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OX THE TOPOLOGICAL SIZE O F  SETS OF RANDOM STRINGS 

by M. ZIMAHD in Bucharest (Romania)l) 

Introduction 
KOLMOGOROV ([S]) has defined a string x to be random if, given its length, t'here is 

no string y sensibly shorter than x by means of which a partial recursive function 
could compute x. This remarkable intuition has been already validated in a t  least two 
ways. MARTIK-LOF ([7]) has proved that random strings withstand all conceivable 
statistical tests, and CALUDE and CHITESCU ([l]) have shown that every infinite set 
of random strings is immune. This two results confirm KOLRIOGOROV~S definition from 
the point of 3-iew of the Probability Theory and of the Recursive Function Theory. 
Inspired by CALUDE'S examination ([4]) of the topological size of some important sets 
of partial recursive functions, we study here various aspects concerning the topological 
size of sets of random strings. By showing that the set of random strings is rare, in 
contrast with the set of randomless (or non-random) strings which is not rare, we offer, 
in our opinion. a topological motivation of the definition of random strings given by 
KOLMOGOROV. 

1. Basic notions 
We recall here the basic notions involved in the paper. Let X = (0, l} be a binary 

alphabet and consider the following fixed enumeration of strings in X given by the 
lexicographical order: a,  = 1, a, = 0, a3 = 1, a4 = 00, a5 = 01, a, = 10, . . ., where 
1 is the null word. For x in X*,  l (x )  will denote the length of x. Observe that 
Z(a,) = [log, 7 1 1  for every n. For all a,  x in X* we write a 5 x in case x = ay, for some 
y in X *  (we say that a is a prefix of x) .  

For every partial recursive function q :  X *  x N + X, the Kolmogorov complexity 
induced by rp is a function K,: X* x N + N u (a}, defined by K,(x I m) = min(l(y) I 
y E X * ,  p(y, nz) = x }  if x = ~ ( y ,  m) for some y in X *  and K,(x I m) = a, other- 
wise. There exists a partial recursive function y :  X* x N + X*,  which is called 
a Kolmogorov universal algorithm, having the property that for each partial recursive 
function q :  X *  x N + X* there is a natural constant c such that K,(x I m) 5 
I - Kq(x I m )  + c for all x in X* and all natural m 2 1 ( [ 2 ] ,  [S]). Denote by K = K ,  
the complexity induced by a fixed universal algorithm. A string x in X* is called 
t-random ( t  is in N) if K ( x  I Z(x)) 2 l (x )  - t .  The 0-random strings are also called 
random strings. For all naturals n and m with n 2 m, 

card{x E X* I Z(x) = n, K ( x  I n)  2 n - m} > 2"(1 - 2 7  2 0 
(see Corollary 4 of [ 2 ] ) .  Consequently for every n in N there exist random strings of 
length n and most strings are t-random if t 2 1. 

l )  I am indepted to  the referee whose critical remarks have certainly improved the quality of 
this paper. 
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For every set W E X *  x N and for every na.tura1 m we shall write 

w, = (x EX* I (x, m) E W ] .  
A non-empty recursively enumerable set V g X* x (N \ (0)) will be called a Martin- 

1) For every natural m 2 1, V,, g V,, . 
2 )  For all naturals m, n, m 2 1, card{x EX* I l (x )  = n, x E V,,,} < 2"-". 

We agree upon the fact that the empty set is a Martin-Lof test. 

For every partial recursive function v :  XA' x N + X* the set 

Lo/ test (see [7] and [ 2 ] )  if it possesses the following properties: 

V ( y )  = {(x, m) EX* x (N \ (0)) I K@ I @)) < l ( 4  - nz) 
is a Martin-Lof test ( [ Z ] ) .  For every Martin-Lof test W with W recursive, there exists a 
partial recursive function v :  X* x N --f X* such that W 5 V(p) ([3]). 

2. Results 

One way of putting a topology on X* is the following. For every a in X* consider 
the set U ,  = (x E X* 1 a 5 x]. By a simple application of the definition, we can prove 
the following lemma. 

Lemma 1. (1) For every a,  a E U,. ( 2 )  For all a i ,  a, such that UaL n U,, + 0 there 
exists ak such that [Jot  n U,, = UaL.  (3) For every U ,  there is a set V g U ,  such that 
for every y in V ,  U ,  

From Lemma 1 we deduce that (Ua)aeX* is a system of basic neighborhoods in X * .  
We shall work with the topology generated by this system. Our first aim is to see 
what a recursively rare set in X* is. In  a topological space, a set A is rare if its closure 
contains no nonempty open set. Observe that in the topological space constructed 
above the closure of a set A is the set A = {x E X* I (3y E A )  y 2 x}. Consequently A 
is rare if for every a,, we have Uan A. A set is recursively rare if for every a, one 
can obtain a witness which certifies that Uan g A,  in a recursive way. Thus we arrive 
to the following formal definition which is very much in the spirit of the definition 
in [43. 

Defin i t ion  1. A set A 5 X* is recursively rare if there is a recursive function 
r : N + N for which the following properties hold : 

1)  a, 5 ar(,,) for all n in N ,  
2 )  there exists an i in N such that for every a, for which l(a,) > i, we have 

U , .  

A n Ua,(,, = 0. 
A set A E X *  which is not recursively rare will be called a not recursively rare set 

The following lemma is an easy consequence of the Definition 1.  

Lemma 2 .  (1) If A is  recursively rare and B E A ,  then B i s  recursively rare. ( 2 )  If A 

Lemma 2 states that the family of recursively rare sets is closed under subset and 

is a not recursively rare set and B 2 A ,  then B is a not recursively rare set. 

that the family of not recursively rare sets is closed under superset. 
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In order to show that the notion of recursively rare set is not trivial, we prove the 

P ropos i t i on  3. There is a not recursively rare set A 5 X* such that for every w in X*,  

Proof .  Let (pi)isN be an acceptable Godelization of the set of partial recursive 

following proposition. 

we have wX* = { y  EX* I y = wx, z E X * >  4 A. 

functions, qi: N --f N ([S]). Take 

A = U { l n O 1 k + l O ( O ,  l}qn(k) I n, k 2 0, p,(k)L) 
a) One can easily prove that for every w EX*, wX* 3, by considering the dif- 

b) We show that A is not recursively rare. Suppose that A is recursively rare, i.e. 
there exist a recursive function r :  N + N and a natural constant i such that if 
Z(a,) > i ,  then A n Ua7.,., = 0. Consider the recursive functions s: N --f N given by 
t'he relation as(,) = 1"01"+'0. Let k :  N -+ N be the recursive function given by 
k(n)  = Z(ar(s(n))) - Z(as(,)). If l(as(,)) = 2n + 3 > i ,  then ar(s(n)) $ A .  Hence, keeping in 
mind that lnOlnf10 = a sol) 5 we have q f l ( ? z )  + k(n).  Let j be an index for k 
such that 2j + 3 > i .  Then qj ( j )  + y j ( j ) ,  and qj is a recursive function. Contradiction. 

We can now begin to  study the topological size of various sets of random (or not 
random) strings. The first theorem we prove shows that the set of strings whose Kol- 
mogorov complexity is bounded by a constant (we can call it the set of "strongly" 
non-random strings) is not reoursively rare. Taking into account Lemma 2, it follows 
that the set of non-random strings is not recursively rare too. 

Theorem 4. There i s  a natural constant c such that the set A = {z E X* 1 K ( z  [ Z(z)) =< d )  
is iiot recursively rare for all d 2 c. 

Proof .  We construct a subset B of A which is not recursively rare and then we 
int,erfere Lemma 2 .  For every n in N let, w, = anOn-t(an). Thus w1 = 0, w2 = 00, 
w j  = 100, w4 = 0000, w5 = 01000, w6 = 100000,. . ., a.s.0. Let B = {wi I i > 0). 
Consider t,he recursive function y :  X* x N ---f X * ,  q(x ,  n) = w, for every z E X*, 
11 E N. We have Km(w, I n )  = 0 for all n, because p ( L ,  n) = w,. Consequently there is 
a const'ant, c such that K(w, I n) 2 c for all n. Hence B g A (where the constant ap- 
pearing in the statement of Theorem 4 is the particular c defined above). We next 
show t'hat B is not recursively rare. Suppose that there exist a recursive function 
r :  N -+ N and a constant i such that l(a,) > i implies B n Ua,(n, = m. Taking a, in 
X* with E(a,) > i, we have that wr(,,) E B and wr(,) E !Yo,(",, and consequently 
wr(,,) E B n Ua,.,-,. Contradiction. 

In  Proposition 5 we shall need the Kolmogorov unconditioned complexity which is 
defined as follows: For every partial recursive function 91: X* -+ X* the Kolmogorov 
uizcoiiditioned complexity is a function K,: X* + N u (a} defined by 

ferent forms w can take. 

K,(x) = min{Z(y) I y E X*, y ( y )  = z} 

in case z = ~ ( g )  for some y in X* and K J z )  = m, otherwise. For the Kolmogorov 
unconditioned cornplexit,y there exists a Kolmogorov universal algorithm y ' ,  too, 
i.e. t'here is a constant c in N such that K,,(x) 5 K,(e) -1 c for all partial rmirsive 
functions q :  X *  -+ X" .  Denote by K ( x )  = K,,(x) the complexity i n d u ~ o d  b,y sorrif? 
fixed Kolmogorov universal algorithm y ' .  There is a simple relation connecting the 

6* 
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two variants of Kolmogorov complexity: there exists a constant d in N such that 
K(x I Z(x)) 5 K(x) + d for all x in X* ([B]). 

Propos i t i on  5 .  Let A X* be a not recursively rare set. Then for every t in N there 
is  an infinity of strings z in A such that K(x I Z(x)) 5 Z(x) - t. 

Proof .  We shall prove a bit stronger result, namely that for every t there is an in- 
finity of &rings x in A such that K(x) s Z(x) - t ,  and then we use the inequality 
between the two variants of Kolmogorov complexity. 

Consider t in N and choose a recursive function r :  N -+ N such that the function 
u(n) = Z(ar(,,)) - 2l(a,,) - 2 is increasing and unbounded and a,, arc,,) (for example 
take a,(,) = w,,, where w, is from the proof of 'Theorem 4). Consider also the follow- 
ing three functions: T :  X* x X* + X*, T(x, y) = x1x1x2x2 . . . x,,x,Oly, where 
z = xlx, . . . x, and xi is in X for all i from 1 to n, f :  X* 3 X * ,  

x if z = T(x, y) for some y in X*, 
otherwise, f(4 = { A 

and g: X* --f X * ,  

y if z = T(x, y )  for some x in X*,  
A otherwise. g(z)  = 

Observe that T ,  f and g are recursive. Finally define the recursive function b :  X* -+ X * ,  
b(z )  = ar(,)g(z). where a,, = f ( z ) .  There is a natural constant q such that K(x) 5 Kb(x)  + 4 
for all x in X*. Take i E N such that u([log, i ] )  2 t + q. Since A is not recursively 
rare, there exist a string a,, with Z(a,,) > i and a string x E X* such that ar(,) x. 
Let y be a string in X* given by x = ar(,,,y. Then b(T(a,,, y ) )  = ar,,,,y = x and 

- u(n) 5 Z(x) - u([10g2 i]) Z(x) - ( t  + 4 ) .  Taking into account the way we have 
choosen q, we conclude that for every t there is some x E X* with the property 
K(z)  5 Z(x) - t. Now for an i > l ( x )  we find another x with the above property. 
The process can be iterated to find an infinity of strings x for which the inequality 

Observe that as a corollary to Proposition 5 we can statc that the set of t-random 
strings is recursively rare. However Theorem 7 provides a more constructive proof for 
this result. 

Kb(x) 5 l(T(an> y ) )  = 2l(an) + 2 + l (x )  - l(ar(n)) == l ( x )  - (l(ar(n)) - 2z(an) - 2 )  = E(x) - 

K(x) 5 Z(X) - t holds. 

The next proposition is somewhat similar to Proposition 5. 

P ropos i t i on  6. Let A g X *  be a not recursively rare set and f :  N -+ N a recursive, 
incremsing and unbounded function. Then there exists an  infinity of strings in A such 
that K ( x  I Z(x)) 5 f(Z(x)) .  

Proof .  We fix a recursive function r :  N + N such that a,, 5 ar(,,) and Z(a,,) 5 
5 f(Z(ar(,,))) for all n. Since A is not recursively rare, for every natural i there exist a ,  
with Z(a,) > i and y in A such that arc,) y. We define the partial recursive function 
b :  X* x N -+ X* as follows: 
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Let i be an integer and y a string in A such that there exists a, with Z(a,) > i and 
a,(,) 5 y .  Observe that E 2, because y E A .  Also note that b(a,, Z(ar(,))) = arc,,). 
Hence Kb(ar(,) I Z(arcn))) Z(a,) 5 f(Z(ur(,))). Now we take x = ar(,), and keeping in 
mind there is a constant q such that K ( x  I Z(z)) 5 Kb(x I Z(x)) + q for every x in X*,  
we deduce that K ( z  I Z(x)) 5 f(Z(z)) + q.  (In order to obtain the exact statement of 
Proposition 6 we should have started with the function f ’  = f - q instead of f . )  Tak- 
ing i 2 Z(ar(,)), we obtain another string x in A with the demanded property and by 
repeating the same reasoning we get an infinity of strings x with the property 

Theorem 7.  For every t in N the set A,  = {x EX* I K ( x  I Z(x)) 2 Z(x) - t }  is  re- 

Proof .  Consider a recursive function r :  N + N satisfying the properties 
1 )  a ,  5 ar(,) for every n in N 

2 )  there is a recursive function f :  N + N such that f(n) = m iff Z(a,,,,,) = n (take 

Let Q : X *  x N + X *  be the recursive function defined by p(y, m) = r ~ ~ ~ , - ~ ~ - ~ ~ , , ~ ~ ~ y .  
Since q is recursive, there is a constant c such that for all strings x in X* we have 
K ( x  I Z(x)) 5 K,(x I Z(z)) + c. Take i 2 t + c. We show that if Z(a,) > i, then 
A, A Ua,(,) = 0. Indeed let x = ar(,yy, where Z(a,) > i. Clearly y(y, Z(x)) = x. Con- 
sequently K,(x I Z(x)) s Z(y) = Z(x) - Z(ar(,)) 5 Z(x) - Z(a,) < Z(x) - i 5 Z(x) - ( t  + c). 
Then K ( x  I Z(x)) 5 K,(x I Z(x)) + c < Z(z) - ( t  + c) + c = Z(x) - t .  We conclude that 
A,  n I/Tg,(n) = 0 and the set A ,  is recursively rare. 

Remark .  The comparison of Theorem 4 with Theorem 7 might produce a surprise 
at a first sight. Indeed the set of non-random strings, a small fragment of X * ,  is not 
recursively rare, while the set of random strings, containing almost all strings in X*,  
is recursively rare. However, recalling that the set of random strings is immune, we 
somewhat rediscover here the situation on the real line, where the transcedental num- 
bers, while being majoritary, are much more difficult to capture than the algebraic 
numbcrs. In  this way we feel that Theorem 4 and Theorem 7 represent a topological 
motivation of the definition of random strings given by KOLMOGOROV. 

In what follows we try to reinforce the result in Theorem 7 by showing that the set 
of random strings is recursively rare in a great class of recursive sets. In  fact we believe 
that the set of random strings is recursively rare in every recursive set. 

In order to understand what means to be “recursively rare in a set A ” we relativize 
our topology with the set A and reasoning as for Definition 1 we get the following 
clefinition. 

Def in i t ion  2. Let B, A E X* be two sets. We say that B is (primitive) recursively 

1 )  if a, E A, then ar(,) E A and a, 5 u ~ ( , ~ ) ,  
2 )  there exists an integer i such that for every a, E A with .?(a,) > i we have 

We first show that the set of random strings is not primitive recursively rare in 
every recursive set. This will be an immediate consequence of the following lemma. 

K ( z  I W) I f(W) + P. 

cursively rare. 

and 

for example = w,, where ZL’, is from Theorem 4). 

rare in A if there is a (primitive) recursive function r :  N -+ N such that 

3 n U&, = 0 (where U&, = Ua,(,) n A ) .  
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Lemma 8. There is a recursive set A such that each infinite subset B c A i s  not pr im-  
itive recursively rare in A .  

Proof .  Let f :  N -+ N be a recursive function with f (0)  + 0 which majorizes every 
primitive recursive function, i.e. for every primitive recursive function r :  N -+ N 
there is a constant no such that f (n)  > r(n)  for all n 2 no. (The existence of such a 
function is a well-known result of the Recursive Function Theory.) Consider the func- 
tion f :  N -+ N defined by f(0) = 0, f (n  + 1) = / ( f ( ? z ) )  + f(n) for all n. Obviously f is 
recursive. The set A is defined by A = {x EX* I ( 3 i  E N) l ( x )  = f(i)}. Clearly A is a 
recursive set. Now take B G A ,  B infinite, and suppose that' B is primitive recursively 
rare in A ,  i.e. there is a primit'ive recursive function r :  N + N satisfying the properties 

1) if a, E A ,  then a,(,,, E A and a,.(,) 2 a,, 
2) there is an i in N such that if a, E A ,  Z(a,) > i ,  then B n lJ;,(") = 0. 

Consider the funct,ion g :  N + N, g(n) = max{Z(a,,j,) - Z(aj) 1 Z(aj) = n}. This function 
is primitive recursive .because r is primitive recursive and the function Zength(n) = Z(a,) 
is a primitive recursive function, too. Consequently there is a constant no such that 
f ( n )  > g(n) if n 2 n o .  Take j = max(i, n o ) .  We show that if a, is in A and Z(a,) 2 j 
t,hen a,(,) = a,. Indeed suppose a,(,,) < a, and Z(n,) = f ( k )  2 j .  Then Z(a,(,)) - Z(a,) 2 
2 f ( k  + 1 )  - / ( k )  = f ( f ( k ) )  + f ( k )  - f ( k )  = f ( / ( k ) ) .  But we also have g ( f ( k ) )  2 
2 Z(a,(,)) - Z(a,,). Consequently we get g ( f ( k ) )  2 f ( f ( k ) )  and f ( k )  2 j ,  which is a con- 
tradict,ion. Take now a, E B with Z(a,) 2 j (recall that B is infinite). Since a,,,, = a, 
we get that a,, E U:,,.,. Hence B n lJ&") + 0, which is again a contradiction. It fol- 
lows t'hat B is not primitive recursively rare in A .  

Propos i t i on  9. There i s  a recursive set A such that the set 

A ,  = (X E A I K ( x  I Z ( X ) )  2 Z(Z)  - t )  
i s  not primitive recursively rare in A for all t in. N. 

Proof .  We consider the same set A as in Lemma 8. All it remains to prove is that, 
the set A ,  n A is infinite. But this folIows easily if we recall that for all n, t E N there 
is a st,ring x EX* wit'h Z(z) = n and K ( z  I Z(x)) 2: Z(x) - t .  

Thus the stronger conjecture that the set of random strings is primitive recursively 
rare in every recursive set is false. We shall prove that the set of random strings is 
recursively rare in every sparse or co-sparse set. We recall the necessary definition. 

Def in i t ion  3 (see for example [ 5 ] ) .  A set A i; X* is sparse if there is a,n integer k 
such that card{x E A I Z(x) = n} 5 nk + k for all n in N. 

Theorem 10. Let A be a recursive and sparse set. Then the set 

A ,  = (X E A K ( x  1 Z ( X ) )  2 Z ( X )  - t }  
i s  finite. 

Proof .  Pix an integer k such that card(% E il I Z(x) = n} 5 nk + k for all n. Take 
no in N such that 2n-n"2 - 1 > nk + k for all n 2 no, and construct t'he set 
T' g X* x (N \ {O)), V = ((2, m) 1 z E A ,  Z(x) 2 no,  1 5 m l(x)1/2}. We prove that, 
V is a Martin-Lof test. Indeed V is recursively enumerable (in fact it is a recursive 
set'), V m + l  5 Vim for all m in N, and card{x E X *  I Z(x) = n, x E V,,} 5 nk + k < 
< 2 n - n l i 2  - 1 5 2n-m - 1.  Consequent,ly there is a partial recursive function y such 
that V 5 V ( y ) .  It follows that for (z, m) E P, K,(x Z(x)) 5 l(x)  - m. Using the 
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Kolmogorov theorem we get a constant c such that K(x  1 Z(z)) 
I - Z(x) - (m - c). Now take n, such that [n’’2] - c > t for all n 2 n,. We show 
that A,  does not contain strings of length greater than max(no, nl). Indeed take x 
in A with 1(x) 2 max(n,, nl).  Then (x, [Z(x)1’2]) E V and it follows that K(x  1 Z(x)) 5 

Theorem 10 which is important in its own (every recursive, sparse set contains only 

Corol lary 11. Let A be a recursive and sparse set. Then the set A ,  is  recursively rare 

Proof .  Just observe that a finite set is recursively rare in every set. 

Also note that the condition that A is sparse can be weakened by requiring only 
that lim card (z E A I Z(x) = n}/(2n-f(”) - 1) = 0, where f is a recursive, unbounded 

function. 

K,(x I Z(x)) + c 

E(x) - ( [ 1 ( 2 ) ” 2 ]  - c )  < Z(2) - t. 

a finite number of random strings) has the following corollary. 

in A .  

n- 30 

The other result which sustains our conjecture is stated in the following theorem. 

Theorem 12. Let A be a recursive and co-sparse set. Thsn the set 

A ,  = {. E A I K(. 1 Z(x)) 2 Z(z) - t ]  
i s  recursively rare in A. 

Proof. Let r :  N + N be a recursive function defined by 

the least (lexicographically) y E A such that Z(y) = n, y 2 a, 

a, otherwise. 
if such a y exists, a,,,, = 

We show that only for a finite number of strings a,,, ar(,,) is computed by using the 
second clause. Since A is co-sparse, we can fix a k such that card(x q! A [ Z(z) = n> 5 
I - nk + k for all n in N. Now take into account that Z(a,) = s implies 2” 5 n < 2s+1 - 1. 
It follows that there exist a t  least 22s-s  strings y with Z(y) = n and y 2 a,,. If 22”-s > 
> (PT1 - l)k + k ,  then a t  least one of the above y’s belongs to  A and consequently 
a,,,,, is computed by the first clause. 

+ k for all s 2 so. We get that 
if a, E A and Z(a,) 2 so,  then Z(ar(,)) = n. Kow consider the function q :  X* x N -+ X* 
defined by q ( y ,  m) = ~ , ( ~ - ~ ( , , ) ) y .  There is a constant c such that K ( z  I Z(z)) 5 
j K v ( x  1 Z(x)) + c. We take i = max(so, t + c )  and we show that if a,, E A and 
Z(a,,) > i then A ,  n Ut,(,,., = 0. Indeed take x = ar(,,)y with Z(a,,) > i. We get easily 
that p(y, Z(x)) = x. Consequently K,(z I Z(x)) 5 Z(y) = Z(x) - Z(ar(,,)) = Z(x) - n. Hence 
K ( r  1 Z(x)) 5 K,(x I Z(x)) + c 5 Z(x) - (n  - c )  < Z(x) - t ,  which shows that x 6 A , .  

This is why we take so such that 22s-s > (ZS+’ - 

3. Open problems 
Some open problems naturally arise. We display some of them. 

1) Prove (or disprove) that if A is not recursively rare, then A contains random strings. 

2 )  Prove (or disprove) that every immune set is recursively rare. 

3) Prove (or disprove) that the set of random strings is recursivcly rare in every re- 
cursive set. 
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