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A program which eventually stops but does not halt “too quickly” halts at a time which
is algorithmically compressible. This result — originally proved in [4] — is proved in
a more general setting. Following Manin [11] we convert the result into an anytime
algorithm for the halting problem and we show that the stopping time (cut-off temporal
bound) cannot be significantly improved.
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1. Introduction

Anytime algorithms exchange execution time for quality of results [8]. Anytime

algorithms can be executed in two modes: either by being given a contract time

(a set amount of time to execute), or an interruptible method. To improve the

solution, anytime algorithms can be continued after they have halted. Instead of

correctness, an anytime algorithm returns a result with a “quality measure” which

evaluates how close the obtained result is to the result that would be returned if

the algorithm ran until completion.

Standard anytime algorithms eventually stop, albeit in a prohibitively long time.

Following Manin [11] we use a more general form of anytime algorithm as an approx-

imation for a computation which may not end. The proposed anytime algorithm

for the halting problem works in the following way: to test whether a program

eventually stops we first compute a temporal bound — the interruptible (stopping)

condition — and execute the program for that specific time. If the computation

stops then the program was proved to halt; if the computation does not stop, then

we declare that the program never stops and evaluate the error probability. By
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running the program a longer time we can improve its performance either by get-

ting to the halting time or by improving the probability error.

The essence of the algorithm proposed in this paper is based on the fact that

programs which take a long time to halt stop at times with a specific property,

namely algorithmically compressibility — a machine can generate such a time from

a “smaller” input.

In the following we will denote by Z
+ the set of positive integers {1, 2, · · · } and

let Z+ = Z
+ ∪ {∞}. The domain of a partial function F : Z+ −→ Z+ is denoted

dom (F ): dom (F ) = {x ∈ Z
+ | F (x) 6= ∞}. All logarithms (log) are implicitly bi-

nary. We denote by #S the cardinality of the set S. We assume familiarity with

elementary algorithmic information theory, see [1, 7, 10].

2. A Glimpse of Algorithmic Complexity

In this section we present a few elementary results in algorithmic information theory

in an unconventional framework, i.e. for positive integers instead of strings.

2.1. Algorithmic complexity

The algorithmic complexity relative to a partially computable function F : Z+ −→

Z+ is the partial function ∇F : Z
+ −→ Z+ defined by ∇F (x) =

inf {y ∈ Z
+ | F (y) = x}; if F (y) 6= x for every y ≥ 1, then ∇F (x) = ∞. That

is, the algorithmic complexity of x is the smallest description/encoding of x with

respect to the interpreter/decoder F , or infinity if F cannot produce x.

The algorithmic complexity is similar to the complexities studied in [4–6,10,11];

the plain Kolmogorov complexity is about the logarithm of the algorithmic com-

plexity. While the Kolmogorov complexity is optimal up to an additive constant,

the optimality of ∇ is up to a multiplicative constant. As, in contrast with Kol-

mogorov complexity, the complexity ∇F is injective, there exist at most N positive

integers with complexity bounded by N .

Proposition 1. Let F be a partially computable function. The following are true:

(1) For all x ∈ dom(∇F ), F (∇F (x)) = x.

(2) The algorithmic complexity is injective.

(3) For every N ≥ 1, # {i ∈ Z
+ | ∇F (i) ≤ N} ≤ N , hence ∇F is unbounded if its

domain is infinite.

(4) For every M ≥ 1 there exists x > M such that ∇F (x) > x/2.

Proof. (1) Follows from the definition of ∇F . (2) Applying F to ∇F we get that

the algorithmic complexity is injective. (3) Follows from the definition of ∇F ; if

the domain of ∇F is infinite, then ∇F is unbounded. (4) As ∇F is injective, for

each N ≥ 1 there exists at most N/2 integers 1 ≤ x ≤ N such that ∇F (x) ≤ N/2.

Consequently, there are at least N/2 integers 1 ≤ x ≤ N such that ∇F (x) > N/2 ≥

x/2, so Property (4) follows.
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Comment. Property (4) above shows the existence of integers with high complex-

ity leading to the definition of algorithmic incompressibility in Sec. 2.3. Choosing

F (x) = x + 1 we see that the condition ∇F (x) > x/2 cannot be replaced with

∇F (x) > x.

2.2. Universality

In this section we give a new characterisation of universality which will be useful

for some applications.

A partially computable function U is called universal if for every partially com-

putable function F : Z+ −→ Z+ there exists a constant kU,F such that for every

x ∈ dom (∇F ) we have

∇U (x) ≤ kU,F · ∇F (x) . (1)

A partially computable function U is universal if it allows smaller descriptions

for all positive integers (but for a multiplicative constant) than all other partially

computable functions.

Theorem 2. A partially computable function U is universal iff for every partially

computable function F : Z+ −→ Z+ there exists a constant cU,F such that for every

x ∈ dom (F ) we have

∇U (F (x)) ≤ cU,F · x. (2)

Proof. Assume U satisfies Condition (1). Taking F to be the identity we get a

constant kU,id such that for every z ∈ Z
+

∇U (z) ≤ kU,id · ∇id (z) = kU,id · z. (3)

Next take F satisfying (1) and x ∈ dom (F ). By definition of ∇U and the hypothesis,

∇U (x) < ∞ and we have U (∇U (x)) = x, hence F (U (∇U (x))) = F (x).

Let MF = F ◦ U . Using in order (1), the inequality ∇MF
(F (x)) ≤ ∇U (x) and

(3) we deduce (2):

∇U (F (x)) ≤ kU,MF
· ∇MF

(F (x)) ≤ kU,MF
· ∇U (x) ≤ kU,MF

· kU,id · x,

hence cU,F = kU,MF
· kU,id.

Conversely, assume F satisfies Condition (2). For every x ∈ Z
+ with ∇F (x) < ∞

we deduce in order the relations ∇F (x) ∈ dom (F ) and F (∇F (x)) = x, hence:

∇U (x) = ∇U (F (∇F (x))) ≤ cU,F · ∇F (x) .

The relation (1) is satisfied for kU,F = cU,F .

Comment. The difference between (1) and (2) is in the role played by F : in the

traditional condition (1), F appears through ∇F (which sometimes can be incom-

putable), while in (2) F appears as argument of ∇U making the second member of

the inequality always computable.
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Comment. A universal partially computable function U “simulates” any other

partially computable function F in the following sense: if x ∈ dom (F ), then from

(2), one can deduce that ∇U (F (x)) ≤ cU,F · x, hence there exists y ≤ cU,F · x in

dom (U) such that U (y) = F (x). In particular, ∇U (x) < ∞, for all x ∈ Z
+.

Comment. In [11] a partially computable function U : Z+ −→ Z+ is called strongly

universal (programmable universal in [3]) if for every partially computable function

F : Z+ −→ Z+ there exists a constant kU,F such that for every x ∈ Z
+ there exists

y ≤ kU,F · x with U(y) = F (x). It is easy to prove that a partially computable

function U is universal iff it is strongly/programmable universal and the constant

kU,F is the same in both definitions.

Comment. If U is a universal partially computable function, then using the iden-

tity function F (x) = x we get a constant kU,id such that for every x ∈ Z
+,

∇U (x) ≤ kU,id · x.

Comment. If U1 and U2 are universal partially computable functions then there

exists a constant cU1,U2
, cU2,U1

such that for all x ∈ Z
+, cU2,U1

≤
∇U1

(x)

∇U2
(x) ≤ cU1,U2

.

Corollary 3. For every universal partially computable function U , every partially

computable function F : Z
+ −→ Z+ and all x ∈ dom (F ) we have:

∇U (F (x)) ≤ kU,F ◦U · ∇U (x) ,

where kU,F ◦U comes from (1).

Proof. Applying (1) on F ◦ U and F (x) and using the definition of ∇, we get:

∇U (F (x)) ≤ kU,F ◦U · ∇F ◦U (F (x)) ≤ kU,F ◦U · ∇U (x) .

In what follows we will fix a universal partially computable function U and write

∇ instead of ∇U .

Theorem 4. The complexity ∇ is incomputable.

Proof. Assume by contradiction that ∇ is computable. Then the partial function

F : Z+ −→ Z+ defined by F (x) = inf
{

i ∈ Z
+ | ∇ (i) ≥ x2

}

is partially computable,

and, because dom(∇) is infinite and Proposition 1(3), total. Clearly, ∇ (F (x)) ≥ x2,

for all x ∈ Z
+.

By the universality condition (2), there exists a constant cF = cU,F such that

for all x ∈ Z
+ we have: ∇ (F (x)) ≤ cF · x, in contradiction with the inequality

∇ (F (x)) ≥ x2.

2.3. Algorithmic incompressibility (randomness)

Following [11], an incompressibility (randomness) cut-off function is a computable,

increasing and divergent function r : Z+ −→ R
+ such that the function x 7→ x

r(x) is

increasing and divergent.
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Example 5. The following are incompressibility cut-off functions:

• r (x) = log (x) , x > 1,

• r (x) = xα, 0 < α < 1,

• r (x) = x
log(x+1)

.

Let r be an incompressibility cut-off function. An integer x ∈ Z
+ is said to be

r-(algorithmic) incompressible (random) if ∇ (x) ≥ x
r(x)

. In view of Proposition 1(4),

infinitely many r-(algorithmic) incompressible (random) integers exist.

Theorem 6. [2] The set

Incompress (r) =

{

x ∈ Z
+ | ∇ (x) ≥

x

r (x)

}

is immune, i.e. it is infinite and contains no infinite computably enumerable subsets.

Proof. By the definition of r and Proposition 1(4), the set Incompress (r) is in-

finite. Assume by absurdity that Incompress (r) contains an infinite computably

enumerable subset E. Let e : Z+ −→ R
+ be a computable one-one function

which enumerates E, that is, E = e(Z+). The partially computable function

F (x) = e(inf{i ∈ Z
+ | e(i)

r(e(i)) ≥ x2}) has the following properties:

(1) F is total,

(2) there exists a constant cF such that ∇(F (x)) ≤ cF · x, for all x ∈ Z
+,

(3) F (x)
r(F (x)) ≥ x2, for all x ∈ Z

+,

hence

x2 ≤
F (x)

r(F (x))
≤ ∇(F (x)) ≤ cF · x,

for all x ∈ Z
+, a contradiction.

Using Proposition 1 we get the following two corollaries.

Corollary 7. The set {x ∈ Z
+ | ∇ (x) ≥ x/2} is immune.

Proof. The set {x ∈ Z
+ | ∇ (x) ≥ x/2} is an infinite subset of the immune set

Incompress (r), for any incompressibility cut-off function r.

Corollary 8. Let r be an incompressibility cut-off function. Then, for all N ∈ Z
+

we have:

lim
N→∞

#
{

1 ≤ x ≤ N | ∇ (x) ≥ x
r(x)

}

N
= 1.
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Proof. We have:

#
{

1 ≤ x ≤ N | ∇ (x) ≥ x
r(x)

}

N
= 1 −

#
{

1 ≤ x ≤ N | ∇ (x) < x
r(x)

}

N

≥ 1 −
#

{

1 ≤ x ≤ N | ∇ (x) < N
r(N)

}

N

≥ 1 −
1

r (N)
−→

N→∞
1,

where the first equality is obtained by taking the complement, the second by set

inclusion and the third by injectivity of ∇.

3. Incompressibility Cut-Off

In this section we generalise a result proved by Manin [11] which gives a sufficient

condition that the value of a partially computable function F in a point x from its

domain is r-compressible.

Theorem 9. Let F : Z
+ −→ Z+ be a partially computable function and x ∈

dom (F ). Assume that

F (x)

r (F (x))
> kF · ∇ (x) , (4)

where kF comes from (1). Then, F (x) is r-compressible.

Proof. Using (1) we get: ∇ (F (x)) ≤ kF · ∇ (x) < F (x)
r(F (x))

.

Example 10. [Manin’s incompressibility cut-off ] Assume that F is a par-

tially computable function satisfying the following two conditions for some x ∈

dom (F ) and ε > 0:

(1) F (x) > ∇ (x)
1+ε

,

(2) ∇(x)ε

(1+ε)log(∇(x)) ≥ kF .

Then, F (x) is log–compressible.

Proof. We have:

F (x)

log (F (x))
≥

∇ (x)
1+ε

(1 + ε) log (∇ (x))
≥ kF · ∇ (x) ,

so by Theorem 9:

∇ (F (x)) <
F (x)

log (F (x))
.
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The bound (4) used in Theorem 9 depends on ∇ (x) — an incomputable quan-

tity. This choice is due to the fact that by (3), ∇ (x) = O (x), so a bound of the

form g (∇ (x)) is better than the bound g (x). These bounds are asymptotically (up

to a multiplicative constant) the same if x is r-incompressible, but the first one can

be significantly smaller if ∇ (x) ≪ x. The disadvantage of bound (4) comes from

its incomputability. We can get a computable bound in the following way:

Corollary 11. Let F : Z+ −→ Z+ be a partially computable function and x ∈

dom (F ). Assume that

F (x)

r (F (x))
> cF · x, (5)

where cF comes from (2). Then, F (x) is r-compressible.

Proof. Using (2) we have: ∇ (F (x)) ≤ cF · x < F (x)
r(F (x))

.

4. Temporal Bounds

Theorem 9 and Corollary 11 are general results in the sense that they apply to

every partially computable function. In this section we will illustrate the use of

Corollary 11 for a special partially computable function, the time complexity. This

will lead to an anytime algorithm for the halting problem.

Let Steps : Z+ −→ Z+ be the partially computable function such that U (x) < ∞

iff U (Steps (x)) < ∞, and if U (x) < ∞, then U (x) stops in Steps (x) steps.

If we apply Theorem 9 and Corollary 11 to Steps we get a similar result to the

main theorem of [4], where the bound can be expressed with or without ∇ (x).

Theorem 12. Assume that U (x) halts in tx steps, with tx such that tx

r(tx) > kSteps·

∇ (x) or tx

r(tx) > cSteps · x. Then, tx is r-compressible.

To get the entire power of Theorem 12 we need to use it in conjunction with the

following result stating that the r-incompressible times (at which a computation can

halt) is a “small” set of positive integers. To this aim we will work with the (natural)

density on P (Z+). The natural density is not a probability in Kolmogorov’s sense

(no such probability can be defined for all subsets of positive integers). However,

if a positive integer is “randomly” selected from the set {1, 2, . . . , m}, then the

probability that it belongs to a given set A ⊂ Z
+ is

pm (A) =
# ({1, . . . , m} ∩ A)

m
.

If limN−→∞ pm (A) exists and is equal to δ, then the set A ⊂ Z
+ has density

d (A) = δ.

In a sense, the density d (A) models “the probability that a randomly chosen

integer x ∈ Z
+ is in A”.
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A set A ⊂ Z
+ is said to have constructive density zero if there exists a com-

putable function b : Z+ → Z
+ such that for every i ∈ Z

+ we have pm (A) < 2−i

provided m ≥ b (i).

Fact 4.1. For every incompressibility cut-off function r, the following set
{

x ∈ Z
+ | ∇ (x) < x

r(x)

}

has constructive density zero.

Proof. The map x 7→ x
r(x) is increasing as r is an incompressibility cut-off function,

so we have
{

1 ≤ x ≤ N | ∇ (x) <
x

r (x)

}

⊆

{

1 ≤ x ≤ N | ∇ (x) <
N

r (N)

}

.

Consequently, because the injectivity of ∇,

pN

(

Incompress(r)
)

≤
1

r (N)
, (6)

so the limit converges constructively to 0 because r is computable, increasing and

divergent.

Assume that U (x) does not stop in time Tx satisfying the second inequality in

Theorem 12, i.e.

Tx

r (Tx)
> cSteps · x.

From (6), for every s ∈ Z
+, if N ≥ Mx

s = min {n ∈ Z
+ | n ≥ Tx and r (n) ≥ s} ,

then

pN

(

Incompress(r)
)

≤
1

s
.

Given x, s ∈ Z
+, compute Mx

s , and run U (x) for the contracted time Mx
s . If the

computation doesn’t stop in time Mx
s , then either

• U (x) eventually halts and the halting time belongs to a set of density smaller

than 1
s
, or

• U (x) never stops.

We have obtained the following interruptible divergence anytime algorithm:

If U (x) doesn’t stop in time Mx
s , then the probability

(according to density) that U (x) never stops is larger

than 1 − 1
s
.

Comment. Theorem 12 was formulated for the time complexity. In fact it works for

every abstract Blum complexity measure for U , i.e. for every partially computable

function B : Z+ −→ Z+ with the following two properties: (a) B (x) < ∞ iff U (x) <

∞; and (b) the predicate “B (x) = n” is computable.
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5. Temporal Bounds

Let us assume that we have some control over the number of computational steps

taken by U . More precisely, we consider the following

Assumption. For any n ∈ Z
+, there exist a, b ∈ Z

+ and a computable

family of programs (xR)R∈Z+ such that U (xR) halts in exactly a + b · R

steps and n · xR ≤ b · R. Furthermore, a can be chosen arbitrarily large.

This condition may seem artificial, but it is actually verified by all “reasonable”

models of computation. theorem stands. Indeed, one can write a program xR exe-

cuting the following instructions:

(1) compute a large number b from a constant c hard-coded in the source code (for

example, b = c3);

(2) read the input tape, on which we have placed R and execute a dummy loop b

steps;

(3) and halt.

The number corresponding to the program is bounded by K · c2 · R, where K is

constant: c needs 2 log (c) bits to be stored in the source code, while R needs log (R)

bits to be written on the input tape. So, we have

xR

b · R
≤

K · c2 · R

c3 · R
=

K

c
.

If we make c large enough then we have xR ≤ b·R
n

.

One can easily verify that this method allows to effectively write a 2-tape Turing

machine or a C/C++ program having the desired property.

The Assumption above allows us to show that the bound in Theorem 12 cannot

be significantly improved. First we need the following independent more general

result.

Lemma 13. Let f be a computable, strictly increasing function such that
f(x)

r(f(x)) =

o (x). Then a + b · f (R) is r-incompressible for infinitely many R.

Proof.

Let g (R) = a + b · f (R). First we prove that g(x)
r(g(x)) = o (x). Indeed, we have:

g (x)

r (g (x))
=

a + b · f (x)

r (a + b · f (x))
≤

a + b · f (x)

r (f (x))
≤ a + b ·

f (x)

r (f (x))
= o (x) .

Second, as g is injective, there exists a computable function g−1 such that for all

x ∈ Z
+, g−1 (g (x)) = x. Using the universality of U and Corollary 3, there exists a

constant kg−1 such that ∇
(

g−1 (x)
)

≤ kg−1 · ∇ (x). Using Proposition 1(4) and the

fact that g(x)
r(g(x)) = o (x), we can choose R so that it satisfies the inequalities:

∇ (R) > R/2 and R/2 · kg−1 ·
g (R)

r (g (R))
. (7)
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We then have:

kg−1 ·
g (R)

r (g (R))
< R/2 < ∇ (R) = ∇

(

g−1 (g (R))
)

≤ kg−1 · ∇ (g (R)) ,

hence

∇ (g (R)) ≥
g (R)

r (g (R))
,

that is, g (R) is r-incompressible. As we can choose arbitrarily large integers R

verifying (7), the proof is concluded.

Theorem 14. In Theorem 12, the condition “ tx

r(tx) > cSteps ·x” cannot be replaced

with the condition “tx > f (x)”, where f is an increasing, computable function

such that there exist m, n ∈ Z
+ with the property that for all x ∈ Z

+ we have

nx < f(x) ≤ m + nx.

Proof. Assume for the sake of a contradiction that Theorem 12 is true with the new

condition. Fix a function f having all properties in the statement of the theorem.

Let (xR) be the family of programs from the Assumption above, chosen so that

(i) m < a,

(ii) xR < b·R
n

.

Use Lemma 13 (for the identity function) to get a positive integer R such that

(iii) a + b · R is r-incompressible.

We then have:

f (xR) ≤ f

(

b · R

n

)

≤ m + b · R < a + b · R,

because of (i) and (ii). Applying Theorem 12 with the new condition implies that

a + b · R is r-compressible, thus contradicting (iii).

6. Final Comments

In [4] it was proved that if a program doesn’t stop quickly (meaning, before a

temporal bound which can be computed from the program), then the program

either stops at a time which is algorithmically compressible or never stops. Based on

the fact that the set of algorithmically compressible times has constructive density

zero (i.e. it is constructively negligible) we can construct an anytime algorithm

for solving the halting problem. The analysis in this paper shows two facts: (a) a

positive one, in which the construction of the anytime algorithm can be done with

respect to algorithmically very low compressible times, and (b) a negative one, that

the temporal bound cannot be significantly lowered.

It will be interesting to see if the same method can be applied to other incom-

putable problems, in particular, to program testing.
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