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Abstract. Two objects are independent if they do not affect each other.
Independence is well-understood in classical information theory, but less
in algorithmic information theory. Working in the framework of algorith-
mic information theory, the paper proposes two types of independence for
arbitrary infinite binary sequences and studies their properties. Our two
proposed notions of independence have some of the intuitive properties
that one naturally expects. For example, for every sequence x, the set
of sequences that are independent with x has measure one. For both no-
tions of independence we investigate to what extent pairs of independent
sequences, can be effectively constructed via Turing reductions (from one
or more input sequences). In this respect, we prove several impossibility
results. For example, it is shown that there is no effective way of pro-
ducing from an arbitrary sequence with positive constructive Hausdorff
dimension two sequences that are independent (even in the weaker type
of independence) and have super-logarithmic complexity. Finally, a few
conjectures and open questions are discussed.

1 Introduction

Intuitively, two objects are independent if they do not affect each other. The
concept is well-understood in classical information theory. There, the objects
are random variables, the information in a random variable is its Shannon en-
tropy, and two random variables X and Y are declared to be independent if
the information in the join (X, Y ) is equal to the sum of the information in X
and the information in Y . This is equivalent to saying that the information in
X conditioned by Y is equal to the information in X , with the interpretation
that, on average, knowing a particular value of Y does not affect the information
in X .

The notion of independence has been defined in algorithmic information
theory as well for finite strings [Cha82]. Our approach is very similar. This
time the information in a string x is the complexity (plain or prefix-free) of x,
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and two strings x and y are independent if the information in the join string
〈x, y〉 is equal to the sum of the information in x and the information in y, up
to logarithmic (or, in some cases, constant) precision.

The case of infinite sequences (in short, sequences) has been less studied. An
inspection of the literature reveals that for this setting, independence has been
considered to be synonymous with pairwise relative randomness, i.e., two se-
quences x and y are said to be independent if they are (Martin-Löf) random
relative to each other (see [vL90, DH]). As a consequence, the notion of inde-
pendence is confined to the situation where the sequences are random.

The main objective of this paper is to put forward a concept of independence
that applies to all sequences. One can envision various ways for doing this. One
possibility is to use Levin’s notion of mutual information for sequences [Lev84]
(see also the survey paper [GV04]) and declare two sequences to be independent
if their mutual information is small. If one pursues this direction, the main issue
is to determine the right definition for “small.” We take another approach, which
consists in extending in the natural way the notion of independence from finite
strings to sequences. This leads us to two concepts: independence and finitary-
independence. We say that (1) two sequences x and y are independent if, for all
n, the complexity of x�n (the prefix of x of length n) and the complexity of x�n
relativized with y are within O(log n) (and the same relation holds if we swap
the roles of x and y), and (2) two sequences x and y are finitary-independent if,
for all n and m, the complexity of x�n and the complexity of x�n given y�m are
within O(log n + log m) (and the same relation holds if we swap the roles of x
and y). We have settled for the additive logarithmical term of precision (rather
than some higher accuracy) since this provides robustness with respect to the
type of complexity (plain or prefix-free) and other technical advantages.

We establish a series of basic facts regarding the proposed notions of in-
dependence. We show that independence is strictly stronger than finitary-
independence. The two notions of independence apply to a larger category of
sequences than the family of random sequences, as intended. However, they are
too rough for being relevant for computable sequences. It is not hard to see that a
computable sequence x is independent with any other sequence y, simply because
the information in x can be obtained directly. In fact, this type of trivial inde-
pendence holds for a larger type of sequences, namely for any H-trivial sequence,
and trivial finitary-independence holds for any sequence x whose prefixes have
logarithmic complexity. It seems that for this type of sequences (computable or
with very low complexity) a more refined definition of independence is needed
(perhaps, based on resource-bounded complexity). We show that the two pro-
posed notions of independence have some of the intuitive properties that one
naturally expects. For example, for every sequence x, the set of sequences that
are independent with x has measure one.

We next investigate to what extent pairs of independent, or finitary-
independent sequences, can be effectively constructed via Turing reductions. For
example, is there a Turing reduction f that given oracle access to an arbitrary
sequence x produces a sequence that is finitary-independent with x? Clearly,
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if we allow the output of f to be a computable sequence, then the answer is
positive by the type of trivial finitary-independence that we have noted above.
We show that if we insist that the output of f has super-logarithmic complexity
whenever x has positive constructive Hausdorff dimension, then the answer is
negative. In the same vein, it is shown that there is no effective way of producing
from an arbitrary sequence x with positive constructive Hausdorff dimension two
sequences that are finitary-independent and have super-logarithmic complexity.

Similar questions are considered for the situation when we are given two
(finitary-) independent sequences. It is shown that there are (finitary-) inde-
pendent sequences x and y and a Turing reduction g such that x and g(y) are
not (finitary-)independent. This appears to be the only counter-intuitive effect
of our definitions. Note that the definition of constructive Hausdorff dimension
(or of partial randomness) suffers from the same problem. For example, there
exist a sequence x with constructive Hausdorff dimension 1 and a computable
g such that g(x) has constructive Hausdorff dimension ≤ 1/2. It seems that if
one wants to extend the notion of independence to non random sequences (in
particular to sequences that have arbitrary positive constructive Hausdorff di-
mension) such counter-intuitive effects cannot be avoided. On the other hand,
for any independent sequences x and y and for any Turing reduction g, x and
g(y) are finitary-independent.

We also raise the question on whether given as input finitely many (finitary-)
independent sequences it is possible to effectively build a new sequence that is
(finitary-) independent (in a non-trivial way) with each sequence in the input. It
is observed that the answer is positive if the sequences in the input are random,
but for other types of sequences the question remains open. The same issue can
be raised regarding finite strings and for this case a positive answer is obtained.
Namely, it is shown that given three independent finite strings x, y and z with
linear complexity, one can effectively construct a new string that is independent
with each of x, y and z, has high complexity and its length is a constant fraction
of the length of x, y and z.

Because of space limitations, this extended abstract contains no proof. All
proofs are available in the full version of the paper [CZ07].

1.1 Preliminaries

Let N denote the set of non-negative integers; the size of a finite set A is denoted
||A||. Unless stated otherwise, all numbers are in N and all logs are in base 2. We
work with the binary alphabet {0, 1}. A string is an element of {0, 1}∗ and a se-
quence is an element of {0, 1}∞. If x is a string, |x| denotes its length; xy denotes
the concatenation of the strings x and y. If x is a string or a sequence, x(i) denotes
the i-th bit of x and x�n is the substring x(1)x(2) · · · x(n). For two sequences x
and y, x⊕y denotes the sequence x(1)y(1)x(2)y(2)x(3)y(3) · · · and x XOR y de-
notes the sequence (x(1) XOR y(1))(x(2) XOR y(2))(x(3) XOR y(3)) · · · , where
(x(i) XOR y(i)) is the sum modulo 2 of the bits x(i) and y(i). We identify a
sequence x with the set {n ∈ N | x(n) = 1}. We say that a sequence x is com-
putable (computably enumerable, or c.e.) if the corresponding set is computable
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(respectively, computably enumerable, or c.e.). If x is c.e., then for every s ∈ N,
xs is the sequence corresponding to the set of elements enumerated within s steps
by some (given) machine M that enumerates x. We also identify a sequence x
with the real number in the interval [0, 1] whose binary writing is 0.x(1)x(2) · · · .
A sequence x is said to be left c.e. if the corresponding real number x is the limit
of a computable increasing sequence of rational numbers. The plain and the
prefix-free complexities of a string are defined in the standard way; however we
need to provide a few details regarding the computational models. The machines
that we consider process information given in three forms: (1) the input, (2) the
oracle set, (3) the conditional string. Correspondingly, a universal machine has
3 tapes: (i) one tape for the input and work, (ii) one tape for storing the condi-
tional string, (iii) one tape (called the oracle-query tape) for formulating queries
to the oracle.

The oracle is a string or a sequence. If the machine enters the query state
and the value written in binary on the oracle-query tape is n, then the machine
gets the n-th bit in the oracle, or if n is larger than the length of the oracle, the
machine enters an infinite loop.

We fix such a universal machine U . The notation Uw(u | v) means that the
input is u, the conditional string is v and the oracle is w, which is a string
or a sequence. The plain complexity of a string x given the oracle w and the
conditional string v is Cw(x | v) = min{|u| | Uw(u | v) = x}. There exists a
constant c such that for every x, v and w Cw(x | v) < |x| + c.

A machine is prefix-free (self-delimiting) if its domain is a prefix-free set.
There exist universal prefix-free machines. We fix such a machine U ; the prefix-
free complexity of a string x given the oracle w and the conditional string v is
Hw(x | v) = min{|u| | Uw(u | v) = x}.

In case w or v are the empty strings, we omit them in C(·) and H(·). Through-
out this paper we use the O(·) notation to hide constants that depend only on
the choice of the universal machine underlying the definitions of the complexities
C and H . There are various equivalent definitions for (algorithmic) random se-
quences as defined by Martin-Löf [ML66] (see [C02]). In what follows we will use
the (weak) complexity-theoretic one [Cha75] using the prefix-free complexity: A
sequence x is Martin-Löf random (in short, random) if there is a constant c such
that for every n, H(x�n) ≥ n − c. The set of random sequences has construc-
tive (Lebesgue) measure one [ML66]. The sequence x is random relative to the
sequence y if there is a constant c such that for every n, Hy(x�n) ≥ n − c.

The constructive Hausdorff dimension of a sequence x—which is the di-
rect effectivization of “classical Hausdorff dimension”—defined by dim(x) =
lim infn→∞ C(x�n)/n (= lim infn→∞ H(x�n)/n), measures intermediate levels of
randomness (see [Rya84, Sta93, Tad02, May02, Lut03, Rei04], [Sta05, CST06,
DHNT06]).

A Turing reduction f is an oracle Turing machine; f(x) is the language com-
puted by f with oracle x, assuming that f halts on all inputs when working
with oracle x (otherwise we say that f(x) does not exist). In other words, if
n ∈ f(x) then the machine f on input n and oracle x halts and outputs 1 and if
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n �∈ f(x) then the machine f on input n and oracle x halts and outputs 0. The
function use is defined as follows: usex

f(n) is the index of the rightmost position
on the tape of f accessed during the computation of f with oracle x on input
n. The Turing reduction f is a wtt-reduction if there is a computable function
q such that usex

f (n) ≤ q(n), for all n. The Turing reduction f is a truth-table
reduction if f halts on all inputs for every oracle. A truth-table reduction is a
wtt-reduction.

2 Defining Independence

Two objects are independent if none of them contains significant information
about the other one. Thus, if in some formalisation, I(x) denotes the information
in x and I(x | y) denotes the information in x given y, x and y are independent
if I(x) − I(x | y) and I(y) − I(y | x) are both small. In this paper we work in
the framework of algorithmic information theory. In this setting, in case x is a
string, I(x) is the complexity of x (where for the “complexity of x” there are
several possibilities, the main ones being the plain complexity or the prefix-free
complexity).

The independence of strings was studied in [Cha82]: two strings are inde-
pendent if I(xy) ≈ I(x) + I(y). This approach motivates our Definition 1 and
Definition 2.

In case x is an infinite sequence, the information in x is characterised by
the sequence (I(x�n))n∈N of information in the initial segments of x. For the
information upon which we condition (e.g., the y in I(x | y)), there are two
possibilities: either the entire sequence is available in the form of an oracle,
or we consider initial segments of it. Accordingly, we propose two notions of
independence.

Definition 1. (The “integral” type of independence) Two sequences x and
y are independent if Cx(y�n) ≥ C(y�n) − O(log n) and Cy(x�n) ≥ C(x�n) −
O(log n).

Definition 2. (The finitary type of independence) Two sequences x, y are
finitary-independent if for all natural numbers n and m,

C(x�n y�m) ≥ C(x�n) + C(y�m) − O(log(n) + log(m)).

Remark 1. We will show in Proposition 1, that the inequality in Definition 2 is
equivalent to saying that for all n and m, C(x�n | y�m) ≥ C(x�n) − O(log n +
log m), which is the finite analogue of the property in Definition 1 and is in line
with our discussion above.

Remark 2. If x and y are independent, then they are also finitary-independent
(Proposition 2). The converse is not true (Corollary 1).

Remark 3. The proposed definitions use the plain complexity C(·), but we could
have used the prefix-free complexity as well, because the two types of complexity
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are within an additive logarithmic term. Also, in Definition 2 (and throughout
this paper), we use concatenation to represent the joining of two strings. How-
ever, since any reasonable pairing function 〈x, y〉 satisfies | |〈x, y〉| − |xy| | <
O(log |x| + log |y|), it follows that |C(< x, y >) − C(xy)| < O(log |x| + log |y|),
and thus any reasonable pairing function could be used instead.

Remark 4. A debatable issue is the subtraction of the logarithmic term. Indeed,
there are other natural possibilities. We argue that our choice has certain ad-
vantages over other possibilities that come to mind.

Let us focus on the definition of finitary-independence. We want
C(x�n y�m) ≥ C(x�n) + C(y�n) − O(f(x) + f(y)), for all n, m, where f should
be some “small” function. We would like the following two properties to hold:

(A) the sequences x and y are finitary-independent iff C(x�n | y�m) > C(x�n)−
O(f(x�n) + f(y�m)), for all n and m,

(B) if x is “somewhat” random and y = 00 · · · 000 · · · , then x and y are finitary-
independent.

Other natural possibilities for the definition could be:
(i) if f(x) = C(|x|), the definition of finitary independence–(i) would be:

C(x�n y�m) ≥ C(x�n) + C(y�m) − O(C(n) + C(m)),

or (ii) if f(x) = log C(x), the definition of finitary-independence–(ii) would be:

C(x�n y�m) ≥ C(x�n) + C(y�m) − O(log C(x�n) + log C(y�m)).

If sequences x and y satisfy (i), or (ii), then they also satisfy Definition 2.
Variant (i) implies (B), but not(A) (for example, consider sequences x and y

with C(n) << log C(x�n) and C(m) << log C(y�m), for infinitely many n and
m). Variant (ii) implies (A), but does not imply (B) (for example if for infinitely
many n, C(x�n) = O(log3 n); take such a value n, let p be a shortest description
of x�n, and let m be the integer whose binary representation is 1p. Then x�n
and 0ω�m, do not satisfy (B)). The proposed definition implies both (A) and
(B).

Another advantage is the robustness discussed in Remark 3.

Remark 5. If the sequence x is computable, then x is independent with every
sequence y. In fact a stronger fact holds. A sequence is called H-trivial if, for
all n, H(x�n) ≤ H(n)+ O(1). This is a notion that has been intensively studied
recently (see [DHNT06]). Clearly every computable sequence is H-trivial, but
the converse does not hold [Zam90, Sol75]. If x is H-trivial, then it is independent
with every sequence y. Indeed, Hy(x�n) ≥ H(x�n)−O(log n), because H(x�n) ≤
H(n)+O(1) ≤ log n+O(1), and Hx(y�n) ≥ H(y�n)−O(log n), because, in fact,
Hx(y�n) and H(y�n) are within a constant of each other [Nie05]. The same
inequalities hold if we use the C(·) complexity (see Remark 3).

For the case of finitary-independence, a similar phenomenon holds for a (seem-
ingly) even larger class.
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Definition 3. A sequence x is called C-logarithmic if C(x�n) = O(log n).

It can be shown (for example using Proposition 1, (a)) that if x is C-logarithmic,
then it is finitary-independent with every sequence y.

Note that every sequence x that is the characteristic sequence of a c.e. set
is C-logarithmic. This follows from the observation that, for every n, the initial
segment x�n can be constructed given the number of 1’s in x�n (an information
which can be written with log n bits) and the finite description of the enumerator
of the set represented by x. If a sequence is H-trivial then it is C-logarithmic,
but the converse probably does not hold.

In brief, the notions of independence and finitary-independence are relevant
for strings having complexity above that of H-trivial sequences, respectively
C-logarithmic sequences. The cases of independent (finitary-independent) pairs
(x, y), where at least one of x and y is H-trivial (respectively, C-logarithmic)
will be referred to as trivial independence.

Remark 6. Some desirable properties of the independence relation are:

P1. Symmetry: x is independent with y iff y is independent with x.
P2. Robustness under type of complexity (plain or prefix-free).
P3. If f is a Turing reduction, except for some special cases, x and f(x) are

dependent (“independence cannot be created”).
P4. For every x, the set of sequences that are dependent with x is small (i.e., it

has measure zero).

Clearly both the independence and the finitary-independence relations satisfy
P1. They also satisfy P2, as we noted in Remark 3. It is easy to see that the
independence relation satisfies P3, whenever we require that the initial segments
of x and f(x) have plain complexity ω(log n) (because Cx(f(x)�n) = O(log n),
while C(f(x)�n) = ω(log n)). We shall see that the finitary-independence relation
satisfies P3 under some stronger assumptions for f and f(x) (see Section 4.1 and
in particular Theorem 6). Theorem 3 shows that the (finitary-) independence
relation satisfies P4.

2.1 Properties of Independent and Finitary-Independent Sequences

The following simple properties of finitary-independent sequences are technically
useful in some of the next proofs.

Proposition 1. (a) Two sequences x and y are finitary-independent iff for all
n and m, C(x�n | y�m) ≥ C(x�n) − O(log n + log m).

(b) Two sequences x and y are finitary-independent iff for all n, C(x�n y�n) ≥
C(x�n) + C(y�n) − O(log(n)).

(c) Two sequences x and y are finitary-independent iff for all n, C(x�n | y�n) ≥
C(x�n) − O(log(n)).

(d) If x and y are not finitary-independent, then for every constant c there are
infinitely many n such that C(x�n y�n) < C(x�n) + C(y�n) − c log n.
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(e) If x and y are not finitary-independent, then for every constant c there are
infinitely many n such that C(x�n | y�n) < C(x�n) − c log n.

Proposition 2. If the sequences x and y are independent, then they are also
finitary-independent.

Proposition 3. If dim(x) = σ and the sequences (x, y) are finitary-indepen-
dent, then dim(x XOR y) ≥ σ.

Proposition 4. (a) If x is random and the sequences (x, y) are finitary-
independent, then (y, x XOR y) are finitary-independent.

(b) If x is random and (x, y) are independent, then (y, x XOR y) are indepen-
dent.

Proposition 5. There are sequences x, y, and z such that (x, y) are indepen-
dent, (x, z) are independent, but (x, y ⊕ z) are not finitary-independent.

In Remark 5, we have listed several types of sequences that are independent or
finitary-independent with any other sequence. The next result goes in the oppo-
site direction: it exhibits a pair of sequences that can not be finitary-independent
(and thus not independent).

Proposition 6. [Ste07] If x and y are left c.e. sequences, dim(x) > 0, and
dim(y) > 0, then x and y are not finitary-independent.

3 Examples of Independent and Finitary-Independent
Sequences

We give examples of pairs of sequences that are independent or finitary-
independent (other than the trivial examples from Remark 5).

Theorem 1. Let x be a random sequence and let y be a sequence that is random
relative to x. Then x and y are independent.

Theorem 2. Let x be an arbitrary sequence and let y be a sequence that is
random relative to x. Then x and y are finitary-independent.

As expected, most pairs of sequences are independent (and thus also finitary-
independent).

Theorem 3. For every x, the set {y | y independent with x} has (Lebesgue)
measure one.

4 Effective Constructions of Finitary-Independent
Sequences

The examples of (finitary-) independent sequences provided so far are existential
(i.e., non-constructive). In this section we investigate to what extent it is possible
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to effectively construct such sequences. We show some impossibility results and
therefore we focus on the weaker type of independence, finitary-independence.
Informally speaking, we investigate the following questions:

Question (a). Is it possible to effectively construct from a sequence x another
sequence y finitary-independent with x, where the finitary-independence is not
trivial (recall Remark 5)? This question has two variants depending on whether
we seek a uniform procedure (i.e., one procedure that works for all x), or whether
we allow the procedure to depend on x.

Question (b). Is it possible to effectively construct from a sequence x two
sequences y and z that are finitary-independent, where the finitary-independence
is not trivial? Again, there are uniform and non-uniform variants of this question.

We analyse these questions in Section 4.1. Similar questions for the case when
the input consists of two sequences x1 and x2 are discussed in Section 4.2.

4.1 If We Have One Source

We first consider the uniform variant of Question (a): Is there a Turing reduction
f such that for all x ∈ {0, 1}∗, (x, f(x)) are finitary-independent? We even
relax the requirement and demand that f should achieve this objective only if
x has positive constructive Hausdorff dimension (this only makes the following
impossibility results stronger).

As noted above, the question is interesting if we require f(x) to have some
“significant” amount of randomness whenever x has some “significant” amount
of randomness. The answer should be negative, because, intuitively, one should
not be able to produce independence (this is property P3 in Remark 6).

We consider two situations depending on two different meanings of the concept
of “significant” amount of randomness.

Case 1: We require that f(x) is not C-logarithmic. We do not solve the question,
but we show that every reduction f that potentially does the job must have non-
polynomial use.

Proposition 7. Let f be a Turing reduction. For every sequence x, if the
function usex

f(n) is polynomially bounded, then x and f(x) are not finitary-
independent, unless one of them is C-logarithmic.

Case 2: We require that f(x) has complexity just above that of C-logarithmic
sequences (in the sense below). We show that in this case, the answer to the
uniform variant of Question (a) is negative: there is no such f .

Definition 4. A sequence x is C-superlogarithmic if for every constant c > 0,
C(x�n) > c log n, for almost every n.

The next theorems in this section are based on results from [NR06], [BDS07],
and [Zim08].

We proceed to the impossibility results related to Case 2. To simplify the
structure of quantifiers in the statement of the following result, we posit here
the following task for a function f mapping sequences to sequences:
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TASK A: for every x ∈ {0, 1}∞ with dim(x) > 0, the following should hold:
(a) f(x) exists, (b) f(x) is C-superlogarithmic, (c) x and f(x) are finitary-
independent.

Theorem 4. There is no Turing reduction f that satisfies TASK A.

We next consider the uniform variant of Question (b). We posit the following
task for two functions f1 and f2 mapping sequences to sequences:

TASK B: for every x ∈ {0, 1}∞ with dim(x) > 0, the following should hold:
(a) f1(x) and f2(x) exist, (b) f1(x) and f2(x) are C-superlogarithmic, (c) f1(x)
and f2(x) are finitary-independent.

Theorem 5. There are no Turing reductions f1 and f2 satisfying TASK B.

The non-uniform variants of Questions (a) and (b) remain open. In the particular
case when f is a wtt-reduction, we present impossibility results analogous to
those in Theorem 4 and Theorem 5.

Theorem 6. For all rational σ ∈ (0, 1), there exists dim(x) = σ such that for
every wtt-reduction f , at least one of the following statements (a), (b), (c) holds
true: (a) f(x) does not exist, (b) f(x) is not finitary-independent with x, (c)
f(x) is not C-superlogarithmic.

Theorem 7. For all rational σ ∈ (0, 1), there exists x with dim(x) = σ such
that for every wtt-reductions f1 and f2, at least one of the following statements
(a), (b), (c) holds true: (a) f1(x) does not exist or f2(x) does not exist, (b) f1(x)
and f2(x) are not finitary-independent, (c) f1(x) is not C-superlogarithmic or
f2(x) is not C-superlogarithmic.

4.2 If We Have Two Sources

We have seen some limits on the possibility of constructing a finitary-independent
sequences starting from one sequence. What if we are given two finitary-
independent sequences: is it possible to construct from them more finitary-
independent sequences?

First we observe that if x and y are two (finitary-) independent sequences and
g is an arbitrary Turing reduction, then it does not necessarily follow that x and
g(y) are (finitary-) independent (as one may expect). On the other hand, if x
and y are independent, it does follow that x and g(y) are finitary-independent.

Proposition 8. (a) [Ste07] There are two independent sequences x and y and
a Turing reduction g such that x and g(y) are not independent.

(b) There are two finitary-independent sequences x and y and a Turing reduc-
tion g such that x and g(y) are not finitary-independent.

Proposition 9. If x and y are independent, and g is a Turing reduction, then
x and g(y) are finitary-independent (provided g(y) exists).

Corollary 1. There are sequences that are finitary-independent but not inde-
pendent.
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By Proposition 8, we see that (finitary-) independence is not preserved by
computable functions. However, we note that there exists a simple proce-
dures that, starting with a finitary-independent pair (x, y), produces a new
pair of finitary-independent sequences. Namely, the pair (x, yodd) is finitary-
independent. Another question is whether given a pair of (finitary-)independent
strings (x, y), it is possible to effectively produce another sequence that is
(finitary-)independent with both x and y. The answer is positive in the case
when x and y are both random. Indeed, if x and y are random and inde-
pendent (respectively finitary-independent), then x XOR y is independent (re-
spectively, finitary-independent) with both x and y. The similar question for
non-random x and y remains open. (See Section 4.3 for some results for finite
strings).

4.3 Producing Independence: The Finite Case

In what follows we attack the question on whether it is possible to effectively
produce an object which is independent to each of several given independent
objects for the simpler case of strings. In this setting we are able to give a
positive answer for the situation when we start with three1 input strings that
are independent (and not necessarily random). First we define the analogue of
independence for strings.

Definition 5. Let c ∈ R
+ and k ∈ N. We say that strings x1, x2, . . . , xk in

{0, 1}∗ are c-independent if

C(x1x2 . . . xk) ≥ C(x1)+C(x2)+. . .+C(xk)−c(log |x1|+log |x2|+. . .+log |xk|).

The main result of this section is the following theorem, whose proof draws from
the techniques of [Zim08].

Theorem 8. For all constants σ > 0 and σ1 ∈ (0, σ), there exists a computable
function f : {0, 1}∗ ×{0, 1}∗ ×{0, 1}∗ → {0, 1}∗ with the following property: For
every c ∈ R

+ there exists c′ ∈ R
+ such that if the input consists of a triplet

of c-independent strings having sufficiently large length n and plain complexity
at least σ · n, then the output is c′-independent with each element in the input
triplet and has length �σ1n�.

More precisely, if

(i) (x, y, z) are c-independent,
(ii) |x| = |y| = |z| = n, and
(iii) C(x) ≥ σ · n, C(y) ≥ σ · n, C(z) ≥ σ · n,

then, provided n is large enough, the following pairs of strings (f(x, y, z), x),
(f(x, y, z), y), (f(x, y, z), z) are c′-independent, |f(x, y, z)| = �σ1n�, and
C(f(x, y, z)) ≥ �σ1n� − O(log n).

1 The case when the input consists of two independent strings remains open.
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