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Abstract. Using the complexity measure developed in [7,3,4] and the
extensions obtained by using inductive register machines of various or-
ders in [1,2], we determine an upper bound on the inductive complexity
of second order of the P versus NP problem. From this point of view, the
P versus NP problem is more complex than the Riemann hypothesis.

1 A Complexity Measure

Mathematics is built upon theorems, conjectures and problems both open and re-
solved. Some problems intuitively seem highly complex, and have perhaps eluded
solution for centuries. Others appear to be less complicated. We would like to
be able to quantitatively capture this complexity, and thus be able to compare
conjectures from vastly different fields of mathematics. One possible scale we
can use has been developed in [7,3,4,2,6] and applied to different problems in
[5,8,9,11,15]. This method considers the most intuitive way to solve a problem, a
brute-force search for a counter-example to the claim. If the conjecture is false, a
counterexample will eventually be found. But if a conjecture is true, the search
will run on forever. If we could somehow determine ahead of time if the search
will run forever, we would be able to prove the conjecture is true. Unfortunately,
this equates to solving the halting problem, which is known to be undecidable.
But not all is lost, since we are not actually trying to solve all mathematical
conjectures, but rather to compare some of them (indeed, we wish to be able to
compare conjectures regardless of their true/false or proven/unproven status).
For this aim we will use a more powerful model of computation than the Turing
machine, the inductive computation.
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The search for a counter-example can be coded into a program, and the program
can carefully be encoded into a string of ones and zeroes. Thus for any mathemat-
ical conjecture, we can create a string of bits (along with an explanation of how
to unambiguously read off the program) and say ‘if this program halts, the con-
jecture is false; if it does not halt, the conjecture is true’. It naturally follows that
some conjectures can be ‘encoded’ into bits more simply than others; these con-
jectures will be considered of low complexity. More complicated conjectures may
take a large program and a huge number of bits; these programs are considered to
have high complexity. Time complexity plays no role in this analysis.

2 The P versus NP Problem

The processing power of computers has grown—and continues to grow—
incredibly quickly, and computer-users have become accustomed to newer and
faster computers continually being released on the market. In such an environ-
ment, it might seem like there is no bound to the size and type of problems that
computers can solve—and even if a program runs slowly on today’s computers,
surely in a few years it will be zipping along on the faster computers of the
future. Unfortunately, this is not the case. The problem lies in the asymptotic
behaviour of certain algorithms, i.e. their behaviour when the problem instance
size gets very large. It makes sense that the larger a problem input size, the
longer it takes to solve it, but in some cases the needed time grows faster than
we will ever be able to account for with faster computers. The usual solution is to
simply find a faster, more efficient algorithm. But for a large class of problems,
many of them of critical practical significance, no efficient algorithms have been
found. This class is called NP (nondeterministic polynomial), while the class of
problems that are known to have efficient algorithms is called P (deterministic
polynomial, or, simply, polynomial).

Furthermore, there exists a set of NP problems, called NP-complete, which if
one could figure out how to solve just one of them in polynomial-time then we
could solve all of them in polynomial-time. In asking the question ‘Does P=NP?’
we are asking if it is possible to solve all NP problems in polynomial-time, or equiv-
alently, if it is possible to solve an NP-complete problem in polynomial-time.

As a concrete example, we present the NP-complete problem used in our pro-
gram: the subset-sum problem [14] (subsection 35.5: The subset-sum problem).
This problem starts with a collection of numbers, and a target number—an in-
stance of the problem—and asks the question: Does some subset of our collection
add up to equal the target? In small instance sizes this is simple. For example,
we can easily check that no subset of (1,2,5) adds up to 4, or that there is a
subset of (1,2,5,8) that adds to 7 (namely, 2 and 5). But as the instance size
gets larger, the number of possible subsets grows exponentially, and it takes
exponential time to check every subset. The brute-force algorithm for solving
the subset-sum problem cycles through all subsets of N numbers and, for every
one of them, checks if the subset sums to the right number. The running-time
is of order O(N · 2N), since there are 2N subsets and, to check each subset, we
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need to sum at most N elements. A faster algorithm proposed by Horowitz and
Sahni [17] runs in time O(2N/2). If one could show that there is some algorithm
that solves every possible instance of subset sum in polynomial-time, then we
would show that P=NP.

The P versus NP problem, formulated independently by Cook [12] and
Levin [19], is considered to be one of the most challenging open problems in
mathematics. The Clay Mathematics Institute will award a prize of $1.000.000
for its first correct solution, [23]. A constructive proof for P = NP based on an ef-
ficient simulation would have significant practical consequences; a proof for P �=
NP (which is widely believed to be the case) would lack practical computational
benefits, but would have important theoretical value. With decades of research
dedicated to its resolution, substantial insight was obtained: see more in the of-
ficial Clay Mathematics Institute presentation of the problem by Cook [13], the
papers by Fortnow [16] and Mulmuley [21], Moore-Mertens book [20] (Chapter
6, The Deep Question: P vs NP), and Wöginger’s webpage [25].

Is the polynomial-time algorithm the “correct” mathematical model for feasi-
ble computation? Is this formalisation as “credible” as the Church-Turing thesis,
which deals with computability in principle, i.e. by disregarding resources? Ac-
cording to Davis [18] (p. 568–569) the answer is negative1; from this perspective,
the P versus NP problem is less a computer science problem than a mathematical
one.

3 Goal

By measuring the complexity of the P versus NP problem we hope to shine a
little more light on the nature of the problem. To do this, we have developed an
inductive register machine program that searches for a counter-example to the
claim that “P does not equal NP”. This counter-example would be a program
that runs in polynomial-time for all instances of the subset sum problem, our
choice of NP-complete problem. The register machine program has a prefix-free
binary encoding, and the length of this string determines an upper bound of the
complexity class of the P versus NP problem.

4 Method

The register machine language we use is a refinement, constructed in [4], of the
language in [7]; see also [15]. It consists of the following instructions:

1 In the discussions following J. Hartmanis’ invited lecture Turing Machine In-
spired Computer Science Results, CiE2012, 22 June 2012,http://www.mathcomp.
leeds.ac.uk/turing2012/WScie12/Content/abstracts/juris.html, M. Davis
asked the question he posed the speaker about 30 years ago: “How would you feel
if P=NP with a polynomial of degree 100?” Hartmanis’ original answer was: “God
cannot be so cruel!”

http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Content/abstracts/juris.html
http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Content/abstracts/juris.html
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=R1,R2,R3

If the content of R1 and R2 are equal, then the execution continues at
the R3rd instruction of the program. If the contents of R1 and R2 are not equal,
then execution continues with the next instruction in sequence.

&R1,R2

The content of register R1 is replaced by R2.

+R1,R2

The content of register R1 is replaced by the sum of the contents of R1
and R2.

!R1

One bit is read into the register R1, so the content of R1 becomes either
0 or 1. Any attempt to read past the last data-bit results in a run-time error.

%

This is the last instruction for each register machine program before the
input data. It halts the execution in two possible states: either successfully halts
or it halts with an under-read error.

A register machine program is a finite list of these instructions. It is allowed
access to an arbitrary number of registers, and each register can hold an arbi-
trarily large positive integer. The prefix free binary encoding of these instructions
is discussed in [3,4].

Programs often need to execute the same operations many different times, and
it is convenient to create routines for these operations. Routines that our program
uses include MUL (multiply), POW (power/exponentiation), CMP (compare),
SUBT (subtraction), DIV2 (halves a number), as well as routines used to interact
with arrays: ELM (get an element), SIZE (size of the array), APPEND (add an
element), and RPL (replace an element).

5 From Standard Computation to Inductive Computation

Our main program consists of two nested loops. The outer loop tests every
program-polynomial tuple. For each program and polynomial, the inner loop
checks to see if the program can solve all instances of the subset sum problem in
polynomial steps or less. In the usual model of computation these nested loops
have a serious pitfall: The program may run forever for two different reasons. It
may run forever because it never finds a program that works (there are infinitely
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many programs), in which case P does not equal NP. But, it may run forever
because is has found a program that works, but since there are an infinite number
of instances of the subset sum problem, it loops forever testing all of them.

To resolve this issue, we chose to use a slightly modified version of compu-
tation: the inductive computation [1]. Under this model, a program is allowed
to run forever but still be considered to give an answer if, after a finite number
of steps, the output stabilises. To make our program suitable for an inductive
register machine program, we must modify each loop in the following way: If
the loop is successfully running, write a 1 into the output register, otherwise
when the loop halts write a 0 into the output register (and stop looping). We
thus ensure that the output register will not oscillate, and under the inductive
computation model it will always return a result. Namely, the output will be 1
if the loop runs forever, and 0 if it will at some point halt.

Needless to say, inductive computation is more powerful than standard Turing
computation.

In what follows we will use the above register machine language as a universal
prefix-free inductive machine U ind (see more in [2]). This type of computation
gives rise to an inductive complexity measure.

6 An Inductive Register Program for P versus NP

The P versus NP problem is a Π2–sentence, i.e. a sentence of the form
∀n∃iR(n, i), where R is a computable predicate. From this representation we

construct the inductive register machine program of first order T ind,1
R defined by

T ind,1
R (n) =

{
1, if ∃iR(n, i),
0, otherwise .

Next we construct the inductive register machine M ind,2
R defined by

M ind,2
R =

{
0, if ∀n∃iR(n, i),
1, otherwise .

Clearly,

M ind,2
R =

{
0, if ∀n (T ind,1

E (n) = 1),
1, otherwise ,

hence we say that M ind,2
R is an inductive register machine of second order.

Note that the predicate T ind,1
R (n) = 1 is well-defined because the inductive

register machine of first order T ind,1
R always produces an output. However, the

inductive register machine M ind,2
R is of the second order because it uses an

inductive register machine of the first order T ind,1
R .

MAIN, the main algorithm for M ind,2
R that encodes the P versus NP problem,

is presented in the algorithm below. As we have already mentioned, the program
consists of two nested loops; the outer loop goes through all possible program
and polynomial pairs, and the inner loop runs the program with every possible
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instance of the subset sum problem, letting it execute at most polynomial steps
for each instance. It is important to note that the correctness of the polynomial-
time program is established when it runs accurately on all possible instances
of subset sum problem. It is not enough for the program to run correctly in
only some of the cases, and since we loop through all possibly instances, we will
eventually come across the cases in which an invalid program fails. In particular,
programs that randomly “guess,” or that always give the same answer eventually
fail.

MAIN: result is 1 if P �=NP, 0 if P=NP

// Z is our output register, while the loop is running it is set to 1
Z← 1
for all tuples (C,J,P) do

// Now we run the simulation (also on an inductive Turing machine)
run SIM

// check the result register (Y)
if Y = 1 then

// found a polynomial-time algorithm, P=NP
Z← 0
HALT

else
// that program didn’t work, try the next one
continue

end if
end for

SIM: result is 1 if program P succeeds in polynomial-time, 0 if not

// Y is our output register, while the loop is running it is set to 1
Y← 1
for all instances S of subset sum do

Simulate program P with input S for at most (C ∗ (|S|J + 1)) steps.
if P executed without error and calculated the correct answer then

continue to next instance
else

// This program doesn’t work, stop looping
Y← 0
return

end if
end for

The program-polynomial tuples are generated by incrementing through the
natural numbers, treating each number as an array and asking if that array has
three elements. Non-complying numbers are ignored; otherwise, we consider the
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first and second elements to be C and J respectively, which define the polynomial2

C ∗ (xJ + 1), and the third element to be the program P. To enumerate all
instances of subset sum problem, we similarly go through the natural numbers
and interpret them as arrays with at least 2 elements. For each array we pose the
question: Does some subset of its first (N −1) elements sum to the N th element,
where N is the size of the array?

When simulating the program P we give it access to an unlimited number of
registers which are stored in an array R. The unique coding of a register name
is used to represent the index of that register in the array R. After running the
program P we assume that its answer to the subset sum instance is in the register
encoded as 010, which corresponds to R[2]. One can easily check if the proposed
answer is correct.

7 An Upper Bound for the Inductive Complexity of P
versus NP

To every mathematical sentence of the form ρ = ∀n∃iR(n, i), where R(n, i) is
a computable predicate, we associate the inductive register machine of second
order M ind,2

R as above. Note that there are many programs for universal prefix-

free inductive machine U ind which implement M ind,2
R . For each of them we have:

∀n∃iR(n, i) is true if and only if U ind(M ind,2
R ) = 0.

The inductive complexity measure of second order is defined by:

Cind,2
U (ρ) = min{|M ind,2

R | : ρ = ∀n∃iR(n, i)},
and, correspondingly, the inductive complexity class of second order is:

Cind,2
U,n = {ρ : ρ = ∀n∃iR(n, i), Cind,2

U (ρ) ≤ 210 · n}.
The complexity measure, as stated, is unfortunately incomputable (see [10]), so
we resort to measuring upper bounds of the complexity. This is still a useful
measurement and allows us to rank and compare conjectures [3].

The inductive register program based on the main algorithm described above
consists of 368 instructions and was encoded with 6791 bits, putting the P versus
NP problem into the inductive complexity class of second order 7. The Riemann
hypothesis, another problem on the list of the Clay Mathematics Institute mil-
lennium open problems [24] and arguably the most important open problem
mathematics, is in the inductive complexity class of first order 3.

As with all complexity measures of this type, this is only an upper bound.
There are very probably further modifications that can be made to shorten
the program possibly by improving the simulation potential polynomial-time
programs and/or by using a different NP-complete problem.

2 Obviously, in this way we cover all possible run-time polynomials.
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25. Wöginger, G.J.: The P-versus-NP webpage,

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm (visited on June 16, 2012)

http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf
http://www.claymath.org/millennium/P_vs_NP/
http://www.claymath.org/millennium/Riemann_Hypothesis/
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

	Inductive Complexity of P versus NP Problem Extended Abstract
	A Complexity Measure
	The P versus NP Problem
	Goal
	Method
	From Standard Computation to Inductive Computation
	An Inductive Register Program for P versus NP
	An Upper Bound for the Inductive Complexity of P versus NP
	References




