
An Operational Model for Multiprocessors with
Caches

Salil Joshi? and Sanjiva Prasad??

Indian Institute of Technology Delhi

Abstract. Modern multiprocessors are equipped with local caches, to
enhance program performance. However, the presence of caches can lead
to the violation of sequential consistency [7] assumptions regarding pro-
gram order and write atomicity. With respect to such relaxed memory
models [1], we provide an operational description of program execution
(in the style of [4]) that accounts for cache effects. In particular, we pro-
vide an operational characterization of cache invalidation and update
policies and an abstract characterization of cache consistency. The pro-
gramming model consists of a simple imperative language extended with
common synchronization primitives such as locks or barrier instructions.
The main results show that by precluding certain data races or by placing
certain synchronization constraints, sequentially consistent behavior can
be obtained for multiprocessor execution even in the presence of local
caches.

1 Introduction

While shared memory multiprocessor systems are becoming increasingly com-
mon today, writing correct concurrent programs for such systems remains a
challenge. Program behavior is determined by a memory model. Programmers
commonly assume a model of memory that is sequentially consistent [7], i.e.,
all memory accesses appear to occur atomically in some total order, and those
issued by any given processor occur as specified by the program order.

One feature for improving performance, found in all modern processors, is a
cache. The presence of caches in a multiprocessor system can lead to violations
of program order and write atomicity assumptions [1]. The goal of this work is to
understand the effect of caches on concurrent program execution with respect to
a weaker memory model where these assumptions are relaxed [2], and to discover
constraints under which sequentially consistent behavior is guaranteed.

We follow the approach of Boudol and Petri [4] in presenting an operational
model of memory and describe the execution of programs written in a simple
imperative language with respect to a sequentially consistent model (“the speci-
fication”), and then with respect to a relaxed model (“the implementation”). We
then consider some synchronization primitives (called “safety nets” in [1]) sup-
ported by the model; these are instructions used to temporarily force program

? salil.ssj@gmail.com
?? sanjiva@cse.iitd.ac.in

order or write atomicity in order to make the program behavior more manage-
able. In particular, we show that for locks a well synchronizedness condition
(equivalent to data-race-freedom), and for barrier instructions, a multiple-race-
free barrier condition, are sufficient to ensure sequentially consistent behavior in
an otherwise non-sequentially consistent system.

Technically, this is done by establishing precise correspondences (e.g., “bisim-
ilarity”) between the specification and implementation behaviors. The conse-
quence of these results is that for programs satisfying these constraints (which
are stated at the specification level), the programmer need only consider the
more intuitive set of sequentially consistent executions rather than all possible
executions, when reasoning about program behavior.

A novel contribution in this paper is an abstract operational characterization
of a memory model, general enough to express multiprocessor memory with local
caches as a particular instance, in terms of a small set of operational properties.
The theorems are thus proven for any memory model exhibiting these properties.
We believe that our implementation semantics closely resemble actual processor
architectures (with caches). At the same time, the semantics abstract over pro-
cessor specific details like cache replacement policies, cache consistency protocols
etc. Thus our models (and hence our theorems) should hold for a wide variety
of multiprocessor systems. We give an example of a cache-based system which
exhibits the required properties, and which allows the following relaxations with
respect to the classification of relaxed memory models in [1]:

1. W → R: Reordering of a write with a following read to a different variable.
2. W→W: Reordering of a write with a following write to a different variable.
3. Read other’s write early: This violates write atomicity.
4. Read own write early: This violates both write atomicity and program

order.

Our approach differs from that of Boudol and Petri [4] in several ways: (i)
while they present a higher-order language with ML-style imperative features,
dynamic thread creation and scoped locks, we prefer a simple imperative lan-
guage that we believe has greater applicability; (ii) in addition to locks, we
consider synchronization primitives such as barrier or fence instructions; (iii)
while Boudol et al consider write buffers, we believe we consider a more general
multiprocessor model with caches, while being able to deal with a variety of
cache management policies (update, invalidation). Furthermore our operational
characterization is presented in terms of abstract properties.

The rest of this paper is organised as follows. §2 presents the language and
the specification semantics. The abstract characterization of the implementation
semantics is given in §3 as a collection of properties on the operational relation.
§4 introduces scoped locks as a synchronization primitive and shows sequential
consistency can be ensured by data race freedom; similarly a barrier condition
is shown to achieve this when using barrier instructions (§5). In §6, we present
an intuitive model of caches which satisfies the abstract properties of §3.2. §7
concludes the paper with some directions for future work. Proofs of lemmas and
theorems are omitted in this paper but can be found in [6].

2 The Language

We employ a simple imperative language, which will later be extended with two
different synchronization primitives.
〈e〉 ::= 〈int〉
| 〈e〉 ⊕ 〈e〉
| 〈var〉

〈b〉 ::= true | false
| ¬ 〈b〉 | 〈b〉 ∧ 〈b〉
| 〈e〉 ≤ 〈e〉

〈C 〉 ::= 〈var〉 := 〈e〉
| 〈C 〉; 〈C 〉
| if 〈b〉 then 〈C 〉 else 〈C 〉
| while 〈b〉 do 〈C 〉

All variables are integer valued, boolean values are used only for tests and
the ⊕ operator is any one of +, ∗, . . . We also have a runtime marker, (), which is
‘returned’ when a command is executed. It is used only to make the operational
semantics easier to formulate.

2.1 Specification Semantics

A configuration C is a pair (S, P), where S is the store (main memory) that
is shared across the system, and P is a list of processes. Each process runs on
its own processor. The store is common to all, and is a simple mapping from
variable names to integers. For convenience, we will use C.S and C.P to refer to
the store and program respectively of a specific configuration C.

Transitions involve reducing a redex in an evaluation context [10]. An eval-
uation context consists of a number i (indicating that the process Pi is being
executed), and a one-hole context. We use Pi[E[]] to denote the hole E[] in the
ith process in P .

The redexes and one-hole contexts (E[]) are as follows:

〈bval〉 ::= true | false
〈redex 〉 ::= 〈int〉 ⊕ 〈int〉
| 〈int〉 ≤ 〈int〉
| ¬ 〈bval〉 | 〈bval〉 ∧ 〈bval〉
| 〈var〉 | 〈var〉 := 〈int〉
| if 〈bval〉 then 〈C 〉 else 〈C 〉
| while 〈b〉 do 〈C 〉 | ();〈C 〉

〈E〉 ::= [] | E ⊕ 〈e〉 | 〈int〉 ⊕ E
| E ≤ 〈e〉 | 〈int〉 ≤ E
| ¬ E | E ∧ 〈b〉 | 〈bval〉 ∧ E
| 〈var〉 := E | E ;〈C 〉
| if E then 〈C 〉 else 〈C 〉

The operational semantics are given in Figure 1. We have left out the obvious
transitions such as those for the arithmetic and boolean operators.

Transitions are decorated as:
(a,i)−−−→. Here i is used to indicate that the tran-

sition is for process Pi, and a denotes the action being carried out. The possible
actions are: τ (reduction which does not involve the store), rdvx (the value v is
read from variable x) and wrvx (the value v is written to the variable x). For
reads and writes we will use rdx and wrx when we do not care what value was
read/written. Concurrent, conflicting transitions are said to form a race:

Definition 1. In a sequence of transitions C0
(a0,i0)−−−−→ · · · (an,in)−−−−→ Cn+1, two

transitions
(aj ,ij)−−−−→ and

(ak,ik)−−−−→ are said to form a race if ij 6= ik and aj , ak ∈
{rdx, wrx} and at least one is wrx.

(S, Pi[E[x]])
(rdvx,i)−−−−→ (S, Pi[E[v]]) where S(x) = v

(S, Pi[E[x:=v]])
(wrvx,i)−−−−→ (S[x← v], Pi[E[()]])

(S, Pi[E[();C]])
(τ,i)−−−→ (S, Pi[E[C]])

(S, Pi[E[if true then Ct else Cf])
(τ,i)−−−→ (S, Pi[E[Ct]])

(S, Pi[E[if false then Ct else Cf])
(τ,i)−−−→ (S, Pi[E[Cf]])

(S, Pi[E[while b do C]])
(τ,i)−−−→ (S, Pi[E[if b then {C; while b do C} else ()]])

Fig. 1. Specification Semantics

(M,Pi[E[x]])
(rdvx,i)−−−−→ (M ′, Pi[E[v]]) where Mi[x] = (M ′, v)

(M,Pi[E[x:=v]])
(wrvx,i)−−−−→ (M ′, Pi[E[()]]) where Mi[x← v] = M ′

Fig. 2. Implementation Semantics

Specification semantics correspond to a programmer’s intuitive view of inter-
leaving execution (i.e. a sequentially consistent memory model). Here, processes
execute one at a time (conceptually) albeit in a non-deterministic order, pro-
gram order is respected and writes are atomic. Storage features such as caches
and write buffers can violate these guarantees in a multiprocessor setting [1].

3 Implementation Semantics

In the implementation semantics, we replace the store S with a more general
abstraction for memory, denoted as M . Each processor has a different view
of the memory; processor i sees the value of x as Mi[x] and in general Mi[x]
and Mj [x] need not be equal. We will use M to model a memory hierarchy
where each processor has a local cache. Our semantic account abstracts from
the internal structure of M . We place purely operational constraints on M in
order to prove sequential consistency theorems and later show that common
cache based architectures satisfy these constraints. Thus while our focus is on
the effects of caches, the framework presented here is more general.

In Figure 2 we present the significant changes to the operational rules. We
omit the rules of Figure 1 that do not involve memory.

Both wrvx and rdvx transitions access the memory, and potentially alter it.
Writing a variable (denoted Mi[x← v]) returns the modified memory M ′. Read-
ing a variable from memory (denoted Mi[x]) returns a pair (M ′, v) where v is
the value read, and M ′ is the possibly modified memory (e.g. an altered cache).
For convenience, we write Mi[x].val = v when Mi[x] = (M ′, v). The next section
imposes some restrictions on the permissible changes in M ′.

In addition, we have some more transitions called the ‘system’ transitions,
denoted by −→. These are used by the system to manage the internal structure
of the memory. We will use → moves later e.g. to model cache consistency and
cache replacement protocols. These transitions can fire non-deterministically at

any time. Moreover, the program does not constrain which system transitions
can occur, or when. We abstractly characterize the system transitions in §3.2 by a
series of properties which we use in the sequel. In particular the model described
in §6 implements M as a cache based system satisfying these properties.

The transitions introduced in Figures 1 and 2 are now called ‘program’ tran-
sitions (since they fire as a direct result of some piece of code). We will use
C→∗I C′ to denote that C′ is reachable from C by the implementation semantics
(program and system transitions), and similarly C →∗S C′′ for the specification

semantics. Note that we will use
∗−→ to denote 0 or more system transitions,

whereas →∗I means 0 or more system and program transitions.

3.1 Coherence and Consistency

Let us call a configuration C “→-normal” if it cannot make any −→ moves (i.e.
system transitions). In order to relate implementation semantics to specification
semantics, we need the following definition:

Definition 2. An implementation configuration CI is said to reduce to a speci-
fication configuration CS (written CI ⇓ CS) if ∃C′I : CI

∗−→ C′I , C′I is →-normal,
and ∀i∀x C′I .Mi[x].val = CS .S[x]. CS is called a reduct of CI .

In the next subsection we impose conditions that ensure the existence of reducts.

Definition 3. C is coherent for x if ∃v : ∀CS : C ⇓ CS ,CS .S(x) = v.

A configuration is coherent if it is coherent for all x. It follows that a coherent
configuration has a unique reduct. We use pCq to refer to the unique reduct of a
coherent configuration C.

Definition 4. C is consistent for x if (a) it is coherent for x, (b) ∀i, j,C.Mi[x].val =
C.Mj [x].val, (c) ∀CS ,C ⇓ CS ⇒ ∀i,C.Mi[x].val = CS .S(x) and (d) ∀i, w if C′
is the same as C except that C′.M = C.Mi[x← w], then C′ is coherent for x.

Condition (a) ensures that a consistent configuration is coherent, and (d) that
it remains coherent after any single write. Thus there are no pending writes to
x in a configuration that is consistent for x. Condition (b) ensures that all views
of x coincide and (c) that it agrees on x with its reducts. C is consistent if it is
consistent for all x. A consistent configurations is in some sense identifiable with
its reduct.

3.2 Constraints on the Memory Model

We now present the properties that the memory structure and its system transi-
tions should satisfy. The theorems in the following sections hold for any system
which has these properties.

Property 1 If C→ C′, then C.P = C′.P

System transitions have no effect on the program.

Property 2 An →-normal configuration is consistent.

Property 2 ensures that system transitions are adequate to ensure consistency.
For example, it prevents pathological cache architectures where the contents of
only one designated cache are copied to the rest. In this pathological system, in
the absence of a cached entry in the designated cache, inconsistent →-normal
configurations are possible.

Property 3 Every configuration reachable from a consistent configuration has
at least one →-normal configuration under

∗−→.

We restrict this condition to configurations reachable from a consistent config-
uration because we always begin with a consistent configuration in practice.
The above two properties together mean that such a configuration has at least
one reduct. They also imply that any such configuration can always become
consistent, which is important for the synchronization primitives of the sequel.

Property 4 Consider CI
∗−→ (a,i)−−−→ C′I . For any C′S such that C′I ⇓ C′S, ∃CS :

CI ⇓ CS which is identical to C′S except in the position of the redex in Pi, unless
C′S .S(x) = v and a = wrvx in which case CS, C′S may also differ on S(x).

Property 4 states that only writes may make a fundamental change in M , and
only to a single variable. Reads are allowed to change M , but the change is
superficial in this sense (and usually done solely for performance reasons).

Property 5 If C is coherent (resp. consistent) for x and C → C′, then C′ is
also coherent (resp. consistent) for x.

Property 5 states that system transitions preserve coherence and consistency.

Property 6 Let C be consistent for x and consider the sequence C ∗−→ (a0,i0)−−−−→
. . .

∗−→ (an,in)−−−−→ C′. If there is at most one processor i such that (ak, ik) = (wrx, i)
in this sequence then C′ is coherent for x.

Property 6 says if there is no conflicting write then coherence is maintained.

Property 7 If C is consistent, C →∗I C′ then for any i, if C′.Mi[x].val = v
then either C.Mi[x].val = v or there is a wrvx on some processor in C→∗I C′.

Property 7 states that a value is either set by some write or is preserved.

Property 8 Let C be consistent for x, C →∗I CI
(a,i)−−−→ C′I , and C′I ⇓ C′S. If

a ∈ {wrvx, rdvx} and C′S .S(x) = w 6= v then there exists a transition (wrwx , j) with
j 6= i in C→∗I CI .

Property 8 means that the last write cannot be ignored and the last read cannot
read the wrong value, unless they form a race with some earlier transition.
System transitions must ensure that the effects of a write can propagate.

3.3 Derived Properties

The following lemmas can be derived from the above constraints.

Lemma 1. If C is coherent for x, C (a,i)−−−→ C′ and a 6= wrx then C′ is coherent
for x.

Any transition not involving a write on x will maintain coherence for x.

Lemma 2. Let C be reachable from a consistent configuration. If C is consistent

for x, C →∗I CI
(a,i)−−−→ C′I , CI is coherent and CI ⇓ CS, then ∃C′s such that

following diagram commutes:

CI

(a,i) //

��
C′I

��
CS

(a,i) // C′S

where either a is not a memory access or if a accesses x then in C→∗I CI there
is a wrx transition only on i.

By Properties 2, 3, 4 and 8. This lemma means that a write-free sequence of
transitions exactly implements the specification semantics.

The following is a useful special case of this lemma:

Lemma 3. If CI is a consistent configuration then ∃C′S which makes the fol-
lowing diagram commutes:

CI

(a,i) //

��
C′I

��
pCI
q

(a,i) // C′S

We are now ready to consider two synchronization primitives in turn, and give
sufficient conditions for sequential consistency for each.

4 Locks

We extend our language with a locking construct, with l do 〈C〉 following the
approach of [4].

〈C 〉 ::= . . . | with l do 〈C 〉 〈E〉 ::= . . . | holding l do 〈E〉

〈redex 〉 ::= . . . | with l do 〈C 〉 | holding l do ()

Additionally we have a construct holding l do 〈C 〉 which is a runtime construct.
It is used when a lock is held, and 〈C 〉 is being executed. In the following
subsection, we assume that the initial configuration we consider is written in
the source language, and thus has no runtime constructs.

The configurations also change, becoming (S,L, P) (specification) and (M,L, P)
(implementation) where L is the set of locks that are currently held. L remains

(S,L, Pi[E[with l do C]])
(l̂,i)−−−→ (S,L ∪ {l}, Pi[E[holding l do C]]) where l 6∈ L

(S,L, Pi[E[holding l do()]])
(ľ,i)−−−→ (S,L− {l}, Pi[E[()]])

Fig. 3. Locks: Specification Semantics

(M,L, Pi[E[with l do C]])
(l̂,i)−−−→ (M,L ∪ {l}, Pi[E[holding l do C]]) where l 6∈ L

(M,L, Pi[E[holding l do ()]])
(ľ,i)−−−→ (M,L− {l}, Pi[E[()]]) configuration is consistent

Fig. 4. Locks: Implementation Semantics

unaffected by all the transitions given so far, appearing unchanged on both sides.
We introduce two new transitions for locking, with the decorations: l̂ (acquire
lock l) and ľ (release lock l). The specification and implementation semantics
for locks are given in Figures 3 and 4 respectively.

A lock l can only be acquired by a process if no other process holds l. Also, in
the implementation semantics a lock can only be released when the configuration
is consistent. Recall that Properties 2 and 3 ensure that this can happen.

4.1 Sequential Consistency

A sufficient condition to ensure sequential consistency even in the implementa-
tion semantics, is that the initial configuration must be Data Race Free (DRF):

Definition 5. A consistent configuration C involves a data race if it has two
redexes Pi[E[r]] and Pj [E[r′]]], i 6= j, r and r′ are both accesses to the same vari-
able and at least one is a write. C is data race free (DRF) iff no configurations
specification reachable from pCq involve a data race.

The following definition for well synchronizedness is often taken to be synony-
mous with DRF, and we treat it as such. Boudol and Petri’s proof [4] of their
equivalence applies to our model nearly unchanged since the proof is at the spec-
ification level, and our specification semantics are essentially the same as their
‘strong’ semantics. The full proof can be found in [6].

Definition 6. A consistent configuration C is said to be well-synchronized (WS),

iff in any valid sequence of specification transitions pCq = C0
(a0,i0)−−−−→ . . .

(an−1,in−1)−−−−−−−−→
Cn if there exists n1 and n2 (with n1 < n2) such that (an1

, in1
) and (an2

, in2
)

form a race, then ∃n3 : n1 < n3 < n2 ∧ in3 = in1 ∧ an3 = ľ.

For proofs, we will use this characterization rather than Definition 5. Informally,
this property means that there must exist an unlocking operation between every
pair of transitions forming a race (in every sequence of specification transitions).
Note that we need only analyze sequentially consistent executions of a program
in order to determine whether it is WS.

There is one last definition that is required in order to prove that the imple-
mentation and specification semantics coincide for WS programs.

Definition 7. For any given consistent configuration C, define R(C) as: (CI ,CS) ∈
R(C) if and only if there exists a sequence of implementation transitions

C = C0
∗−→ (a0,i0)−−−−→ C1 · · ·

∗−→ (an,in)−−−−→ Cn = CI

such that
pCq = C′0

(a0,i0)−−−−→ C′1 · · ·
(an,in)−−−−→ C′n = CS

is a valid sequence of specification transitions, with Cj ⇓ C′j for all j.

We show that if C is WS then the relation R(C) is a bisimulation (and thus the
specification and implementation semantics are essentially the same).

In one direction, the simulation holds whether or not C is WS.

Theorem 1. If (CI ,CS) ∈ R(C) and CS
(a,i)−−−→ CS then there exists CI with

CI
∗−→ (a,i)−−−→ CI such that (CI ,CS) ∈ R(C).

The other direction also holds when the configuration is WS. Further, coher-
ence is maintained.

Theorem 2. If (CI ,CS) ∈ R(C) (with WS C), CI is coherent and CI
∗−→ (a,i)−−−→

CI then CI is coherent and there exists CS such that CS
(a,i)−−−→ CS with (CI ,CS) ∈

R(C).

5 Barriers

Barriers or fences are a common safety net in various processors with a relaxed
memory model [1] and have also been used in other contexts [3]. Their role is to
prevent instruction re-ordering across the barrier (hence the name). Unlike locks,
they cannot entirely prevent data races but they can still guarantee sequential
consistency (at least with the semantics that we present below).

We extend our language with a bar command, and a new expression for
barred reads:

〈e〉 ::= . . . | !〈var〉 〈C 〉 ::= . . . | bar 〈redex 〉 ::= . . . | bar | !〈var〉

The one-hole contexts remain unchanged. We introduce a barrier transition,
decorated with bar. In the specification semantics, this is a no-op. In the imple-
mentation, it is a way of waiting for pending writes to complete. Figures 5 and 6
give the specification and implementation semantics respectively. The new read
is only a way of introducing a barrier in the middle of an expression. The actual
read is still handled by the usual rdvx actions.

Note that our barrier semantics enforces a global constraint. Hardware im-
plementations today often provide barriers whose effects are in some way local
to the current processor (e.g. x86 mFence) but as noted in [9], this is insufficient
to ensure sequential consistency.

(S, Pi[E[bar]])
(bar,i)−−−−→ (S, Pi[E[()]]) i.e. do nothing

(S, Pi[E[!x]])
(bar,i)−−−−→ (S, Pi[E[x]]) i.e. do nothing

Fig. 5. Barriers: Specification Semantics

(M,Pi[E[bar]])
(bar,i)−−−−→ (M,Pi[E[()]]) configuration is consistent

(M,Pi[E[!x]])
(bar,i)−−−−→ (M,Pi[E[x]]) configuration is consistent

Fig. 6. Barriers: Implementation Semantics

5.1 Sequential Consistency

An important difference between this and the lock model is that in general, it
is not possible to place bars in the program in a way that ensures that there is
a bar between every pair of actions forming a race in every sequentially consis-
tent execution. Instead, we achieve sequential consistency by preventing multiple
races involving the same processor from appearing between a pair of bars.

Definition 8. A sequence of transitions C →∗I C′ (resp. C →∗S C′) is called
multiple race free iff for every k such that (ak, ik) forms a race with some tran-
sition in the sequence, if ∃j : j 6= k ∧ ij = ik then (aj , ij) does not form a race
with any transition in the sequence.

Definition 9. A consistent configuration C is said to satisfy the barrier con-

dition iff in any valid sequence of specification transitions pCq = C0
(a0,i0)−−−−→

C1 . . .Cn
(an,in)−−−−→ Cn+1, if there are bar transitions at {k1, k2, . . . , km} then tak-

ing k0 = 0 and km+1 = n+1, each subsequence in {Cki
→∗S Cki+1 |0 ≤ i < n+1}

is multiple race free.

As in the case for WS, we need only analyze sequentially consistent executions
of a program to verify that it satisfies the barrier condition.

To prove the equivalence of the two semantics under this condition, we show
that for every specification-reachable configuration there is an implementation-
reachable configuration, and vice-versa. One direction is quite trivial, and the
barrier condition is not required:

Theorem 3. For any consistent configuration C, for every specification config-
uration pCq →∗S CS, there exists an implementation configuration CI such that
C→∗I CI and CI ⇓ CS.

Theorem 4. For any consistent configuration C which satisfies the barrier con-
dition, for every implementation configuration CI such that C→∗I CI and every
specification configuration CS such that CI ⇓ CS, pCq→∗S CS.

In order to prove this theorem, we need the following lemmas:

(S,C, Pi[E[x]])
(rd1vx,i)−−−−−→ (S,C, Pi[E[v]]) where x ∈ dom(Ci) ∧ Ci[x].val = v

(S,C, Pi[E[x]])
(rd2vx,i)−−−−−→ (S,C, Pi[E[v]]) where x 6∈ dom(Ci) ∧ S(x) = v

(S,C, Pi[E[x]])
(rd3vx,i)−−−−−→ (S,Ci[x← (v, clean)], Pi[E[v]]) where x 6∈ dom(Ci) ∧ S(x) = v

(S,C, Pi[E[x:=v]])
(wrvx,i)−−−−→ (S,Ci[x← (v, dirty)], Pi[E[()]])

Fig. 7. Implementation Semantics

Lemma 4. Consider a consistent configuration C, and a configuration CI such

that C ∗−→ (a0,i0)−−−−→ · · · ∗−→ (an,in)−−−−→ CI . If this sequence is multiple race free, then for

every CS such that CI ⇓ CS there exists a sequence pCq (b0,j0)−−−−→ · · · (bn,jn)−−−−→ CS.
Furthermore, the sequence of pairs {(bk, jk)} is a permutation of the sequence
{(ak, ik)}.

Lemma 5. For any consistent configuration C which satisfies the barrier con-
dition, for every implementation configuration CI such that C→∗I CI and every
specification configuration CS such that CI ⇓ CS, the following hold:

1. The sequence C→∗I CI is multiple race free between bars.
2. pCq→∗S CS.
3. The sequence pCq →∗S CS is a barrier-bounded permutation of (the program

transitions in) C→∗I CI .

6 Modeling Multiprocessors with Caches

This section gives examples of how a multiprocessor system with local caches
can be modeled in our framework. The memory M now becomes a tuple (S,C),
where S is a store (as in the specification semantics) and C is a set of |P | caches.
The caches contain a local copy of a subset of the store. When a variable is
written to, the write is to the cache. System transitions are used to update the
store and the other caches asynchronously at some later time. A read may also
pull a variable into the cache.

If x ∈ dom(Cn) then this means the nth processor has x in its cache. Its
value Cn[x] is given by a pair (val , state), where val is the ordinary integer value
of the variable and state may be either clean or dirty. A variable is clean

either if it has not been written to by this processor, or if its changed value
has been written through to the store. Otherwise it is dirty. However note that
in general, Cn(x) = (v, clean) 6⇒ S(x) = v. The system may allow the store
to contain a different value if some other processor has updated the store but
this cache has not yet been notified. As a notational convenience, we shall write
Ci[x].val = v and Ci[x].state = s when Ci[x] = (v, s).

Figure 7 gives the semantics for Mi[x] and Mi[x ← v]. We express all the
possibilities as separate transitions to make it easier to read. There are three
transitions for reading a variable but they merely represent the different cases
possible for the same label rdvx. Note also that there are two transitions for

(S,C, P)
x−→
i�

(S,Ci ↑ x, P) Ci[x] = (v, clean)

(S,C, P)
x−−→
i→j

(S,Cj [x← (v, clean)], P)

x ∈ dom(Cj) ∧ Cj [x] 6=(v, clean)∧Ci[x]=(v, dirty)

(S,C, P)
x−−−→

i→S
(S[x← v], Ci[x← (v, clean)], P)

∀j :j 6= i∧x∈dom(Cj), Cj [x]=(v, clean)∧Ci[x]=(v, dirty)

Fig. 8. System Transitions: Update

rdvx when x 6∈ dom(Ci), corresponding to whether or not x is pulled into the
cache. This decision is made non-deterministically, which (along with another
transition for eviction to be introduced later) makes the model independent of
the cache-replacement policy used by the actual implementation.

The system transitions are used to propagate writes to other caches and
the store. In practice this is usually done either with an update-based protocol
(where cached copies are updated with the new value) or with an invalidation-
based protocol (where cached copies are invalidated, effectively removing them
from the cache)[5]. We give two sets of system transitions, one for each type of
protocol.

This model allows for W→ R reordering, since a read may be serviced while
a previous write (to the cache) has not yet been propagated. W→W reorderings
are possible because there is no guarantee that writes will be propagated in the
order in which they appear. Thus the behaviors described in Fig 5 (a) and (b) in
[1] will be exhibited by this model. Further, a processor may see its own writes
before any other processor, simply because updates/invalidates haven’t occurred
yet. Similarly, other processors may see the write at different times, since the
updates/invalidates on other caches need not happen all at once.

In [6] we show that this model with an update-based protocol satisfies the
constraints in §3.2. This means that the abstract operational description pre-
sented earlier is general enough to at least allow these four relaxations.

6.1 Coherence and Consistency

For both protocols, we reformulate the definitions of coherence and consistency.
We will show that these structural definitions are equivalent to the operational
definitions given earlier.

Definition 10. A configuration C is said to be coherent for x if ∃v : ∀i : x ∈
dom(Ci) ∧ Ci[x].state = dirty⇒ Ci[x].val = v.

Definition 11. A configuration (S,C, P) is said to be consistent for x if and
only if ∀i : x ∈ dom(Ci), Ci[x] = (S(x), clean).

6.2 Modeling Update-based Protocols

Figure 8 gives the system transitions used in the update-based model. The tran-
sitions are as follows:

1. Eviction
x−→
i�

: Evict x from Ci. This is only used for the cache replacement

policy. We do not need it to achieve a consistent configuration in this model.
2. Cache update

x−−→
i→j

: Update x in Cj from Ci. This is used to update other

caches when a variable is written to in a cache. It can be applied anytime
there is some cache whose entry for the variable differs from the “correct”
one.

3. Store update
x−−−→

i→S
: Update x in S from Ci. The condition for its appli-

cation ensures that a store update only happens after all caches have been
updated and agree on the value of the variable.

As an example of how these transitions work, suppose a write occurs on
a processor, and this is the only processor where that variable is dirty. An
update-based system would execute the cache update transition multiple times
to update the value in the other caches, and then a store update to put that value
in the store. The →-normal configurations are those that have empty caches.

If C is coherent for x by the structural definition, then we can see that
any

x−−−→
i→S

will set S(x) to the same value. Conversely, if ∃i, j : Ci[x].state =

Cj [x].state = dirty ∧ Ci[x].val 6= Cj [x].val then depending on whether
x−−→

i→j
or

x−−→
j→i

occurs (one of the two must occur), two distinct store updates are possible.

Thus the structural and operational definitions for coherence are equivalent.
Similarly, it is easy to see that if C is consistent by the structural definition,

it is consistent by the operational definition. Conversely, for C to be consistent
for x, ∀i : x ∈ dom(Ci), Ci[x].val = S(x) due to (b) and (c) of Definition 4.
Further, if ∃i : Ci[x] = (v, dirty) then for any w 6= v ∧ j 6= i, C′ is not coherent
for x where C′.M = C.Mj [x← w], thus violating condition (d) of Definition 4.

This model satisfies all the constraints in §3.2 [6]. We additionally prove that
it is possible to achieve a consistent configuration without the use of the eviction
transition. This models the intended semantics of an update based protocol.

Lemma 6. For any configuration C reachable from a consistent configuration,
there exists a sequence of system transitions

∗−→ not involving evictions such that
C ∗−→ C′ and C′ is a consistent configuration.

6.3 Relaxing the Unlocking condition

The following lemma holds in the update based model:

Lemma 7. If C is consistent for x and C→∗I CI where CI is such that ∀i, Ci[x].state =
clean, then CI is also consistent for x (i.e. ∀i,CI .Ci[x].val = S(x))

Using this lemma, we can relax the condition for an ľ operation and still
ensure that the implementation and specification semantics coincide for WS
configurations. Currently, an unlock can only happen if the configuration is con-
sistent, but we can replace the “configuration is consistent” condition with the
following:

∀x ∈ dom(Ci), Ci[x].state = clean

(S,C, P)
x−→
i�

(S,Ci ↑ x, P) Ci[x] = (v, clean)

(S,C, P)
x−−−→

i→S
(S[x← v], Ci[x← (v, clean)], P) Ci[x] = (v, dirty)

Fig. 9. System Transitions: Invalidation

i.e. there are no dirty entries in the current cache. This is a purely local condition
(i.e. local to the current processor) on the unlock similar to the semantics of the
unlock instruction on x86 processors [8].

In a system where Lemma 7 holds, this condition ensures that the configura-
tion is consistent for x after the last unlock ľ in a WS sequence, as used in the
proof of Theorem 2. We can modify the abstract semantics to allow local seman-
tics for unlocking ľ by introducing an abstract predicate on M , safexi with the
conditions that only a (wrx, i) destroys safexi , and ∀i safexi ⇒ consistent for x.
An ľ can then happen only when ∀x safexi . Then in the cache model safexi is
definable as Ci[x].state = clean.

Note that with the global semantics for locks it may be possible to simulate
barriers with locks, but with these local semantics that is no longer true.

6.4 Modeling Invalidation-based Protocols

Figure 9 gives the system transitions required to model an invalidation based
cache consistency protocol. The transitions are as follows:

1. Eviction
x−→
i�

: This is now used for both cache replacement and cache con-

sistency.
2. Store update

x−−−→
i→S

: This can now happen before other caches have been

notified about a write.

As an example of how these work, suppose a write occurs on a processor, and
this is the only processor where that variable is dirty. An invalidation-based
system would execute

x−→
j�

on all other caches, and
x−−−→

i→S
on this cache (with no

restrictions on the order in which these are carried out).
The proof that this model satisfies the constraints in §3.2 is nearly the same

as that for the update model. Lemma 7 does not hold in this model, so the
relaxed unlock condition cannot be used. The reason this lemma does not hold
is that the last store update can happen before all caches have been invalidated.
Thus some cache may hold a clean entry which nevertheless has a wrong value,
simply because it has not yet been evicted.

7 Related and Future Work

Our work is complementary to the seminal work of Adve et al [1] wherein they
present a classification of memory models (from a systems perspective rather

than a programming perspective) that examine permissible reorderings of in-
structions. The notions of Data Race Freedom and weak orderings are also ex-
tensively explored by Adve et al [2].

Owens et al [8] have considered the x86 memory model and shown the cor-
respondence between an axiomatic characterization of the model and an opera-
tional one. It would be interesting to relate our work to such concrete instances.

There are several strands of work that we identify for the future. First, the
conditions we give are certainly sufficient to ensure sequential consistency, but
it is not clear whether they are necessary. We also plan to investigate other
synchronization primitives in a similar manner, in particular atomic compare-
and-swap instructions for synchronization which are preferred over locks in many
processors.

An interesting direction is the development of program analysis tools that
will help analyze whether a program satisfies the condition that guarantees se-
quentially consistent behavior. Finally, we are formalizing the results presented
here using the proof assistant Coq.

References

1. Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models:
A Tutorial. Computer, 29(12):66–76, 1996.

2. Sarita V. Adve and Mark D. Hill. Weak Ordering—A new definition. SIGARCH
Comput. Archit. News, 18(3a):2–14, 1990.

3. N. N. Arvind, J.-W. Maessen, R. S. Nikhil, and J. E. Stoy. A Lambda Calculus
with Letrecs and Barriers. In Proceedings of the 16th Conference on Foundations
of Software Technology and Theoretical Computer Science, pages 19–36, London,
UK, 1996. Springer-Verlag.

4. Gérard Boudol and Gustavo Petri. Relaxed Memory Models: An Operational
Approach. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pages 392–403, New York,
NY, USA, 2009. ACM.

5. Jim Handy. The Cache Memory Book. Academic Press Professional, Inc., San
Diego, CA, USA, 1993.

6. Salil Joshi and Sanjiva Prasad. An Operational Model for Multiprocessors with
Caches. Technical report, Indian Institute of Technology Delhi, 2010. http://cse.
iitd.ac.in/~sanjiva/OpCache.pdf.

7. Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, 100(28):690–691, 1979.

8. Scott Owens, Susmit Sarkar, and Peter Sewell. A Better x86 Memory Model:
x86-TSO. In TPHOLs ’09: Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics, pages 391–407, Berlin, Heidelberg, 2009.
Springer-Verlag.

9. S. Sarkar, P. Sewell, F.Z. Nardelli, S. Owens, T. Ridge, T. Braibant, M.O. Myreen,
and J. Alglave. The semantics of x86-CC multiprocessor machine code. ACM
SIGPLAN Notices, 44(1):379–391, 2009.

10. Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Sound-
ness. Information and Computation, 115:38–94, 1992.

