
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 454 (2012) 72–80

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The complexity of Euler’s integer partition theorem

Cristian S. Calude a,∗, Elena Calude b, Melissa S. Queen c

a Department of Computer Science, The University of Auckland, New Zealand
b Institute of Information and Mathematical Sciences, Massey University at Auckland, New Zealand
c Computer Science Department, Dartmouth College, NH, USA

a r t i c l e i n f o

Keywords:
Complexity of mathematical problems
Euler’s integer partition theorem

a b s t r a c t

Euler’s integer partition theorem, which states that the number of partitions of an integer
into odd integers is equal to the number of partitions into distinct integers, ranks 16 in Wells’
list of the most beautiful theorems (Wells, 1990) [15]. In this paper, we use the algorithmic
method to evaluate the complexity of mathematical statements developed in Calude et al.
(2006) [5] and Calude and Calude (2009, 2010) [6,7] and to show that Euler’s theorem is in
class CU,3, the same complexity class as the Riemann hypothesis.

© 2012 Elsevier B.V. All rights reserved.

1. Euler’s integer partition theorem

The number of ways of writing an integer as a sum of n positive integers, where the order of addends is ignored, is
denoted by P(n). By P(n|odd parts) and P(n|distinct parts) we denote the number of ways of writing the integer as a sum of
n odd/distinct positive integers. By convention, partitions are usually ordered from largest to smallest. Some examples are
presented in Table 1.

Leonhard Euler is credited (see [1] p. 2) to have proved in 1748 the theorem bearing his name: no matter how long we
extend Table 1, there will always be as many items in the left column as in the right one. In other terms, the number of
partitions of an integer into odd integers is equal to the number of partitions into distinct integers.

Euler’s integer partition theorem is aΠ1-statement, i.e. a statement of the form∀n P(n), where P(n) is a unary computable
predicate; hence its complexity can be evaluated with the coarse-grained method developed in [5–7] and outlined
below.

2. The complexity measure

The complexity measure for Π1-statements used in this paper1 is defined by means of register machine programs which
implement a universal self-delimiting Turing machine U . The machine U (which is fully described in [7]) has to be minimal
in the sense that none of its instructions can be simulated by a program for U written with the remaining instructions.

To every Π1-problem π = ∀mP(m) we associate the algorithm ΠP = inf{n : P(n) = false} which systematically
searches for a counterexample for π using the predicate P . There are many programs (for U) which implement ΠP ; without
loss of generality, any such program will also be denoted by ΠP . Note that π is true iff U(ΠP) never halts.

∗ Corresponding author. Tel.: +64 21 2411 454.
E-mail addresses: cristian@cs.auckland.ac.nz (C.S. Calude), Melissa.S.Queen.13@dartmouth.edu (M.S. Queen).
URLs: http://www.cs.auckland.ac.nz/∼cristian (C.S. Calude), http://www.massey.ac.nz/∼ecalude (E. Calude).

1 We are not aware of any other complexity measure for Π1-statements.

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.03.023

Author's personal copy

C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80 73

Table 1
Integer partitions into odd integers versus integer partitions into distinct integers.

n Odd parts P(n|odd parts) Distinct parts P(n|distinct parts)

1 1 1 1 1

2 1+ 1 1 2 1

3 1+ 1+ 1 3
3 2 2+ 1 2

4 1+ 1+ 1+ 1+ 1 4
3+ 1 2 3+ 1 2

5 1+ 1+ 1+ 1+ 1 5
3+ 1+ 1 4+ 1
5 3 3+ 2 3

6 1+ 1+ 1+ 1+ 1+ 1 6
3+ 1+ 1+ 1 5+ 1
3+ 3 4+ 2
5+ 1 4 3+ 2+ 1 4

Motivated by Occam’s Razor principle of parsimony, see [2], we define the complexity (with respect to U) of a
Π1-problem π to be the length of the shortest program ΠP – defined as above – where minimisation is calculated for all
possible representations of π , where π = ∀nP(n)2:

CU(π) = min{|ΠP | : π = ∀nP(n)}.

Because the complexity CU is incomputable,3 weworkwith upper bounds for CU . As the exact value of CU is not important,
following [7], we classify Π1-problems into the following classes:

CU,n = {π : π is a Π1-problem, CU(π) ≤ n kbit}.

Thismethodhas been applied to a variety of problems, including Fermat’s last theorem, theGoldbach conjecture, the four-
colour problem, the Riemann hypothesis, and the Hilbert 10th problem. The complexity method we use does not always
match the ‘‘intuitive complexity’’ of those problems well; a typical example is the low complexity of Fermat’s last theorem.
One reason is that our complexity takes into consideration only one way – a brute-force search for a counterexample – from
infinitely many ways to solve the problem.

3. A universal prefix-free binary Turing machine

Here, we briefly describe the syntax and the semantics of a register machine language which implements a minimal
universal prefix-free binary Turing machine U; it is a refinement, constructed in [7], of the language in [5]; see also [10].
In principle, any universal (Turing-complete) language can be used here. However, the language has to be in some sense
‘‘natural’’. For example, no specific problem should be coded in an unreasonable simple way; also, the language syntax
should not ‘force’ programs to be artificially long.

To be able to have meaningful comparison between mathematical problems, one has to use the same language or have a
fine-tuned simulation between languages used for the evaluation of different problems. Tomake the paper as self-contained
as possible, we succinctly present the adopted language.

Any register program (machine) uses a finite number of registers, each of which may contain an arbitrarily large non-
negative integer. By default, all registers, named with a string of lower-case or upper-case letters, are initialised to 0.
Instructions are labelled sequentially, beginning with 1. The register machine instructions are listed below. Note that in
all cases R2 and R3 denote either a register or a non-negative integer, while R1 must be a register.
=R1, R2, R3

If the content of R1 and R2 being equal, then the execution continues at the R3-th instruction of the program. If the contents
of R1 and R2 are not equal, then execution continues with the next instruction in sequence. If the content of R3 is outside
the scope of the program, then we have an illegal branch error.

2 For CU it is irrelevant whether π is known to be true or false. In particular, the program containing the single instruction halt is not a ΠP program, for
any P .
3 This follows from the undecidability of the halting problem; see [4].

Author's personal copy

74 C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80

Table 2
Special characters.

Special characters Code Special characters Code

, ε + 111
& 01 ! 110
= 00 % 100

&R1, R2

The content of register R1 is replaced by R2.

+R1, R2

The content of register R1 is replaced by the sum of the contents of R1 and R2.

!R1
One bit is read into the register R1, so the content of R1 becomes either 0 or 1. Any attempt to read past the last data bit
results in a run-time error.
%
This is the last instruction for each register machine program before the input data. It halts the execution in two possible
states: either it halts successfully or it halts with an under-read error.

A register machine program consists of a finite list of labelled instructions from the above list, with the restriction that the
halt instruction appears only once, as the last instruction of the list. The input data (a binary string) follows immediately
after the halt instruction. A program not reading the whole data or attempting to read past the last data bit results in a
run-time error. Some programs (as the ones presented in this paper) have no input data; these programs cannot halt with
an under-read error.

The instruction =R,R,n is used for the unconditional jump to the nth instruction of the program.
For longer programs, it is convenient to distinguish between the main program and some sets of instructions called

‘‘routines’’ which perform specific tasks for another routine or the main program. The call and call-back of a routine are
executed with unconditional jumps.

4. Binary coding of programs

In this section, we develop a systematic efficient method to uniquely code the register machine programs in binary. To
this aim, we use a prefix-free coding as follows.

The binary coding of special characters (instructions and comma) is given in Table 2 (ε is the empty string).
For registers, we use the prefix-free code code1 = {0|x|1x | x ∈ {0, 1}∗}. The register codes are chosen to optimise the

length of the program, i.e. the most frequent registers have the smallest code1 length. For non-negative integers, we use the
prefix-free code code2 = {1|x|0x | x ∈ {0, 1}∗}. The instructions are coded by self-delimiting binary strings as follows.

(1) & R1,R2 is coded in two different ways depending on R24:

01code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.
(2) + R1,R2 is coded in two different ways depending on R2:

111code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.
(3) = R1,R2,R3 is coded in four different ways depending on the data types of R2 and R3:

00code1(R1)codei(R2)codej(R3),

where i = 1 if R2 is a register and i = 2 if R2 is an integer, j = 1 if R3 is a register and j = 2 if R3 is an integer.
(4) !R1 is coded by

110code1(R1).

(5) % is coded by

100.

4 As xε = εx = x, for every string x ∈ {0, 1}∗ , in what follows we omit ε.

Author's personal copy

C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80 75

All codings for instruction names, special symbol comma, registers, and non-negative integers are self-delimiting; the
prefix-free codes used for registers and non-negative integers are disjoint. The code of any instruction is the concatenation
of the codes of the instruction name and the codes (in order) of its components; hence, the set of codes of instructions is
prefix free. The code of a program is the concatenation of the codes of its instructions, so the set of codes of all programs is
prefix free too.

5. The counting algorithm

We use a slightly modified form of Algorithm 7 in [13, p. 13], which generates all integer partitions: for each of them we
test whether the partition uses odd or distinct integers, and count accordingly. We present the algorithm in the following
commented pseudo-code format; labels L0, L2, L6, L13, L18, L23 correspond to the program in Table 9.

L0 for N in (2, 3, . . .) do
P ← 0 //tally of odd partitions
R← 0 //tally of distinct partitions

//generate the starting array A
A[N] ← N
for I in (1 . . .N − 1) do

A[I] ← 0
end for

//check if the array A is ordered
L2 a← 0 //the previous element

for I in (1 . . .N) do
if a > A[I] then

goto L6 //not ordered
end if
a← A[I]

end for
goto L13 //array was ordered

//generate the next partition
L6 V ← 0 //counts the leading ones

for I in (1 . . .N) do
if A[I] = 0 then

continue
else if A[I] = 1 then

A[I] ← 0
V ++
continue

else if A[I] > 1 then
A[I] ← A[I] − 1
A[I − 1] ← V + 1
goto L2 //next partition has been made, is it ordered?

end if
end for
goto L23 //all elements are 1, we are at the last partition

//check if the partition has all odd elements
L13 for I in (1 . . .N) do

if A[I] = 0 then
continue

else if A[I]mod 2 = 0 then
goto L18 //found a non-zero even element

end if
end for
P ++ //all elements were checked, they were all odd

Author's personal copy

76 C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80

//check if the partition has all distinct elements
L18 a← 0 //previous element

for I in (1 .. N) do
if A[I] = 0 then

continue
else if A[I] = a then

goto L6 //found two identical non-zero elements
end if
a← A[I]

end for
R++ //all elements were checked and distinct
goto L6

L23 if P = R then
continue

else
HALT

end if
end for

Other possible algorithms for generating all integer partitions are discussed in [11,12,14]. Theymay be used in an attempt
to improve the complexity bound obtained in this paper.

6. Routines

There are two types of routine: (a) 1-routines, that is, routines that do not use any other routines, and (b) 2-routines, that
is, routines that call other routines. In general, unary 1-routines or 2-routines use the register a for input, b for keeping track
of returning to the calling environment, and c for storing the result. Binary 1-routines or 2-routines use a and b for input, c
for the return address, and d for the result.

As the registers are shared between the main program and routines, care must be taken so that the content of a register
is not changed inadvertently. There are various ways to deal with this problem. One is to reserve the letters from a to h
to 1-routines and to use aa, ab, ac, . . . in 2-routines or the main program (see [10]). The approach used in the following
examples is that 1-routines use single-letter names, 2-routines use double-letter names, where the second letter comes
from the first letter of the routine, and the main program uses capital letters for registers. As all 2-routines have different
first-letter names, there is no danger of using the same register in a routine that calls another routine using the same
register name. The upside of this approach is the guarantee that the values in registers are the correct ones; the downside
is that the number of necessary registers tends to increase (this fact can be mitigated at the end by safely reusing a few
registers).

We present three routines used in the program: CMP, SUBT1, and DIV2. All routines are presented in a ‘‘human-readable’’
registermachine code, alongwith comments and the corresponding binary code (using the encoding described in Section 4).
Note that in the binary representation the instruction labels have been replaced with their actual line numbers, and those
numbers may change depending on where the routine is in the larger program.

The compare routine CMP takes as input two non-negative integers, stored in registers a and b, and produces its result
in register d according to the formula d = CMP(a, b) = 1 if a < b, 0 if a = b, and 2 if a > b. It then returns to c.

The subtraction routine SUBT1 takes an integer stored in register a with a ≥ 1 as input, and produces the result a-1 in
register d. It then returns to c.

The routine DIV2 takes as input a single value, stored in register a. It computes ⌊ a2 ⌋ and stores this back into a (a= a/2).
It also computes amod 2, and stores the result in c. Finally, it returns to the address stored in register b.

Concatenating the (prefix-free) binary codes of instructions inserted in the last column of Table 5, we get the binary string

010010001001010100010010110001011010100011011101011001000011
00100101101100011101101011001000011010001010110101001011011

which uniquely codes the routine DIV2. It has 119 bits.

7. Register machine language implementation of arrays

We use the coding for the array data structure library developed by Dinneen [10], which represents arrays (lists) using a
single register variable. An integer element ai within an array A is represented as a sequence of ai bits 0; the bit 1 is used as
a (leading) separator or deliminator of the array elements. If there are no 1s (e.g. the register has value 0) then we have an
array of size 0.

Author's personal copy

C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80 77

Table 3
Routine CMP.

Label Instruction Comments Binary representation

CMP & d, 0 01 00111 100
= a, b, c // a==b 101 010 00110 00101
& e, 0 01 011 100

LCP1 & d, 1 01 00111 101
= a, e, c // a<b 101 010 011 00101
& d, 2 01 00111 11010
= b, e, c // a>b 101 00110 011 101
+ e, 1 100 011 101
= a, a, LCP1 101 010 010 1110100

Table 4
Routine SUBT1.

Label Instruction Comments Binary representation

SUBT1 & d, 0 01 00111 100
LS1 & e, d 01 011 00111

+ e, 1 100 011 101
= e, a, c // d+1=a 101 011 010 00101
& d, e 01 00111 011
= a, a, LS1 101 010 010 11010

Table 5
Routine DIV2.

Label Instruction Comments Binary representation

DIV2 & f, a 01 00100 010
& a, 0 01 010 100

LD1 & c, 0 // c=0 when a is even 01 00101 100
& e, a 01 011 010
+ e, e // calculate 2a 100 011 011
= e, f, b // 2a==f, so a is halved 101 011 00100 00110
& c, 1 // c=1 when a is odd 01 00101 101
+ e, 1 100 011 101
= e, f, b // 2a+1==f, so a is halved 101 011 00100 00110
+ a, 1 // otherwise, a++ and 100 010 101
= a, a, LD1 // continue looping 101 010 010 11011

In this representation, there is the freedom to interpret the array as starting either at the left (most significant bits) or
the right (least significant bits) of the string. While both interpretations are equally effective, it is much easier to add bits to
the right of a string (double the number to add a 0, or double and add 1 to add a 1), and thus a natural choice often arises.
Because it was important for this implementation to be easily able to add elements to the beginning of an array, we decided
to use a right-to-left interpretation. For example, the array A = [a1, a2, a3, a4] = [6, 1, 0, 4] is represented in binary as
100001101000000 or in decimal as 17216.

Nextwepresent three routines dealingwith arrays: PREPEND, ELMandRPL. They are used in themain programpresented
in Table 9.

The 1-routine PREPEND, presented in Table 6, adds b to the start of array a, then returns to c. It alters a directly. Using
PREPEND to add 2 to array [6, 1, 0, 4] produces [2, 6, 1, 0, 4] coded by the string 100001101000000100.

The use of generic array a, rather than the specific array A used by the main program, is necessary because this routine
is used in RPL.

The 2-routine ELM (Table 7) takes as input a number in register I and an array in register A. It extracts the Ith
element from the array A, and as output stores it into register d (d = A[I]). It returns to the line number stored in
register c.

The 2-routine RPL (Table 8) takes as input a number stored in register I and an array stored in register A (the same input
as for routine ELM). It replaces the Ith elementwith value b (A[I] = b), and has no formal output other than the changed
array (it alters A directly). Upon completion, it returns to the line number stored in register c.

Author's personal copy

78 C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80

Table 6
Routine PREPEND.

Label Instruction Comments

PREPEND & e, 0 // loop counter
+ a, a
+ a, 1 // add 1 as element separator

LP1 = e, b, c // loop until we have added b zeros
+ a, a
+ e, 1
= a, a, LP1

Table 7
Routine ELM.

Label Instruction Comments

ELM & ae, a
& be, b
& ce, c
& d, 1 // counter
& a, A // make a copy of the array

LE3 = I, d, LE6 // if we have counted enough 1s, goto L6
& b, LE4
= a, a, DIV2 // otherwise, halve a

LE4 + d, c // add last bit to our counter
= a, a, LE3

LE6 & d, 0 // reset the counter; now we are counting 0s
LE7 & b, LE8

= a, a, DIV2
LE8 = c, 1, LE10 // if we got to a 1, then exit

+ d, 1 // otherwise increment the counter
= a, a, LE7

LE10 & a, ae
& b, be
& c, ce
= a, a, c // restore and return

8. The program ΠIntegerPartition

We are now ready to present (see Table 9) the main program ΠIntegerPartition, which is based on the counting algorithm
presented in Section 5 and uses all routines described in Section 6 (CMP, SUBT1, DIV2), Tables 3–5, and Section 7 (PREPEND,
ELM and RPL), Tables 6–8.

The registermachine program for Euler’s integer partition theorem –which is obtained from themain program in Table 9
inwhich all symbolic names of routines are replaced by their respective codes – consists of 158 instructions having 2396 bits;
hence it is inCU,3. In thisway, Euler’s integer partition theorem is in the same complexity class as the Riemann hypothesis [9]
(although the Riemann hypothesis seems slightly more complex, as it contains 178 instructions and 2745 bits; see [9]) and
less complex than the four-colour theorem, which is in CU,4 [8].

9. Final comments

The main source of the complexity of Euler’s integer partition theorem comes from the necessity to work with arrays.
Initially we had used Cantor’s bijection for coding arrays; this resulted in the theorem being in the complexity class CU,7, a
too crude and unintuitive result. Using Dinneen’s coding for arrays [10] – which we learned about after finishing a first draft
of the paper – and further optimisations, we succeeded in decreasing the complexity to class CU,3.

With more work one could probably decrease the complexity of Euler’s integer partition theorem to CU,2, but probably
not to CU,1.

Occam’s Razor principle motivates the complexity of Π1-statements used in this paper. The same principle leads, under
some general assumptions, to a learning algorithmwhich produces hypotheses that with high probability will be predictive
of future observations [3]. Is there any relation between the complexity of Π1-statement and its learnability?

To conclude, we cite a question posed by a referee: How does the complexity of Euler’s integer partition theorem
established in this paper compare with the complexity of related integer partition theorems, e.g. Rogers–Ramanujan
identities?

Author's personal copy

C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80 79

Table 8
Routine RPL.

Label Instruction Comments

RPL & ar, a
& br, b
& cr, c
& ir, I
& I, N // counter
& fr, 0 // new array

LR1 = I, 0, LR7 // have reached end of the array
= I, ir, LR5 // have reached the element to replace
& c, LR2
= a, a, ELM

LR2 & b, d // b = A[i]
& a, fr
& c, LR3
= a, a, PREPEND // adds element onto our new array

LR3 & fr, a
& a, I
& c, LR4
= a, a, SUBT1

LR4 & I, d // I--
= a, a, LR1 // loop

LR5 & b, br // insert the new element
& a, fr
& c, LR3
= a, a, PREPEND // loop back

LR7 & a, ar
& b, br
& c, cr
& A, fr
& I, ir
= a, a, c

Table 9
Main program ΠIntegerPartition .

Label Instruction Label Instruction Label Instruction

MAIN & N, 1 + I, 1 L13 & I, 0
L0 + N, 1 = a, a, L3 L14 = I, N, L17

& P, 0 L22 + R, 1 + I, 1
& R, 0 L6 & V, 0 & c, L15
& I, 1 & I, 0 = a, a, ELM
& a, 0 L7 = I, N, L23 L15 = d, 0, L14
& b, N + I, 1 & a, d
& c, L1 & c, L8 & b, L16
= a, a, PREPEND = a, a, ELM = a, a, DIV2

L1 = I, N, L2 L8 = d, 0, L7 L16 = c, 0, L18
+ I, 1 & a, d = c, 1, L14
& b, 0 & c, L9 L17 + P, 1
& c, L1 = a, a, SUBT1 L18 & I, 0
= a, a, PREPEND L9 & b, d & a, 0

L2 & A, a & c, L10 L19 = I, N, L22
L24 & I, 1 = a, a, RPL + I, 1

& a, 0 L10 + V, 1 & c, L20
L3 = I, N, L13 = d, 0, L7 = a, a, ELM

& c, L4 & a, I L20 = d, 0, L19
= a, a, ELM & c, L11 = a, d, L6

L4 & b, d = a, a, SUBT1 & a, d
& c, L5 L11 & I, d = a, a, L19
= a, a, CMP & b, V L23 = P, R, L0

L5 = d, 2, L6 & c, L24 %
& a, b = a, a, RPL

Acknowledgement

We thank the referees for very useful comments, which led to a better presentation.

Author's personal copy

80 C.S. Calude et al. / Theoretical Computer Science 454 (2012) 72–80

References

[1] G.E. Andrews, K. Eriksson, Integer Partitions, Cambridge University Press, 2004.
[2] R. Ariew, Ockham’s Razor: A Historical and Philosophical Analysis of Ockham’s Principle of Parsimony, Champaign-Urbana, University of Illinois, 1976.
[3] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Occam’s Razor, Information Processing Letters 24 (6) (1987) 377–380.
[4] C.S. Calude, Information and Randomness: An Algorithmic Perspective, 2nd ed., Springer-Verlag, Berlin, 2002.
[5] C.S. Calude, E. Calude, M.J. Dinneen, A new measure of the difficulty of problems, Journal for Multiple-Valued Logic and Soft Computing 12 (2006)

285–307.
[6] C.S. Calude, E. Calude, Evaluating the complexity of mathematical problems. Part 1, Complex Systems 18-3 (2009) 267–285.
[7] C.S. Calude, E. Calude, Evaluating the complexity of mathematical problems. Part 2, Complex Systems 18-4 (2010) 387–401.
[8] C.S. Calude, E. Calude, The complexity of the Four Colour Theorem, LMS Journal of Computation and Mathematics 13 (2010) 414–425.
[9] E. Calude, The complexity of Riemann’s Hypothesis, Journal for Multiple-Valued Logic and Soft Computing 18 (3–4) (2012) 257–265.

[10] M.J. Dinneen, A program-size complexity measure for mathematical problems and conjectures, in: M.J. Dinneen, B. Khoussainov, A. Nies (Eds.),
Computation, Physics and Beyond, in: LNCS, vol. 7160, Springer, Heidelberg, 2012, pp. 81–93.

[11] J. Kelleher, Encoding partitions as ascending compositions, Ph.D. Thesis, University College Cork, 2006.
[12] D. Knuth, The Art of Computer Programming, Pre-Fascicle 3b: Generating all partitions, http://www-cs-faculty.stanford.edu/%7Eknuth/fasc3b.ps.gz,

(version of 10 December 2004).
[13] D. Stanton, D. White, Constructive Combinatorics, Springer-Verlag, New York, 1986.
[14] A. Zoghbi, I. Stojmenovic, Fast algorithms for generating integer partitions, International Journal of Computer Mathematics 70 (1998) 319–332.
[15] D. Wells, Are these the most beautiful?, The Mathematical Intelligencer 12 (3) (1990) 37–41.

