction operation. Here z and x represent the inputs; Y represents the

output. The machine computes z − x. The machine loads into Y a suitable weight, so

that the combined weight of x and Y would balance z. Thus, eventually x + Y = z,

i.e., Y would represent z − x.

4 Universality of Balance Machines

The balance machine model is capable of universal discrete computation, in the
sense that it can simulate the computation of a practical, general purpose digital
computer. We can show that the model allows us to construct those primitive
(hardware) components that serve as the “building blocks” of a digital computer:
logic gates, memory cells (flip-flops) and transmission lines.

1. Logic gates
We can construct AND, OR, NOT gates using balance machines as shown in
Section 3. Also, we could realize any given Boolean expression by connecting
balance machines (primitives) together using “transmission lines” (discussed
below).

2. Memory cells
The weighting pans in the balance machine model can be viewed as “storage”
areas. Also, a standard S–R flip-flop can be constructed by cross coupling
two NOR gates, as shown in Figure 15. Table 4 gives its state table. They
can be implemented with balance machines by replacing the OR, NOT gates
in the diagram with their balance machine equivalents in a straightforward
manner.



42 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

a B A

Fig. 8. Multiplication by 2. Here a represents the input; A represents the output. The

machine computes 2a. The combined weights of a and B should balance A: a+B = A;

also, the individual weights a and B should balance each other: a = B. Therefore,

eventually A will assume the weight 2a.

a
A B

Fig. 9. Division by 2. The input is a; A represents the output. The machine “exactly”

computes a/2. The combined weights of A and B should balance a: A+B = a; also, the

individual weights A and B should balance each other: A = B. Therefore, eventually

A will assume the weight a/2.

3. Transmission lines
A balance machine like machine (2) of Figure 16 that does nothing but a
“copy” operation (copying whatever is on left pan to right pan) would serve
both as a transmission equipment, and as a delay element in some contexts.
(The pans have been drawn as flat surfaces in the diagram.) Note that the
left pan (of machine (2)) is of the fixed type (with no spiller–filler outlets)
and the right pan is a variable one.

Note that the computational power of Boolean circuits is equivalent to that
of a Finite State Machine (FSM) with bounded number of computational steps
(see Theorem 3.1.2 of [4]).3 But, balance machines are “machines with memory”:
using them we can build not just Boolean circuits, but also memory elements
(flip-flops). Thus, the power of balance machines surpasses that of mere bounded
FSM computations; to be precise, they can simulate any general sequential cir-
cuit. (A sequential circuit is a concrete machine constructed of gates and memory
devices.) Since any finite state machine (with bounded or unbounded computa-
tions) can be realized as a sequential circuit using standard procedures (see [4]),
one can conclude that balance machines have (at least) the computing power of
unbounded FSM computations. Given the fact that any practical (general pur-
pose) digital computer with only limited memory can be modeled by an FSM,
we can in principle construct such a computer using balance machines. Note,
however, that notional machines like Turing machines are more general than
balance machines. Nevertheless, standard “physics–like” models in the litera-

3 Also, according to Theorem 5.1 of [2] and Theorem 3.9.1 of [4], a Boolean circuit
can simulate any T–step Turing machine computation.



Balance Machines: Computing = Balancing 43

+ +

1 2

43

8

2X1 Y1 Y2

Y1X1

x + y = 8; x − y = 2

X2

Y2X2

Fig. 10. Solving simultaneous linear equations. The constraints X1 = X2 and Y1 = Y2

will be taken care of by balance machines (3) and (4). Observe the sharing of pans

between them. The individual machines work together as a single balance machine.

ture like the Billiard Ball Model[3] are universal only in this limited sense: there
is actually no feature analogous to the infinite tape of the Turing machine.

5 Bilateral Computing

There is a fundamental asymmetry in the way we normally compute: while we
are able to design circuits that can multiply quickly, we have relatively limited
success in factoring numbers; we have fast digital circuits that can “combine”
digital data using AND/OR operations and realize Boolean expressions, yet no
fast circuits that determine the truth value assignment satisfying a Boolean ex-
pression. Why should computing be easy when done in one “direction”, and
not so when done in the other “direction”? In other words, why should invert-
ing certain functions be hard, while computing them is quite easy? It may be
because our computations have been based on rudimentary operations (like addi-
tion, multiplication, etc.) that force an explicit distinction between “combining”
and “scrambling” data, i.e. computing and inverting a given function. On the
other hand, a primitive operation like balancing does not do so. It is the same
balance machine that does both addition and subtraction: all it has to do is
to somehow balance the system by filling up the empty variable pan (repre-
senting output); whether the empty pan is on the right (addition) or the left
(subtraction) of the balance does not particularly concern the balance machine!
In the bilateral scheme of computing, there is no need to develop two distinct
intuitions—one for addition and another for subtraction; there is no dichotomy
between functions and their (partial) inverses. Thus, a bilateral computing sys-
tem is one which can implement a function as well as (one of) its (partial)
inverse(s), using the same intrinsic “mechanism” or “structure”. See [1] where



44 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

+ +8

2X

X

x − y = 2x + y = 8;

YY

Fig. 11. Solving simultaneous linear equations (easier representation). This is a sim-

pler representation of the balance machine shown in Figure 10. Machines (3) and (4)

are not shown; instead, we have used the same (shared) variables for machines (1) and

(2).

+ +

10x y Z

Fig. 12. AND logic operation. x and y are inputs to be ANDed; Z represents the

output. The balance realizes the equality x + y = Z + 10.

we have developed bilateral computing systems based on fluid mechanics and
have given a mathematical characterization of such systems.

We now show how the classic SAT problem can be solved under a bilateral
computing scheme, using balance machines. For the time being, we make no
claims regarding the time complexity of the approach since we have not analyzed
the time characteristics of balance machines. However, we believe that it will not
be exponential in terms of the number of variables (see also [1]). The main idea
is this: first realize the given Boolean expression using gates made of balances;
then, by setting the pan that represents the outcome of the Boolean expression
to (the analog value representing) true, the balance machine can be made to
automatically assume a set of values for its inputs that would “balance” it. In
other words, by setting the output to be true, the inputs are forced to assume
one of those possible truth assignments (if any) that generate a true output. The
machine would never balance, when there is no such possible input assignment
to the inputs (i.e., the formula is unsatisfiable). This is like operating a circuit
realizing a Boolean expression in the “reverse direction”: assigning the “output”
first, and making the circuit produce the appropriate “inputs”, rather than the
other way round.

See Figure 17 where we illustrate the solution of a simple instance of SAT
using a digital version of balance machine whose inputs/outputs are positive



Balance Machines: Computing = Balancing 45

Table 1. Truth table for AND.

x y Z

5 (false) 5 (false) 0 (false)
5 (false) 10 (true) 5 (false)
10 (true) 5 (false) 5 (false)
10 (true) 10 (true) 10 (true)

Table 2. Truth table for OR.

x y Z

5 (false) 5 (false) 5 (false)
5 (false) 10 (true) 10 (true)
10 (true) 5 (false) 10 (true)
10 (true) 10 (true) 15 (true)

Table 3. Truth table for NOT.

x Y

5 (false) 10 (true)
10 (true) 5 (false)

Table 4. State table for S–R flip-flop.

S R Q Q′

0 0 previous state of Q previous state of Q′

0 1 0 1
1 0 1 0
1 1 undefined undefined

integers (as opposed to reals). Note that these machines work based on the
following assumptions:

1. Analog values 10 and 5 are used to represent true and false respectively.
2. The filler–spiller outlets let out fluid only in (discrete) “drops”, each weighing

5 units.
3. The maximum weight a pan can hold is 10 units.

6 Conclusions

As said earlier, one of our aims has been to show that all computations can be
ultimately expressed using one primitive operation: balancing. The main thrust
of this paper is to introduce a natural intuition for computing by means of a
generic model, and not on a detailed physical realization of the model. We have
not analysed the time characteristics of the model, which might depend on how



46 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

+ +

5x y Z

Fig. 13. OR logic operation. Here x and y are inputs to be ORed; Z represents the

output. The balance realizes the equality x + y = Z + 5.

+ 15

x Y

Fig. 14. NOT logic operation. Here x is the input to be negated; Y represents the

output. The balance realizes the equality x + Y = 15.

R

S
Q′

Q

Fig. 15. S–R flip-flop constructed using cross coupled NOR gates.

we ultimately implement the model. Also, apart from showing with illustrative
examples various possible (valid) ways of constructing balance machines, we have
not detailed a formal “syntax” that governs them.

Finally, this note shows that one of the possible answers to the question
“What does it mean to compute?” is: “To balance the inputs with suitable out-
puts (on a suitably designed balance machine).”



Balance Machines: Computing = Balancing 47

2 31

Fig. 16. Balance machine as a “transmission line”. Balance machine (2) acts as a

transmission line feeding the output of machine (1) into the input of machine (3).

3

2

5

+

1

5

0 0 0
0 1 1
1 0 0
1 1 1

15+

+ +

10

+

10

Truth table

Satisfiability of (a + b)(a′ + b)

A B Extra1 B Extra2

A

(a + b)(a′ + b)

A′

A′

a b

Fig. 17. Solving an instance of SAT: The satisfiability of the formula (a + b)(a′ + b)

is verified. Machines (1), (2) and (3) work together sharing the variables A, B and A′

between them. OR gates (labeled 1 and 2) realize (a + b) and (a′ + b) respectively and

the NOT gate (labeled 3) ensures that a and a′ are “complementary”. Note that the

“output” of gates (1) and (2) are set to 10. Now, one has to observe the values eventually

assumed by the variable weights A and B (that represent “inputs” of OR gate (1)).

Given the assumptions already mentioned, one can easily verify that the machine will

balance, assuming one of the two following settings: (i) A = 5, B = 10, (Extra1 = 0,

Extra2 = 5) or (ii) A = 10, B = 10, (Extra1 = 5, Extra2 = 0). These are the only

configurations that make the machine balanced. In situations when both the left pans

of gate (1) assume 10, Extra1 will automatically assume 5 to balance off the extra

weight on the left side. (Extra2 plays a similar role in gate (2).)



48 Joshua J. Arulanandham, Cristian S. Calude, and Michael J. Dinneen

References

1. J.J. Arulanandham, C.S. Calude, M.J. Dinneen. Solving SAT with bilateral comput-
ing, Romanian Journal of Information Science and Technology (2003), to appear.

2. J.L. Balcázar, J.Dı́az, J. Gabarró. Structural Complexity I, Springer–Verlag, Berlin,
1988.

3. E. Fredkin, T. Toffoli. Conservative logic, Int’l J. Theoret. Phys. 21 (1982), 219–253.
4. J.E. Savage. Models of Computation, Addison–Wesley, Reading, Mass., 1998.


	Computing as a ``Balancing Feat"
	The Balance Machine Model
	Computing with Balance Machines: Examples
	Universality of Balance Machines
	Bilateral Computing
	Conclusions

