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Two objects are independent if they do not affect each other. Independence is well-

understood in classical information theory, but less in algorithmic information theory.

Working in the framework of algorithmic information theory, the paper proposes two types

of independence for arbitrary infinite binary sequences and studies their properties. Our

two proposed notions of independence have some of the intuitive properties that one nat-

urally expects. For example, for every sequence x, the set of sequences that are independent

with x has measure one. For both notions of independence we investigate to what extent

pairs of independent sequences, can be effectively constructed via Turing reductions (from

one or more input sequences). In this respect, we prove several impossibility results. For

example, it is shown that there is no effective way of producing from an arbitrary sequence

with positive constructive Hausdorff dimension two sequences that are independent (even

in the weaker type of independence) and have super-logarithmic complexity. Finally, a few

conjectures and open questions are discussed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Intuitively, two objects are independent if they do not affect each other. The concept is well-understood in classical

information theory. There, the objects are random variables, the information in a random variable is its Shannon entropy,

and two random variables X and Y are declared to be independent if the information in the join (X , Y) is equal to the sum

of the information in X and the information in Y . This is equivalent to saying that the information in X conditioned by Y is

equal to the information in X , with the interpretation that, on average, knowing a particular value of Y does not affect the

information in X .

The notion of independence has been defined in algorithmic information theory as well, but for finite strings [6]. The

approach is very similar. This time the information in a string x is the complexity (plain or prefix-free) of x, and two strings x

and y are independent if the information in the join string 〈x, y〉 is equal to the sumof the information in x and the information

in y, up to logarithmic (or, in some cases, constant) precision.
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The case of infinite sequences (in short, sequences) has been less studied. An inspection of the literature reveals that for

this setting, independence has been considered to be synonymous with pairwise relative randomness, i.e., two sequences x

and y are said to be independent if they are (Martin-Löf) random relative to each other (see [31,7]). The effect of this approach

is that the notion of independence is confined to the situation where the sequences are random.

The main objective of this paper is to put forward a concept of independence that applies to all sequences, is natural, and

is easy to use. One can envision various ways for doing this. One possibility is to use Levin’s notion of mutual information for

sequences [13] (see also the survey paper [10]) and declare two sequences to be independent if their mutual information is

small.3 We take another approach, which consists in extending in the natural way the notion of independence from finite

strings to sequences. This leads us to two concepts: independence and finitary-independence. We say that (1) two sequences

x and y are independent if, for all n, the complexity of x�n (the prefix of x of length n) and the complexity of x�n relativized

with y are within O(log n) (and the same relation holds if we swap the roles of x and y), and (2) two sequences x and y are

finitary-independent if, for alln andm, the complexity of x�n and the complexity of x�n given y�m arewithinO(log n + logm)
(and the same relation holds if we swap the roles of x and y). We have settled for the additive logarithmical term of precision

(rather than somehigher accuracy) since this provides robustnesswith respect to the type of complexity (plain or prefix-free)

and other technical advantages.

We establish a series of basic facts regarding the proposed notions of independence. We show that independence is

strictly stronger than finitary-independence. The two notions of independence apply to a larger category of sequences than

the family of random sequences, as intended. However, they are too rough for being relevant for computable sequences. It

is not hard to see that a computable sequence x is independent with any other sequence y, simply because the information

in x can be obtained directly. In fact, this type of trivial independence holds for a larger family of sequences, namely for any

H-trivial sequence, and trivial finitary-independence holds for any sequence x whose prefixes have logarithmic complexity.

It seems that for this type of sequences (computable or with very low complexity) amore refined definition of independence

is needed (perhaps, based on resource-bounded complexity). We show that the two proposed notions of independence have

some of the intuitive properties that one naturally expects. For example, for every sequence x, the set of sequences that are

independent with x has measure one.

Wenext investigate towhat extentpairs of independent, orfinitary-independent sequences, canbeeffectively constructed

via Turing reductions. For example, is there a Turing reduction f that given oracle access to an arbitrary sequence x produces

a sequence that is finitary-independent with x? Clearly, if we allow the output of f to be a computable sequence, then the

answer is positive by the type of trivial finitary-independence that we have noted above. We show that if we insist that the

output of f has super-logarithmic complexity whenever x has positive constructive Hausdorff dimension, then the answer is

negative. In the same vein, it is shown that there is no effective way of producing from an arbitrary sequence xwith positive

constructive Hausdorff dimension two sequences that are finitary-independent and have super-logarithmic complexity.

Similar questions are considered for the situation when we are given two (finitary-) independent sequences. It is shown

that there are (finitary-) independent sequences x and y and a Turing reduction g such that x and g(y) are not (finitary-)

independent.We consider that this is the only counter-intuitive effect of our definitions. Note that the notion of constructive

Hausdorff dimension (or of partial randomness) suffers from the same problem. For example, it is not hard to see that there

exist a sequence x with constructive Hausdorff dimension 1 and a computable function g (which can even be a computable

permutation of the input bits) such that g(x) has constructive Hausdorff dimension 1/2. It seems that if one wants to

extend the notion of independence to sequences that are not random (in particular to sequences that have arbitrary positive

constructive Hausdorff dimension) such counter-intuitive effects cannot be avoided. On the other hand, for any independent

sequences x and y and for any Turing reduction g, x and g(y) are finitary-independent.

Our results show that partial random sequences can have complex structure: in particular, there are such sequences that

cannot be obtained from random sequences by simple dilution operations (such as inserting a 0 between adjacent bits or

doubling each bit).

We also raise the question on whether given as input several (finitary-) independent sequences x and y it is possible to

effectively build a new sequence that is non-trivially (finitary-) independent with each sequence in the input. It is observed

that the answer is positive if the sequences in the input are random, but for other types of sequences the question remains

open. The same issue can be raised for finite strings and for this case a positive answer is obtained. Namely, it is shown that

given three independent finite strings x, y and z with linear complexity, one can effectively construct a new string that is

independent with each of x, y and z, has high complexity and length a constant fraction of the lengths of x, y and z.

1.1. Preliminaries

N, R, R+ denote, respectively, the set of non-negative integers, the set of real numbers, and the set of positive real

numbers; the size of a finite set A is denoted ||A||. Unless stated otherwise, all numbers are in N and all logs are in base

2. We work over the binary alphabet {0, 1}. A string is an element of {0, 1}* and a sequence is an element of {0, 1}∞. If

x is a string, |x| denotes its length; xy denotes the concatenation of the strings x and y. If x is a string or a sequence, x(i)
denotes the ith bit of x and x�n is the substring x(1)x(2) · · · x(n). For two sequences x and y, x ⊕ y denotes the sequence

3 We note that Levin’s definition is technically very complicated and some basic questions remain open. For example, it is not even known whether, in

the setting of [13], every sequence (excluding the trivial cases) is dependent with itself (see Problems 8.2 and 8.3 in [22]).
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x(1)y(1)x(2)y(2)x(3)y(3) · · · and xXOR y denotes the sequence (x(1)XOR y(1))(x(2)XOR y(2))(x(3)XOR y(3)) · · · , where

(x(i) XOR y(i)) is the sum modulo 2 of the bits x(i) and y(i). We identify a sequence x with the set {n ∈ N | x(n) = 1}. We

say that a sequence x is computable (computably enumerable, or c.e.) if the corresponding set is computable (respectively,

computably enumerable, or c.e.). If x is c.e., then for every s ∈ N, xs is the sequence corresponding to the set of elements

enumerated within s steps by some machineM that enumerates x (the machineM is given in the context). We also identify

a sequence xwith the real number in the interval [0, 1] whose binary writing is 0.x(1)x(2) . . . A sequence x is said to be left

c.e. if the corresponding real number x is the limit of a computable increasing sequence of rational numbers. The plain and

the prefix-free complexities of a string are defined in the standard way (for example see [2]); however we need to provide a

few details regarding the computational models. The machines that we consider process information given in three forms:

(1) the input, (2) the oracle set, (3) the conditional string. Correspondingly, a universal machine has three tapes:

• one tape for the input and work,

• one tape for storing the conditional string,

• one tape (called the oracle-query tape) for formulating queries to the oracle.

The oracle is a string or a sequence. If the machine enters the query state and the value written in binary on the oracle-query

tape is n, then the machine gets the nth bit in the oracle, or if n is larger than the length of the oracle, the machine enters an

infinite loop.

We fix such a universal machine U. The notation Uw(u | v) means that the input is u, the conditional string v and the

oracle is given byw, which is a string or a sequence. The plain complexity of a string x given the oraclew and the conditional

string v is Cw(x | v) = min{|u| | Uw(u | v) = x}. There exists a constant c such that for every x, v andw, Cw(x | v) < |x| + c.

A machine is prefix-free (self-delimiting) if its domain (i.e., the set of its input strings) is a prefix-free set. There exist

universal prefix-free machines; we fix such a machine U (it will be clear from the context whether U is the universal plain

machine or the universal prefix-freemachine). The prefix-free complexity of a string x given the oraclew and the conditional

string v is Hw(x | v) = min{|u| | Uw(u | v) = x}.
In case w or v are the empty strings, we omit them in C(·) and H(·). The standard O(·), o(·), �(·), ω(·) notations for

asymptotic upper and lower bounds are used throughout this paper. The reader should be aware that (a) in statements

regarding strings, the O(·) notation hides constants that depend only on the choice of the universal machine underlying the

definitions of the complexities C and H, and (b) in statements regarding prefixes of sequences, the hidden constants depend

only on the involved sequences and on the underlying universal machines (but not on the lengths of the prefixes). Since the

prefix-free universal machine is a particular type of machine, it follows that Cw(x | v) < Hw(x | v) + O(1), for every x, v

andw. The reverse inequality between C(·) and H(·) also holds true, within an additive logarithmic term, and is obtained as

follows. For example, a string x = x(1)x(2) · · · x(n) can be coded in a self-delimiting way by

x �→ code(x) = 11 · · · 1︸ ︷︷ ︸
|bin(n)|

0bin(n)x(1)x(2) · · · x(n), (1)

where bin(n) is the binary representation of n ∈ N. Note that |code(x)| = |x| + 2 log |x| + O(1). This implies that for every

x, v, and w,

Cw(x | v) > Hw(x | v) − 2 log |x| − O(1). (2)

The following inequalities hold for all strings x and y:

Cy(x) ≤ C(x | y) + 2 log |y| + O(1), (3)

|C(xy) − (C(x | y) + C(y))| ≤ O(log C(x) + log C(y)). (4)

The first inequality is easy to derive directly; the second one is called the Symmetry of Information Theorem, see [37].

LetM beaTuringmachinewhosedomain is aprefix-free set. For each string x, letQM(x) = ∑
p,M(p)=x 2

−|p| (theprobability
that M outputs x). The Coding Theorem (see [2,14,20]) states that if QM(x) ≥ 2−�, then H(x) ≤ � + O(1) (the constant in

O(1) depends on the machine M).

There are various equivalent definitions for (algorithmic) random sequences as defined by Martin-Löf [17] (see [2]). In

what follows we will use the (weak) complexity-theoretic one [5] using the prefix-free complexity: A sequence x is Martin-

Löf random (in short, random) if there is a constant c such that for every n, H(x�n) ≥ n − c. The set of random sequences

has constructive (Lebesgue) measure one [17].

The sequence x is random relative to the sequence y if there is a constant c such that for every n, Hy(x�n) ≥ n − c. Note

that if x is random, then for every n, C(x�n) ≥ n − 2 log n − O(1) (by inequality (2)). A similar inequality also holds for the

relativized complexities, i.e. for all x that are random relative to y and for all n, Cy(x�n) > n − 2 log n − O(1). These results

will be repeatedly used throughout the paper.

In [31] van Lambalgen proves that x ⊕ y is random iff x is random and y is random relative to x. This implies that if x is

random and y is random relative to x then x is random relative to y.
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The constructive Hausdorff dimension of a sequence x—which is the direct effectivization of “classical Hausdorff

dimension”—defined by dim(x) = lim infn→∞ C(x�n)/n (= lim infn→∞ H(x�n)/n), measures intermediate levels of ran-

domness (see [24,27,30,16,15,23,28,3,8,4]).

A Turing reduction f is an oracle Turing machine; f (x) is the language computed by f with oracle x, assuming that f halts

on all inputs when working with oracle x (otherwise we say that f (x) does not exist). In other words, if n ∈ f (x) then the

machine f on input n and with oracle x halts and outputs 1 and if n �∈ f (x) then the machine f on input n and with oracle

x halts and outputs 0. The function use is defined as follows: usexf (n) is the index of the rightmost position on the tape of f

accessed during the computation of f with oracle x on all input strings of length n. The Turing reduction f is a wtt-reduction

if there is a computable function q such that usexf (n) ≤ q(n), for all n. The Turing reduction f is a truth-table reduction if f

halts on all inputs for every oracle. Every truth-table reduction is a wtt-reduction.

Let (En) be a sequence of events in some probability space. The Borel–Cantelli Lemma states that if the sum of the

probabilities of the events En is finite then the probability that infinitely many of them hold is 0 (see for example [9]).

We use the following standard version of the Chernoff bounds (see for example Appendix A in [33]). Let X1, . . . , Xn be

independent random variables that take the values 0 and 1, let X = ∑
Xi, and let μ be the expected value of X . Then for any

0 < d ≤ 1, Prob(X > (1 + d)μ) ≤ e−d2μ/3.

2. Defining independence

The basic idea is to declare that two objects are independent if none of them contains significant information about the

other one. Thus, if in some formalisation, I(x) denotes the information in x and I(x | y) denotes the information in x given

y, x and y are independent if I(x) − I(x | y) and I(y) − I(y | x) are both small. In this paper we work in the framework of

algorithmic information theory. In this setting, in case x is a string, I(x) is the complexity of x (where for the “complexity of

x” there are several possibilities, the main ones being the plain complexity or the prefix-free complexity).

The independence of strings was studied explicitly in [6]4: two strings are independent if I(xy) ≈ I(x) + I(y). This
approach motivates our Definitions 2.1 and 2.2.

The information in an infinite sequence x is characterised by the sequence (I(x�n))n∈N of information in the initial

segments of x. The extra information given by an infinite sequence y appearing in I(x | y) can be globally available in the

form of an oracle or through its initial prefixes of arbitrary length.

Accordingly, we propose two notions of independence.

Definition 2.1 (The global type of independence). Two sequences x and y are independent if, for every n ∈ N, Cx(y�n) ≥
C(y�n) − O(log n) and Cy(x�n) ≥ C(x�n) − O(log n).

Definition 2.2 (The finitary type of independence). Two sequences x, y are finitary-independent if for all natural numbers n

andm,

C(x�n y�m) ≥ C(x�n) + C(y�m) − O(log(n) + log(m)).

Recall that the constants hidden by the O(·) notation depend on the sequences x and y, but not on the lengths n andm.

Remark 2.3. We will show in Proposition 2.11, that the inequality in Definition 2.2 is equivalent to saying that for all n and

m, C(x�n | y�m) ≥ C(x�n) − O(log n + logm), which is the finite analogue of the property in Definition 2.1 and is in line

with our discussion above.

Remark 2.4. If x and y are independent, then they are also finitary-independent (Proposition 2.12). The converse is not true

(Corollary 4.18).

Remark 2.5. The proposed definitions use the plain complexity C(·), but we could have used the prefix-free complexity as

well, because the two types of complexity arewithin an additive logarithmic term. Also, inDefinition 2.2 (and throughout this

paper), we use concatenation to represent the joining of two strings. However, since any reasonable pairing function 〈x, y〉
satisfies the inequality | |〈x, y〉| − |xy| | < O(log |x| + log |y|), it follows that |C(〈x, y〉) − C(xy)| < O(log |x| + log |y|), and
thus any reasonable pairing function can be used instead.

Remark 2.6. A debatable issue is the quantification of precision.We chose the additive logarithmic term, but there are other

natural possibilities. We argue that our choice has certain advantages over other possibilities that come to mind.

Let us focus on the definition of finitary-independence. We want C(x�n y�m) ≥ C(x�n) + C(y�n) − O(f (x) + f (y)), for
all n,m, where f should be some “small" function. We would like the following two properties to hold:

(A) the sequences x and y are finitary-independent iff C(x�n | y�m) > C(x�n) − O(f (x�n) + f (y�m)), for all n andm,

(B) if x is “somehow” random and y = 0ω , then x and y are finitary-independent.

4 Related notions such as mutual information and symmetry of information appear much earlier, for example in [37].
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The additive logarithmic precision satisfies (A) and (B); robustness properties described in Remark 2.5 are also satisfied.

Other natural possibilities for the definition are:

(i) If f (x) = C(|x|), the definition of finitary-independence—(i) becomes:

C(x�n y�m) ≥ C(x�n) + C(y�m) − O(C(n) + C(m)).

(ii) If f (x) = log C(x), the definition of finitary-independence—(ii) becomes:

C(x�n y�m) ≥ C(x�n) + C(y�m) − O(log C(x�n) + log C(y�m)).

If sequences x and y satisfy (i), or (ii), then they also satisfy Definition 2.2.

Variant (i) implies (B), butnot (A) (for example, consider sequencesx andywithC(n)� log C(x�n)andC(m)� log C(y�m),
for infinitely many n and m). Variant (ii) implies (A), but does not imply (B) (for example if for infinitely many n, C(x�n) =
�(log3 n); take such a value n, let p be a shortest description of x�n, and letm be the integer whose binary representation is

1p. Then x�n and 0ω�m, do not satisfy (B)).

Remark 2.7. If the sequence x is computable, then x is independent with every sequence y. In fact a stronger fact holds. A

sequence is called H-trivial if, for all n, H(x�n) ≤ H(n) + O(1). This is a notion that has been intensively studied recently

(see [8]). Clearly every computable sequence is H-trivial, but the converse does not hold [32,26]. If x is H-trivial, then it is

independentwith every sequence y. Indeed,Hy(x�n) ≥ H(x�n) − O(log n), becauseH(x�n) ≤ H(n) + O(1) ≤ log n + O(1),
and Hx(y�n) ≥ H(y�n) − O(log n), because, in fact, Hx(y�n) and H(y�n) are within a constant of each other [19]. The same

inequalities hold if we use the C(·) complexity (see Remark 2.5).

For the case of finitary-independence, a similar phenomenon holds for a (seemingly) even larger class.

Definition 2.8. A sequence x is called C-logarithmic if C(x�n) = O(log n).

It can be shown (for example using Proposition 2.11(a)) that if x is C-logarithmic, then it is finitary-independent with every

sequence y.

Note that every sequence x that is thecharacteristic sequenceof a c.e. set isC-logarithmic. This follows fromtheobservation

that, for every n, the initial segment x�n can be constructed given the number of 1’s in x�n (an information which can

be written with log n bits) and the finite description of the enumerator of the set represented by x. If a sequence is H-

trivial then it is C-logarithmic, but the converse does not hold. Indeed, one can build a C-logarithmic sequence x such

that C(x�2n+1 − 1) = �(n). This can be done by taking, for each k that is a power of 2, one string yk of length k with

large complexity (say, C(yk) > k/2). Let A = {y1, y2, y4, y8, . . . , } and finally x is the characteristic sequence of A. Since

H(2n+1 − 1) = O(log n), x is not H-trivial.

In brief, the notions of independence and finitary-independence are relevant for strings having complexity above that

of H-trivial sequences, respectively, C-logarithmic sequences. The cases of independent (finitary-independent) pairs (x, y),
where at least one of x and y is H-trivial (respectively, C-logarithmic) will be referred to as trivial independence.

Remark 2.9. Some desirable properties of the independence relation are:

P1. Symmetry: x is independent with y iff y is independent with x.

P2. Robustness under type of complexity (plain or prefix-free).

P3. If f is a Turing reduction, except for some special cases, x and f (x) are dependent (“independence cannot be

algorithmically created”).

P4. For every x, the set of sequences that are dependent with x is small (i.e., it has measure zero).

Clearly both the independence and the finitary-independence relations satisfy P1. They also satisfy P2, as we noted in

Remark 2.5.

It is easy to see that the independence relation satisfies P3, whenever we require that the initial segments of x and f (x)
have plain complexityω(log n) (because Cx(f (x)�n) = O(log n), while C(f (x)�n) = ω(log n)).We shall see that the finitary-

independence relation satisfies P3 under some stronger assumptions for f (see Section 4.1 and in particular Proposition 4.1).

Theorem 3.3 shows that the (finitary-) independence relation satisfies P4.

The following are parameterized versions of the definitions of independence and finitary-independence. They will be used

to present some of our results in a more precise way.

Definition 2.10. Let f : N ⇒ N be a function.

(a) Two sequences x and y are f -independent if, for every n ∈ N, Cx(y�n) ≥ C(y�n) − O(f (n)) and Cy(x�n) ≥ C(x�n) −
O(f (n)).

(b) Two sequences x, y are f -finitary-independent if for all natural numbers n andm,

C(x�n y�m) ≥ C(x�n) + C(y�m) − O(f (n) + f (m)).
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2.1. Properties of independent and finitary-independent sequences

The following simple properties of finitary-independent sequences are technically useful in some of the subsequent

proofs.

Proposition 2.11

(a) Two sequences x and y are finitary-independent iff for all n and m, C(x�n | y�m) ≥ C(x�n) − O(log n + logm).
(b) Two sequences x and y are finitary-independent iff for all n, C(x�n y�n) ≥ C(x�n) + C(y�n) − O(log(n)).
(c) Two sequences x and y are finitary-independent iff for all n, C(x�n | y�n) ≥ C(x�n) − O(log(n)).
(d) If the sequences x and y are not finitary-independent, then for every constant c there are infinitely many n such that

C(x�n y�n) < C(x�n) + C(y�n) − c log n.
(e) If the sequences x and y are not finitary-independent, then for every constant c there are infinitely many n such that C(x�n |

y�n) < C(x�n) − c log n.

Proof. We use the following inequalities which hold for all strings x and y (they follow from the Symmetry of Information

Equation (4)):

C(xy) ≥ C(x) + C(y | x) − O(log |x| + log |y|), (5)

and

C(xy) ≤ C(x) + C(y | x) + O(log |x| + log |y|). (6)

(a) “⇒"

C(x�n | y�m) ≥ C(x�n y�m) − C(y�m) − O(log n + logm) (by (6))
≥ C(x�n) + C(y�m) − C(y�m) − O(log n + logm) (by independence)
= C(x�n) − O(log n + logm).

“⇐"

C(x�n y�m) ≥ C(y�m) + C(x�n | y�m) − O(log n + logm) (by (5))
≥ C(y�m) + C(x�n) − O(log n + logm) (by hypothesis).

(b) “⇒" Take n = m.

“⇐" Suppose n ≥ m (the other case can be handled similarly).

C(x�n y�m) ≥ C(y�m) + C(x�n | y�m) − O(log(n) + log(m)) (by (5))
≥ C(y�m) + C(x�n | y�n) − O(log(n) + log(m))
≥ C(y�m) + C(x�n) − O(log(n) + log(m)) (by (a)).

(c) This follows from (b) with a similar proof as for (a).

(d) Suppose that for some constant c the inequality holds only for finitely many n. Then one can choose a constant c′ > c

for which the opposite inequality holds for every n, which by (b) would imply the finitary-independence of x and y.

(e) Follows from (c), in a similar way as (d) follows from (b). �

Proposition 2.12. If the sequences x and y are independent, then they are also finitary-independent.

Proof. Suppose x and y are not finitary-independent. By Proposition 2.11(e), for every constant c there are infinitely many n

such thatC(x�n | y�n) < C(x�n) − c · log n. Taking into account inequality (3),we obtainCy(x�n) < C(x�n) − (c − 3) log n,

for infinitely many n, which contradicts that x and y are independent. �

We show in Corollary 4.18 that the converse of Proposition 2.12 does not hold.

Proposition 2.13. For any real number σ and all sequences x and y, if dim(x) = σ and (x, y) are finitary-independent, then

dim(x XOR y) ≥ σ.
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Proof. Note that C(x�n | y�n) ≤ C((x XOR y)�n) + O(1), for all n (this holds for all sequences x and y). Suppose there exists

ε > 0 such that dim(x XOR y) ≤ σ − ε. It follows that, for infinitely many n, C((x XOR y)�n) ≤ (σ − ε)n. Then

C(x�n | y�n) < C((x XOR y)�n) + O(1)
≤ (σ − ε)n + O(1) for infinitely many n.

By the finitary-independence of (x, y), C(x�n) ≤ C(x�n | y�n) + O(log n) ≤ (σ − ε)n + O(1), i.o. n, which contradicts the

fact that dim(x) = σ . �

Proposition 2.14

(a) If the sequence x is random and the sequences (x, y) are finitary-independent, then (y, x XOR y) are finitary-independent.
(b) If the sequence x is random and the sequences (x, y) are independent, then (y, x XOR y) are independent.

Proof. For (a) suppose that y and x XOR y are not finitary-independent. Then for every constant c, there are infinitely many

n, such that C((x XOR y)�n | y�n) < C((x XOR y)�n) − c log n. Note that if a program can produce (x XOR y)�n given y�n,
then by doing an extra bitwise XOR with y�n it will produce x�n. Thus, C(x�n | y�n) < C((x XOR y)�n | y�n) + O(1) for all
n. Combining with the first inequality, for every constant c and for infinitely many nwe have:

C(x�n | y�n) < C((x XOR y)�n) − c log n + O(1)
< n − c log n + O(1)
< C(x�n) + 2 log n − c log n + O(1)
= C(x�n) − (c − 2) log n + O(1).

This contradicts the fact that x and y are finitary-independent. The proof for (b) is similar. �

Proposition 2.15. There are sequences x, y, and z that are pairwise independent, but (x, y ⊕ z) are not finitary-independent.

Proof. Take y and z two sequences that are random relative to each other, and let x = y XOR z. Then (x, y) are

independent, and (x, z) are independent, by Proposition 2.14. On the other hand note that dim(y XOR z) = 1 (by

Proposition 2.13) and C((y XOR z)�n | (y ⊕ z)�2n) < O(1). Consequently, for every constant c and for almost every n,

C((yXOR z)�n | (y ⊕ z)�2n) < C((yXOR z)�n) − c(log n + log 2n), and thus, (yXOR z, y ⊕ z) are not finitary-independent.
�

In Remark 2.7, we have listed several types of sequences, with computability-related properties, that are independent

or finitary-independent with any other sequence. The next result goes in the opposite direction: a computability-related

property is identified that implies non-finitary-independence (and thus non-independence).

Proposition 2.16 ([29]). If x and y are left c.e. sequences, dim(x) > 0, anddim(y) > 0, then x and y are not finitary-independent.

Proof. Let x(1), . . . , x(n), . . . (respectively, y(1), . . . , y(n), . . . ) be a computational and increasing sequence of rational

limits such that limn→∞ x(n) = x (limn→∞ y(n) = y). In case x (respectively, y) is rational we let x(i) = x (y(i) = y) for

every i. For each n, let cmx(n) = min{s | x(s)�n = x�n} and cmy(n) = min{s | y(s)�n = y�n} (the convergence moduli

of x and, respectively, y). Without loss of generality we can assume that cmx(n) ≥ cmy(n), for infinitely many n. For

each n satisfying the inequality, y�n can be computed from x�n as follows. First compute s = cmx(n) (which can be done

because x�n is known) and output y(s)�n. Consequently, for infinitely many n, C(y�n | x�n) < O(1). On the other hand,

since dim(y) > 0, there exists a constant c such that C(y�n) ≥ c · n, for almost every n. Consequently, x and y are not

finitary-independent. �

3. Examples of independent and finitary-independent sequences

We give more examples of pairs of sequences that are independent or finitary-independent but not trivially independent

(see Remark 2.7).

Theorem 3.1. Let x be a random sequence and let y be a sequence that is random relative to x. Then x and y are independent.

Proof.Sincey is randomrelativetox, foralln,Cx(y�n) > n − 2 log n − O(1) ≥ C(y�n) − 2 log n − O(1). ThevanLambalgen’s

Theorem [31] implies that x is random relative to y as well. Therefore, in the same way, Cy(x�n) > n − 2 log n − O(1) ≥
C(x�n) − O(log n). �
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FromTheorem3.1wecaneasilyderiveexamplesofpairs (x, y) thatare independentandwhichhaveconstructiveHausdorff

dimension ε, for every rational ε > 0. For example, if we start with x and y that are random with respect to each other and

build x′ = x(1)0x(2)0 . . . (i.e.we insert 0s in theevenpositions) andsimilarlybuildy′ fromy, then x′ andy′ haveconstructive
Hausdorff dimension equal to 1/2 and are independent (because Cx′(y′�n) and Cx(y�(n/2)) are within a constant of each

other, as are C(y′�n) and C(y�(n/2))). The pairs of sequences from Theorem 3.1 (plus those derived from them as above) and

the trivially independent sequences from Remark 2.7 are the only examples of independent sequences that we know. Thus,

currently, we have examples of independent pairs (x, y) only for the case when x has maximal prefix-free complexity (i.e.,

x is random) or x is obtained via a simple dilution transformation (similar to inserting 0s in even positions) from a random

sequence, and for the case when x has minimal prefix-free complexity (i.e., x is H-trivial). The paucity of examples should

be contrasted with Theorem 3.3 which shows that for every sequence x, most sequences y are independent with x. Pairs of

sequences that are finitary-independent are easier to find.

Theorem 3.2. Let x be an arbitrary sequence and let y be a sequence that is random relative to x. Then x and y are finitary-

independent.

Proof. Suppose x and y are not finitary-independent. Then there are infinitelymany nwith C(y�n | x�n) < C(y�n) − 5 log n.

Consider a constant c1 satisfying C(y�n) < n + c1, for all n. We get (under our assumption) that, for infinitely many n.

C(y�n | x�n) < n − 5 log n + c1. Then, by inequality (3), for infinitely many n, Cx�n(y�n) < n − 3 log n + c + c1. Note that

for every n and every m ≥ n, Cx�m(y�n) < Cx�n(y�n) (here we use the fact that the oracle query mechanism does not allow

the machine to find the length of the oracle string). Thus, for infinitely many n and for allm ≥ n,

Cx�m(y�n) < n − 3 log n + (c + c1). (7)

On the other hand, y is random relative to x. Therefore, for all n, Hx(y�n) > n − O(1). Let U be the universal machine

underlying the complexity H(·) and let p* be the shortest program such that Ux(p*) = y�n (if there are ties, take p* to be

the lexicographically smallest among the tying programs). Let m(n) = max(n, use(Ux(p*))). Note that, for all n, Hx(y�n) =
Hx�m(n)(y�n). It follows that, for every n, Hx�m(n)(y�n) = Hx(y�n) > n − O(1). Recall that for every pair of strings u and v,

Cv(u) > Hv(u) − 2 log |u| − O(1). Thus, for every n,

Cx�m(n)(y�n) > n − 2 log n − O(1). (8)

Inequalities (7) and (8) are contradictory. �

Theorem 3.3. (a) For every sequence x, the set {y | y independent with x} has measure one.
(b) For every sequence x, the set {y | y finitary-independent with x} has measure one.

Proof. Clearly, (a) implies (b) (because the set in (a) is a subset of the set in (b)). Thus, we only have to prove (a). We show

that the sets

C1 = {y ∈ {0, 1}∞ | ∀n,Hx(y�n) ≥ H(y�n) − O(log n)},
C2 = {y ∈ {0, 1}∞ | ∀n,Hy(x�n) ≥ H(x�n) − O(log n)}

have both measure one, from which the conclusion follows because the set of sequences independent with x is C1 ∩ C2.

The set C1 has measure one because it includes the set of sequences y that are random relative to x.

We next focus on C2. It is enough to show that the set

C3 = {y ∈ {0, 1}∞ | Hy(x�n) ≤ H(x�n) − 4 log n i.o. n}
has measure 0, because C3 contains the complement of C2. The following claim (whose proof we postpone for the moment)

holds:

Claim 3.4. For every v ∈ {0, 1}* and every k, � ∈ N, if the set A = {y ∈ {0, 1}∞ | Hy(v) ≤ k} has measure at least 2−�, then

H(v) ≤ k + � + 2 log k + O(1).

Note that Claim 3.4 implies that if n is sufficiently large, then the measure of the set {y ∈ {0, 1}∞ | Hy(x�n) <

H(x�n) − 4 log n} is less than 2−2 log n, which, by the Borel–Cantelli Lemma (see [9]), implies that C3 has measure zero.

We continue with the proof of Claim 3.4. For a string σ ∈ {0, 1}*, let [σ ] denote the set of sequences that have σ as initial

prefix. We denote the Lebesgue measure by μ (in particular, μ[σ ] = 2−|σ |; see more in [2]) and U is the fixed universal

prefix-free Turing machine underlying the relativized complexity Hy(v).
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The intuition is that sinceμ(A) ≥ 2−�, there should be some string σ of length atmost � such that [σ ] ⊆ A and therefore

v can be described by σ and a string p of length at most k such that Uσ (p) = v. This intuition does not hold because it can

happen thatμ(A) ≥ 2−� due to the fact that there are many σ as above (i.e., whose extensions are all in A) of length> �. To
fix this problem, we need to use the Coding Theorem, and this necessitates some preparations.

For each string p, we define a c.e. set Ap (essentially, Ap is a prefix-free set of oracle prefixes σ such that Uσ (p) ↓ and such

that any sequence y with Uy(p) ↓ has a prefix in Ap; U
σ (p) ↓ and Uy(p) ↓ denote that the two computations halt).

Construction of Ap. Initially, at Step 0, Ap = ∅. At Step s (with s = 1, 2, . . . ,) we enumerate some strings in Ap as follows:

Step s. Let Candidates be the set of all strings σ with |σ | ≤ s. If some prefix or some extension of σ has been already

enumerated in Ap, then σ is removed from the set Candidates. Next, for all σ ∈ Candidates, in lexicographical order, run

Uσ (p) for s steps. If Uσ (p) stops in s steps and no prefix of σ has been enumerated already in Ap, then enumerate σ in Ap.

End of construction of Ap.

By construction, Ap is c.e. and prefix-free. We next define a Turing machine M. For any strings p and σ , we denote

〈p, σ 〉 = code(p)σ (code(p) was defined in Eq. (1)). The machineM on input 〈p, σ 〉 outputs Uσ (p), provided σ ∈ Ap (on all

other inputsM is not defined). Note that the domain of M is a prefix-free set. For any string v, we define

QM(v) = ∑
{〈p,σ 〉|M(〈p,σ 〉)=v}

2−|〈p,σ 〉|.

Then,

QM(v) = ∑
p

∑
{σ |M(〈p,σ 〉)=v} 2−(|code(p)+|σ |)

≥ ∑
p,|p|≤k

∑
{σ |M(〈p,σ 〉)=v} 2−(|code(p)+|σ |)

= ∑
p,|p|≤k 2

−|code(p)| ∑
{σ |M(〈p,σ 〉)=v} 2−|σ |

≥ 2−(k+2 log k+1) ∑
p,|p|≤k

∑
{σ |M(〈p,σ 〉)=v} 2−|σ |.

For each y ∈ A, there exists a string τ , minimal under taking prefixes, and a string p with |p| ≤ k, such that y ∈ [τ ] and
Uτ (p) = v. We call τ the root of y. If B is the set of strings τ that are roots for at least a y ∈ A, μ(A) = ∑

τ∈B 2
−|τ |. It can be

seen that for each τ ∈ B, there must be some pwith |p| ≤ k such that Ap contains a subset Ap,τ of extensions of τ such that

2−|τ | = ∑
σ∈Ap,τ

2−|σ | (The reason for this is the following: Let s be the number of steps in which Uτ (p) ↓; then, at Step s,

all the suffixes of τ of length s are in the set Candidates; therefore, by the end of Step s, all these suffixes are in Ap because

the computation of U on input p with oracle any of these suffixes will stop in exactly s steps.). Note that for any two roots

τ �= τ ′, Ap,τ and Ap,τ ′ are disjoint. Therefore,

∑
p,|p|≤k

∑
{σ |M(〈p,σ 〉)=v}

2−|σ | ≥ ∑
τ∈B

2−|τ | = μ(A) ≥ 2−�.

It follows that QM(x) ≥ 2−(k+�+2 log k+1). By the Coding Theorem, it follows that H(x) ≤ k + � + 2 log k + O(1). �

Thus there are many (in measure-theoretical sense) pairs of sequences that are independent. But is it possible to have

such pairs satisfying a given constraint? We consider one instance of this general question.

Proposition 3.5. If x is a random sequence then there are sequences y and z such that (y, z) are independent and x = y XOR z.

Proof. Take a sequence y independent with x. Then, by Proposition 2.14, y and (x XOR y) are independent. By taking

z = x XOR y, it follows that x = y XOR z, with y and z independent. �

4. Effective constructions of finitary-independent sequences

In this section we investigate to what extent it is possible to effectively construct sequences that are independent or

finitary-independent. We show some impossibility results and therefore we focus on the weaker type of independence,

finitary-independence (clearly, if it is not possible to produce a pair of sequences that are finitary-independent, then it is also

not possible to produce a pair of sequences that are independent). Since a C-logarithmic sequence is finitary-independent

with any other sequence, the issue of constructibility is interesting if we also require that the sequences have complexity

above that of C-logarithmic sequences (see Remark 2.7). Such sequences are of course non-computable, and therefore the

whole issue of constructibility appears to be a moot point. However this is not so if we assume that we already have in hand

one (or several) non-computable sequence(s), and we want to build additional sequences that are finitary-independent.

Informally speaking, we investigate the following questions:
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Question (a). Is it possible to effectively construct from a sequence x another sequence y finitary-independent with x,

where the finitary-independence is not trivial (recall Remark 2.7)? This question has two variants depending onwhether we

seek a uniform procedure (i.e., one procedure that works for all x), or whether we allow the procedure to depend on x.

Question (b). Is it possible to effectively construct from a sequence x two sequences y and z that are finitary-independent

(not in the trivial way)? Again, there are uniform and non-uniform variants of this question.

We analyse these questions in Section 4.1. Similar questions for the case when the input consists of two sequences x1 and

x2 are tackled in Section 4.2.

4.1. Producing independence with one source

Wefirst consider the uniform variant of Question (a): Is there a Turing reduction f such that for all x ∈ {0, 1}*, (x, f (x)) are
finitary-independent? We even relax the requirement and demand that f should achieve this objective only if x has positive

constructive Hausdorff dimension (this only makes the following impossibility results stronger).

As discussed above, we first eliminate some trivial instances of this question.Without any requirement on the algorithmic

complexity of the desired f (x), the answer is trivially YES becausewe can take f (x) = 0ω (or any other computable sequence).

Even if we only require that f (x) is not computable, then the answer is still trivially YES because we can make f (x) to be

C-logarithmic. For example, consider

f (x) = x(1) x(2)0 x(3)000 . . . x(k) 0 . . . 0︸ ︷︷ ︸
2k−1−1

. . . .

Then f (x) is C-logarithmic, but not computable provided x is not computable, and (x, f (x)) are finitary-independent simply

because f (x) is C-logarithmic.

As noted above, the question is interesting ifwe require f (x) to have some “significant" amount of randomnesswhenever x

has some “significant" amount of randomness.We expect that in this case the answer should be negative, because, intuitively,

one should not be able to effectively produce independence (this is property P3 in Remark 2.9).

We consider two situations depending on two different meanings of the concept of “significant" amount of randomness.

Case 1:We require that f (x) is not C-logarithmic (i.e., for any constant c, f (x) > c log(x), for infinitely many x). We do not

solve the uniform version of Question (a) in this case, but we show that every reduction f that potentially does the job must

have non-polynomial use.

Proposition 4.1. Let f be a Turing reduction. For every sequence x, if the function usexf (n) is polynomially bounded, then x and

f (x) are not finitary-independent, unless one of them is C-logarithmic.

Proof. Let y be f (x). Then for every n, let m(n) = maxk≤n(use
x
f (k)). Then y�n depends only on x�m(n)

and m(n) is polynomial in n. Then C(y�n | x�m(n)) ≤ O(log n). If x and y were finitary-independent, then

C(y�n) ≤ C(y�(n) | x�m(n)) + O(log n + logm(n)) ≤ O(log(n)) + log(m(n)) ≤ O(log n), for all n, i.e., y would be

C-logarithmic. �

Case 2: We require that f (x) has complexity just above that of C-logarithmic sequences (in the sense below). We show

that in this case, the answer to the uniform variant of Question (a) is negative: there is no such f . The following definition

introduces a class of sequences having complexity just above that of C-logarithmic sequences.

Definition 4.2. A sequence x is C-superlogarithmic if for every constant c > 0, C(x�n) > c log n, for almost every n.

The next proofs use the following facts.

Fact 4.3 (Variant of Theorem 3.1 in [21]). For all rationals 0 ≤ α < β < 1, and for every infinite and computable set S, there

exists a sequence x such that dim(x) = α and for all wtt-reductions f , either f (x) does not exist or C(f (x)�n) ≤ βn, for infinitely

many n in S.

Fact 4.4 (Variant of Theorem 3.1 in [1]). For every Turing reduction h, for all rationals 0 < α < β < 1, and for every infinite

and computable set S, there is a sequence x with dim(x) ≥ α such that either h(x) does not exist or C(h(x)�n) < βn, for infinitely

many n in S.

Fact 4.5 ([18]). For every rational 0 ≤ α ≤ 1, there exists a sequence x such that dim(x) = α and for all Turing-reductions f ,

dim(f (x)) ≤ α.

Fact 4.6 (Corollary 1 in ([34]). For any α > 0, there is a truth-table reduction f such that if the input sequences x and y are

finitary-independent and dim(x) ≥ α and dim(y) ≥ α, then dim f (x, y) = 1.
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Fact 4.7 (Theorem3 in ([34]). For any δ > 0, there exist a constant c, an infinite and computable set S, and a truth-table reduction

f : {0, 1}∞ × {0, 1}∞ → {0, 1}∞ (i.e., f is a Turing machine with two oracles) with the following property:
If the input sequences x and y are finitary-independent and satisfy C(x�n) > c · log n and C(y�n) > c · log n, for almost every

n, then the output z = f (x, y) satisfies C(f (x, y)�n) > (1 − δ) · n, for almost every n in S.

Theorem 3.1 in [21] is for S = N (and is stronger in that α = β) but its proof can be modified in a straightforward manner

to yield Fact 4.3. Theorem 3.1 in [1] is also for S = N and can also be modified in a simple manner—using Fact 4.3—to yield

Fact 4.4.

We can now state the impossibility results related to Case 2. To simplify the structure of quantifiers in the statement of

the following result, we posit here the following task, depending on a parameter α ∈ R, for a function f mapping sequences

to sequences:

TASK A: Let 0 < α < 1. For every x ∈ {0, 1}∞ with dim(x) ≥ α, the following should hold:

(a) f (x) exists,
(b) f (x) is C-superlogarithmic,

(c) x and f (x) are finitary-independent.

Theorem 4.8. For every α ∈ (0, 1), there is no Turing reduction f that satisfies TASK A.

Proof. Let us fix α ∈ (0, 1). Suppose there exists f satisfying (a), (b) and (c) in TASK A for this parameter α. Let S be the

infinite, computable set and let g be the truth-table reduction promised by Fact 4.7 for δ = (1 − α)/3. Let h be the Turing

reduction h(x) = g(x, f (x)). Let x* be the sequence promised by Fact 4.4 for α, β = (1 + α)/2, and the above set S and

Turing reduction h. On one hand, by Fact 4.4, C(h(x*)�n) < ((1 + α)/2)n, for infinitely many n ∈ S. On the other hand, by

Fact 4.7, C(h(x*)�n) > ((2 + α)/3)n, for almost every n ∈ S. We have reached a contradiction. �

We next consider the uniform variant of Question (b).

Firstwe remark that, by van Lambalgen’s Theorem [31], if the sequence x is random, then xeven and xodd are random relative

to each other (where xodd is x(1)x(3)x(5) . . . and xeven is x(2)x(4)x(6) . . . ). Thus, xeven and xodd are certainly independent.

Kautz [11] has shown a much more general result by examining the splittings of sequences obtained using bounded

Kolmogorov–Loveland selection rules.5 He showed that if x is a random sequence, x0 is the subsequence of x obtained by

concatenating the bits of x chosen by an arbitrary bounded Kolmogorov–Loveland selection rule, and x1 consists of the bits of

x that were not selected by the selection rule, then x0 and x1 are randomwith respect to each other (and thus independent).

We show that the similar result for sequences with constructive Hausdorff dimension σ ∈ (0, 1) is not valid. In fact, our

next result is stronger, and essentially gives a negative answer to the uniform variant of Question (b).

Weposit the following task, dependingonaparameterα ∈ R, for two functions f1 and f2 mapping sequences to sequences:

TASK B: Let 0 < α < 1. For every x ∈ {0, 1}∞ with dim(x) ≥ α, the following should hold:

(a) f1(x) and f2(x) exist,
(b) f1(x) and f2(x) are C-superlogarithmic,

(c) f1(x) and f2(x) are finitary-independent.

Theorem 4.9. For every α ∈ (0, 1), there are no Turing reductions f1 and f2 satisfying TASK B.

Proof. Similar to the proof of Theorem 4.8. �

Thenon-uniformvariants ofQuestions (a) and (b) remainopen. In theparticular casewhen (i) f is awtt-reductionor (ii) the

output has positive constructive Hausdorff dimension, we present impossibility results analogous to those in Theorems 4.8

and 4.9. The proofs are similar, with the difference that for (i) we use Fact 4.3 instead of Fact 4.4, and for (ii) we use Fact 4.5

instead of Fact 4.4 and Fact 4.6 instead of Fact 4.7.

Theorem 4.10. For every rational σ ∈ (0, 1), there exists a sequence x with dim(x) = σ such that for every wtt-reduction f , at

least one of the following holds true:
(a) f (x) does not exist,
(b) f (x) is not finitary-independent with x,

(c) f (x) is not C-superlogarithmic.

5 A Kolmogorov–Loveland selection rule is an effective process for selecting bits from a sequence. Informally, it is an iterative process and at each step,

based on the bits that have been already read, a new bit from the sequence is chosen to be read and (before that bit is actually read) the decision onwhether

that bit is selected or not is taken. A bounded Kolmogorov–Loveland selection rule satisfies a certain requirement of monotonocity for deciding the selected

bits, see [11].
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Theorem 4.11. For every rational σ ∈ (0, 1), there exists a sequence x with dim(x) = σ such that for every wtt-reductions f1
and f2, at least one of the following holds true:
(a) f1(x) does not exist or f2(x) does not exist,
(b) f1(x) and f2(x) are not finitary-independent,
(c) f1(x) is not C-superlogarithmic or f2(x) is not C-superlogarithmic.

Theorem 4.12. For every rational σ ∈ (0, 1), there exists a sequence x with dim(x) = σ such that for every Turing-reduction f ,

at least one of the following holds true:
(a) f (x) does not exist,
(b) f (x) is not finitary-independent with x,

(c) dim(f (x)) = 0.

Theorem 4.13. For every rational σ ∈ (0, 1), there exists a sequence x with dim(x) = σ such that for every Turing-reduction f1
and f2, at least one of the following holds true:
(a) f1(x) does not exist or f2(x) does not exist,
(b) f1(x) and f2(x) are not finitary-independent,
(c) dim(f1(x)) = 0 or dim(f2(x)) = 0.

Theorem 4.11 has an interesting implication regarding sequences with constructive Hausdorff dimension in the interval

(0, 1). Suppose, for example, that we want to construct a sequence with constructive Hausdorff dimension 1/2. The first idea

that comes to mind is to take a random sequence x = x(1)x(2) · · · and either consider the sequence y = x(1)0x(2)0 . . .
(we insert 0s in all even positions) or the sequence z = x(1)x(1)x(2)x(2) · · · (we double every bit). The sequences y and

z have constructive Hausdorff dimension 1/2 and they have been obtained by diluting a random sequence. In a similar

way, once we have sequences with positive constructive Hausdorff dimension, we can combine them in reversible ways to

obtain new such sequences (“reversible” means that from the output of the procedure it is possible to effectively obtain the

inputs). Theorem 4.11 shows, roughly speaking, that there are sequences with dimension strictly between 0 and 1, that are

not dilutions of random sequences or reversible combinations of sequences with positive constructive Hausdorff dimension.

Formally, for every rational σ ∈ (0, 1), there is a sequence x with dim(x) = σ so that no matter what wtt method we use

for selecting from x two subsequences, either one of the resulting subsequences has low complexity or the two resulting

subsequences are not independent.

Theorems 4.12 and 4.13 can be strengthened to the case of g(n)-finitary-independence, for any function g ∈ o(n) ∩
�(log n). More precisely, for any function g ∈ o(n) ∩ �(log n), one can replace “finitary-independent” by “g(n)-finitary-
independent” in Theorems 4.12 and 4.13. The proofs are identical, except that instead of using Fact 4.6, one uses the following

recent result from [35] (the result in [35] is slightly stronger).

Fact 4.14 (Theorem 4.1 in [35]). For every 0 < τ ≤ 1, for every δ > 0, for every function g ∈ o(n) ∩ �(log n), there exist

α ∈ (0, 1) anda truth-table reduction f such that for any sequences x andywith dimension≥τ that are g(n)-finitary-independent,
the sequence f (x, y) has dimension ≥(1 − δ).

4.2. Producing independence with two sources

Wehave seen some limits on the possibility of constructing a finitary-independent sequences starting fromone sequence.

What if we are given two finitary-independent sequences: is it possible to construct from them more finitary-independent

sequences?

First we observe that if x and y are two (finitary-) independent sequences and g is an arbitrary Turing reduction, then it

does not necessarily follow that x and g(y) are also (finitary-) independent (as one may expect). On the other hand, if x and

y are independent, it does follow that x and g(y) are finitary-independent.

Proposition 4.15. (a) [29] There are two independent sequences x and y and a Turing reduction g such that x and g(y) are not
independent.

(b) [25] There are two finitary-independent sequences x and y and a Turing reduction g such that x and g(y) are not finitary-
independent.

Proof. (a) Let z be a random sequence and let u, v, and w be sequences such that z = u ⊕ (v ⊕ w). By van Lambalgen’s

Theorem [31], each of the sequences u, v, and w are random relative to the join of the other two. We define the sequences x

and y as follows:
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x(2n) = u(n), for all n ∈ N
x(m) = v(m), for every m that is not a power of 2

y(2n) = u(n), for all n ∈ N
y(m) = w(m), for every m that is not a power of 2

Claim 4.16. The sequences x and y are independent.

Proof. Suppose x and y are not independent. Then, similarly to Proposition 2.11(e), for infinitelymany n, Cx(y�n) < C(y�n) −
7 log n. Then

Cu⊕v(w�n) ≤ Cu⊕v(y�n) + 2 log n + O(1)
(because w�n and y�n differ in only log n bits)

≤ Cx(y�n) + 2 log n + O(1)
(because queries to x can be replaced by queries to u and v)

≤ C(y�n) − 7 log n + 2 log n + O(1),
for infinitely many n

≤ C(w�n) + 2 log n − 7 log n + 2 log n + O(1)
= C(w�n) − 3 log n + O(1)
≤ n − 3 log n + O(1).

This contradicts that the fact that w is random with respect to u ⊕ v. �

We continue the Proof of Proposition 4.15(a). It is easy to define a Turing reduction g such that g(y) = u. Notice that

Cx(u�n) = O(log n), because u is many-one reducible to x. On the other hand C(u�n) ≥ n − 2 log n + O(1), for every n,

because u is random. Therefore x and g(y) are not independent.

(b) Let u and y be two sequences that are random relative to each other. Let x be the sequence defined by x(22
n

) = y(n),

for all n, and x(m) = u(m), for allm not of the form 22
n

. Note that x and y are finitary-independent, because the complexities

of u�n and x�n differ by at most O(log log n).

Let g be the Turing reduction such that for all n, g(x)(n) = x(22
n

). Note that g(x) and y coincide and thus, obviously are

not finitary-independent. �

Proposition 4.17. If the sequences x and y are independent, and g is a Turing reduction, then x and g(y) are finitary-independent
(provided g(y) exists).

Proof. Since x and y are independent, there exists a constant c such that for all n,

Cy(x�n) ≥ C(x�n) − c log n.

Suppose that x and g(y) are not finitary-independent. Then there are infinitelymany n such that C(x�n | g(y)�n) < C(x�n) −
(c + 4) log n. Since Cy(x�n) ≤ C(x�n | g(y)�n) + 2 log n + O(1), it would follow that, for infinitely many n,

Cy(x�n) ≤ C(x�n) − (c + 1) log n,

which contradicts the first inequality. �

Corollary 4.18. There are sequences that are finitary-independent but not independent.

Proof. The sequences x and g(y) from Proposition 4.15 are not independent, but they are finitary-independent by

Proposition 4.17. �

If x and y are (finitary-) independent sequences, then there exist simple procedures that starting with the pair (x, y),
produce a new pair of (finitary-) independent sequences. For example, (x, yodd) is such a pair.

Amore challenging question iswhether given a pair of (finitary-) independent sequences (x, y), it is possible to effectively

produce another sequence that is (finitary-) independent with x, and with y. We give a positive answer for the case when x

and y are both random. The similar question for non-random x and y remains open (but see Section 4.3).

Theorem 4.19. There exists an effective transformation f with polynomially-bounded use such that if x and y are random and

independent (respectively, finitary-independent), then (x, f (x, y)) and (y, f (x, y)) are pairs of independent (respectively, finitary-
independent) sequences, and the independence (respectively, finitary-independence) is not trivial (recall Remark 2.7).



Author's personal copy

C. Calude, M. Zimand / Information and Computation 208 (2010) 292–308 305

Proof.We take f (x, y) = x XOR y and take into account Proposition 2.14. �

Remark: Contrast with Proposition 4.1, where we have shown that for every x, for every effective transformation f with

polynomially-bounded use, x and f (x) are not finitary-independent.

4.3. Producing independence: the finite case

In theprevious sectionwediscussed the issueofwhether given as input several sequences that are (finitary-) independent,

there is an effective way to construct a sequence that is (finitary-) independent with each sequence in the input (and the

independence is not trivial). A result of this type is obtained for the case when the input consists of two random sequences

x and y in Theorem 4.19. We do not know if in Theorem 4.19 we can remove the assumption that x and y are random.

In what follows we will consider the simpler case of strings. In this setting we are able to give a positive answer for the

situation when we start with three6 input strings that are independent (and not necessarily random). First we define the

analogue of independence for strings.

Definition 4.20. Let c ∈ R+ and k ∈ N. We say that the strings x1, x2, . . . , xk in {0, 1}* are c-independent if

C(x1x2 . . . xk) ≥ C(x1) + C(x2) + · · · + C(xk) − c(log |x1| + log |x2| + · · · + log |xk|).
The main result of this section is the following theorem, whose proof draws from the techniques of [34].

Theorem 4.21. For all constants σ > 0 and σ1 ∈ (0, σ), there exists a computable function f : {0, 1}* × {0, 1}* × {0, 1}* →
{0, 1}* with the followingproperty: For every c ∈ R+ there exists c′ ∈ R+ such that if the input consists of a triplet of c-independent

strings having sufficiently large length n and plain complexity at least σ · n, then the output is c′-independent with each element

in the input triplet and has length �σ1n�.
More precisely, if

(i) (x, y, z) are c-independent,
(ii) |x| = |y| = |z| = n, and

(iii) C(x) ≥ σ · n, C(y) ≥ σ · n, C(z) ≥ σ · n,
then, provided n is large enough, the following pairs of strings (f (x, y, z), x), (f (x, y, z), y), (f (x, y, z), z) are c′-independent,
|f (x, y, z)| = �σ1n�, and C(f (x, y, z)) ≥ �σ1n� − O(log n).

Before we delve into the proof, we establish several preliminary facts.

Lemma 4.22. If x1, x2, x3 are three strings that are c-independent, then

C(x1 | x2x3) ≥ C(x1) − (c + 2)(log |x1| + log |x2| + log |x3|) − O(1).

Proof. The following inequalities hold for every three strings and in particular for the strings x1, x2, and x3:

C(x1x2x3) ≤ C(x2x3) + C(x1 | x2x3) + 2 log |x1| + O(1),

and

C(x2x3) ≤ C(x2) + C(x3) + 2 log |x2| + O(1).

Then

C(x1 | x2x3) ≥ C(x1x2x3) − C(x2x3) − 2 log |x1| − O(1)
≥ C(x1) + C(x2) + C(x3) − c(log |x1| + log |x2| + log |x3|)− (C(x2) + C(x3) + 2 log |x2| + O(1)) − 2 log |x1| − O(1)
≥ C(x1) − (c + 2)(log |x1| + log |x2| + log |x3|) − O(1).

�

The next lemma establishes a combinatorial fact about the possibility of colouring the cube [N] × [N] × [N] with M

colours such that every sufficiently large planar rectangle contains all the colours in about the sameproportion. HereN andM

are natural numbers, [K] (with K natural) denotes the set {1, 2, . . . , K}, and a planar rectangle is a subset of [N] × [N] × [N]
having one of the following three forms: B1 × B2 × {k}, B1 × {k} × B2, or {k} × B1 × B2, where k ∈ [N], B1 ⊆ [N] and

B2 ⊆ [N].
6 (Added at revision). The case when the input consists of two independent strings has been recently solved in [35]. However the result in [35] only

achieves σ1 ≈ σ/2. For further investigation of this issue see also [36].
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Lemma 4.23. Let 0 < σ1 < σ2 < 1. For every sufficiently large n it is possible to colour the cube [2n] × [2n] × [2n] with

M = 2�σ1n� colours in such a way that every planar rectangle satisfying ‖B1‖ = a · 2�σ2n� and ‖B2‖ = b · 2�σ2n� for some

natural numbers a and b contains at most (2/M)‖B1‖‖B2‖ occurrences of colour c, for every colour c ∈ [M].
Proof.Weuse the probabilisticmethod. LetN = 2n. We colour each cell of the [N] × [N] × [N] cubewith one colour chosen

independently and uniformly at random from [M]. For i, j, k ∈ [N], let T(i, j, k) be the random variable that designates the

colour of the cell (i, j, k) in the cube. For every fixed cell (i, j, k) and for every fixed colour c ∈ [M], Prob(T(i, j, k) = c) = 1/M,

because the colours are assigned independently and uniformly at random. Let us first consider some fixed subsets B1 and

B2 of [N] having size 2�σ2n�, a fixed k ∈ [N], and a fixed colour c ∈ [M]. Let A be the event “the fraction of occurrences of

c in the planar rectangle B1 × B2 × {k} is greater than 2/M." Using the Chernoff bounds (the standard version indicated in

Section 1.1), it follows that

Prob(A) < e−(1/3)(1/M)N2σ2
.

The same upper bounds hold for the probabilities of the similar events regarding the planar rectangles B1 × {k} × B2 and

{k} × B1 × B2. Thus, if we consider the event B “there is some colourwith a fraction of appearances in one of the three planar

rectangles mentioned above greater than (2/M)", then, by the union bound,

Prob(B) < 3M · e−(1/3)(1/M)N2σ2
. (9)

The number of ways to choose B1 ⊆ [N] with ‖B1‖ = 2�σ2n�, B2 ⊆ [N] with ‖B2‖ = 2�σ2n� and k ∈ [N] is approximately

(ignoring truncation)
(

N

Nσ2

)
·
(

N

Nσ2

)
· N, which is bounded by

e2N
σ2 · e2Nσ2 (1−σ2) ln(N) · elnN , (10)

(we have used the inequality
(
n

k

)
< (en/k)k). Clearly, for our choice ofM, (10) times the right hand side in (9) is less than 1.

It means that there exists a colouring where no colour appears a fraction larger than (2/M) in every planar rectangle with

B1 and B2 having size exactly 2�σ2n�. For planar rectangles having the sizes of B1 and B2 an integer multiple of 2�σ2n�, the
assertion holds as well because such rectangles can be partitioned into subrectangles having the size exactly 2�σ2n�. �

Proof (of Theorem 4.21). We take n sufficiently large so that all the following inequalities hold. Let x*, y* and z* be a triplet

of strings of length n satisfying the assumptions in the statement. Let N = 2n and let us consider a constant σ2 ∈ (σ1, σ).
By exhaustive search we find the minimal (in some canonical ordering) colouring T : [N] × [N] × [N] → [M] satisfying

the properties in Lemma 4.23. Identifying the strings x*, y* and z* with their indices in the lexicographical ordering of

{0, 1}n, we definew* = T(x*, y*, z*). Note that the length ofw* is logM = �σ1n�, which we denote bym. We will show that

C(w* | z*) ≥ m − c′ logm, for c′ = 3c + d + 13, where d is a constant that will be specified later. Since C(w*) ≤ m + O(1),
it follows that w* and z* are independent. In a similar way, it can be shown that w* and x* are independent, and w* and y*

are independent.

For the sake of obtaining a contradiction, suppose that C(w*| z*) < m − c′ logm. The set A = {w | C(w | z*) < m −
c′ logm} has size < 2m−c′ logm and, by our assumption, contains w*.

Let t1 be such that C(x*) = t1 and t2 be such that C(y* | z*) = t2. Note that t1 ≥ σn > σ2n. The integer t2 is also larger

than σ2n, because C(y*| z*) ≥ C(y*| z*x*) − 2 log n − O(1) ≥ C(y*) − (c + 4)(3 log n) − O(1) ≥ σn − (3c + 12) log n −
O(1) > σ2n. For the second inequality we have used Lemma 4.22.

Let B1 = {x ∈ {0, 1}n | C(x) ≤ t1}. Note that the size of B1 is bounded by 2t1+1. We take a set B′
1 including B1 having size

exactly 2t1+1. Similarly, let B2 = {y ∈ {0, 1}n | C(y | z*) ≤ t2} and let B′
2 be a set that includes B2 and has size exactly 2t2+1.

Let k be the index of z* in the lexicographical ordering of {0, 1}n. By Lemma 4.23, it follows that for every a ∈ [M],
‖T−1(a) ∩ (B′

1 × B′
2 × {k})‖ ≤ (2/M)‖B′

1‖‖B′
2‖.

Consequently,

‖T−1(A) ∩ (B1 × B2 × {k})‖ ≤ ‖T−1(A) ∩ (B′
1 × B′

2 × {k})‖
= ∑

a∈A‖T−1(a) ∩ (B′
1 × B′

2 × {k})‖
< 2m−c′ logm · (2/2m)‖B′

1‖‖B′
2‖

= 2t1+t2+3−c′ logm.

Note that given z*, m − c′ logm, t1 and t2, and σ1 and σ2, we can enumerate T−1(A) ∩ (B1 × B2 × {k}) (the table T can be

constructed from n, σ1 and σ2, and n can be retrieved from z*). Since (x*, y*, z*) is in this set, it follows that the complexity
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of x*y* given z* is bounded by the rank of the triplet (x*, y*, z*) in a fixed enumeration of the set and the information needed

to perform the enumeration. Thus,

C(x*y* | z*) ≤ t1 + t2 + 3 − c′ logm + 2 log(m − c′ logm) + 2 log t1 + 2 log t2 + O(1)
≤ t1 + t2 − (c′ − 2) logm + 2 log t1 + 2 log t2 + O(1).

On the other hand, by the conditional version of the Symmetry of Information Equation (4), there exists a constant d such

that for all strings u, v,w, C(uv | w) ≥ C(v | w) + C(u | uw) − d(log |uv|). It follows that

C(x*y* | z*) ≥ C(y* | z*) + C(x* | y*z*) − d log n − O(1)
≥ t2 + t1 − (c + 2)(3 log n) − d log n − O(1)
= t1 + t2 − (3c + d + 6) log n − O(1).

For the second inequality we have used Lemma 4.22. Note that t1 < n + O(1) and t2 < n + O(1) andm = σ1n. Combining

the above inequalities, we obtain (c′ − 2) log σ1n ≤ (3c + d + 10) log n + O(1). Since c′ = 3c + d + 13, we have obtained

a contradiction. �
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