
A Game-Theoretic Approach to Routing
under Adversarial Conditions?

James Gross1, Frank Radmacher2, and Wolfgang Thomas2

1 Mobile Network Performance Group, RWTH Aachen University
2 Lehrstuhl für Informatik 7, RWTH Aachen University

Abstract. We present a game-theoretic framework for modeling and solving rout-
ing problems in dynamically changing networks. The model covers the aspects of
reactivity and non-termination, and it is motivated by quality-of-service provision-
ing in cognitive radio networks where data transmissions are interfered by primary
systems. More precisely, we propose an infinite two-player game where a routing
agent has to deliver network packets to their destinations while an adversary pro-
duces demands by generating packets and blocking connections. We obtain results
on the status of basic problems, by showing principal limitations to solvability of
routing requirements and singling out cases with algorithmic solutions.

1 Introduction

An objection to research in theoretical computer science is often the simplicity of
the models under consideration in relation to much more complex situations as they
arise in practice. In the present paper we attempt to bridge this gap in a specific field
of networking which draws much attention currently, namely routing problems over
dynamically changing networks. This is motivated by a new system concept in the
domain of wireless networking referred to as cognitive radio networks.

To illustrate this, consider a wireless communication network (referred to as cognitive
network in the following) which consists of a certain set of nodes. For any pair of
neighboring nodes, there are several radio channels that can be used to convey data
packets from one node to the next one. The network is subject to some load, i.e., at
different nodes data packets are created at different times which need to be forwarded
to a particular destination. Packets are forwarded by a routing scheme, which can take
different information into account (channel states, network load) and is therefore reactive.
In such a network, dynamic changes of the connectivity between nodes can occur due
to interference. Interference occurs if some (potentially malicious) device or multiple
such devices start occupying radio channels that are used by the considered cognitive
network. Such an action corrupts any data conveyed on that particular channel and
blocks therefore the channel as the cognitive radio network can detect interference on
radio channels prior to data transmission. The main envisioned application area of such
cognitive radio networks is the reuse of allocated radio channels owned by so called
primary systems. It is well known that at any point in time the radio spectrum is heavily

? Work supported by the RWTH Aachen Research Cluster UMIC (“Ultra High-Speed Mobile Information and Communi-
cation”) of the German Excellence Initiative, German Research Foundation grant DFG EXC 89.

underutilized. Thus, “cognitive devices” that identify temporarily unused radio channels
could solve the problem of underutilized radio spectrum (assuming that they vacate any
used radio channels once a primary system starts transmitting data again).

An important question in such a network setting is if – and possibly under which
conditions – a cognitive network can provide quality-of-service for transmission requests
that it serves; for instance, does the system concept allow for a timely delivery of data
packets, how much memory must be put into the nodes of the network to support such
guarantees, how do routing schemes have to be designed etc. The key concept in this
scenario is the routing of packets which is adversely affected by the way radio channels
are interfered over time. As we are interested in worst-case system performance, this
naturally leads to a dynamic network model with at least two decision instances: an
entity performing the routing as well as an entity that causes interference. In this paper
we are interested in theoretical limitations and possibilities of routing in such dynamic
networks under various conditions which have implications for the technical design of a
cognitive network.

To do so, we propose a game-theoretic model for routing under adversarial conditions.
More precisely, we consider a structured scenario in which two adversarial agents
perform actions in turn. The first agent, called demand agent, carries out actions that
conflict quality-of-service provisioning in the cognitive network. As indicated, primary
systems might block certain radio channels (edges) between nodes of the cognitive
network, while new data packets are generated that have to be forwarded by the cognitive
network to their destination. The other agent, called routing agent, sends packets from
nodes to neighboring nodes, observing the fact that certain radio channels are blocked.
We assume a time-slotted (discrete) mode of operation in which demand agent and
routing agent do their actions in alternation. This results in an infinite system run that is
also called “play”, following game-theoretic terminology. Thus, our model includes the
aspect of full reactivity (between demands and routing) and of non-termination. Different
quality-of-service requirements to be guaranteed by the routing agent are condensed in
“winning conditions” – a play that satisfies one such winning condition is considered
won by routing agent, otherwise demand agent wins. A routing algorithm that leads
to satisfaction of the given requirements under all possible behaviors of the demand
agent is thus a winning strategy in this infinite game. Note that a winning strategy works
fully adaptively over infinite time, even under radical changes of profiles of the demand
player; it is thus a stronger kind of solution than standard routing schemes.

We introduce the model in more detail in the next section. Then we show results on
principal limitations of algorithmic solutions. We show that for our model in general,
it is algorithmically undecidable whether, given a network and some requirements, a
solution (i.e. a winning strategy for routing agent) exists (Section 4). On the other hand
we then show that, assuming specific technical requirements for our network model,
the existence of a solution can be decided and that in the cases where a solutions exist
routing schemes can be effectively constructed (Section 5).

The issue of routing in dynamic networks has been addressed previously in the
context of of online algorithms and competitive analysis by Awerbruch, Mansour and
Shavit in [4]. In their work – and in a sequel of related ones [1,2,3] – the focus was
on the design of online algorithms with the goal of balancing the load in the network

2

to avoid congestion. Note that an online algorithm may be viewed as a strategy in a
finite game (possibly of unbounded length), and its performance is measured relatively
to a corresponding optimal offline algorithm. This view has two shortcomings. First,
such a competitive analysis requires a reasonable comparison of the online algorithm
with a corresponding offline algorithm. However, it is inappropriate for the analysis of
problems where an online algorithm is only able to find a strict subset of the offline
solutions. For example, routing problems can be analyzed via competitive analysis if the
number of delivered packets (throughput) is the subject of interest. However, analyzing
for which dynamic scenarios certain network properties as the delivery of all packets can
be guaranteed (quality-of-service) is out of scope of the competitive analysis approach.
The other shortcoming in our context is due to the fact that a network protocol or routing
scheme should run without termination. As it is known from the theory of automatic
verification (see e.g. [6]), several natural requirements, such as liveness and fairness
conditions, can only be modeled faithfully when infinite system runs are considered
rather than their approximations by finite runs of unbounded length.

Further related work on game-theoretic analysis of dynamic networks has been
started in the studies of “sabotage games”, which van Benthem introduced in [5]. There, a
reachability problem over graphs is considered, where a “Runner” traverses a graph while
a “Blocker” deletes an edges after each move. The theory of these games was developed
by Löding and Rohde in [13,12,15,16] and also by others [11,8]. An enhanced non-
terminating version of such games was studied in [14]. There, two players, “Constructor”
and “Destructor” add resp. delete vertices/edges, and the problem of guaranteeing certain
properties of the network graph (like connectivity) is addressed. However, all these
approaches do not address the essential issue of simultaneous routing of many packets
(which leads to a possibly infinite state space).

Let us finally mention some work on other, complementary aspects of cognitive
radio networks. In [7] different solution concepts by equilibria are pursued. In [19]
the construction of appropriate network architectures is addressed. Shiang and van der
Schaar [17] consider a learning approach for constructing routing schemes adapted to
the behavior of the network users.

2 Modeling Routing in Dynamic Networks via Games

We assume that the two agents acting in the network know the current network structure
including all information about packets and blocked channels. So, in the present ideal
setting we consider a game of perfect information. Moreover, the blocking of frequencies
and the generation of packets are subject to certain constraints; these rules may depend
on the whole network state. We allow only “deterministic” (rather than probabilistic)
constraints; randomized packet generation and randomized frequency blocking [11] is
not treated in the present paper.

The game and the game arena. A dynamic network routing game between two players,
called demand agent and routing agent, is given by a tuple G = (G,C,W) where G
is the network graph, C a list of “constraints” for moves of demand agent, and W the
requirement (winning condition) to be fulfilled by the routing agent. More precisely,

3

the network graph or connectivity graph G is a graph of the form G = (V,E) with
finite vertex set V and a finite set E of multi-edges (network connections, where single
edges correspond to frequencies). Formally, E is partitioned into sets Ea of single edges,
where a ∈ Σ for some index set Σ which denotes the set of available frequencies. We
write (u, v)a for the edge (u, v) in Ea. For convenience we consider in the following
all edges as undirected, i.e. (u, v)a ∈ E implies (v, u)a ∈ E. (However, all results in
this paper hold exactly in the same way for network graphs with directed edges.) C is a
list of rules, called also constraints, i.e. conditions imposed on edge removal and packet
generation. Finally, W is the winning condition, formally a set of infinite plays, and
containing precisely those plays that are won by routing agent. We now explain in several
stages the notion of play (or admissible system run consisting of network states).

Packets and blocked frequencies. A packet consists of a unique identifier from N, its
destination node, and a timestamp, which is the number of turns since its creation. Thus
a packet is a triple (id , u, k) ∈ N × V × N, indicating that it has the identifier id , the
destination u, and that it was generated k turns before the current moment. We define
the packet distribution λ : V → 2N×V×N by mapping each node to the set of packets
which are currently stored at this node.

Network connections (edges) can be blocked (by demand agent, more precisely by
the component of primary systems) for a certain number of turns. The current status of
the edges is described by a blocked links function bl : E → {0, 1, . . . ,m} which says
that edge e is blocked for the next bl(e) turns. If bl(e) = 0, the edge e is not blocked.
Communication between two nodes via the edge e is only possible if bl(e) = 0.

The maximal number of turns m that can be assigned to an edge for blocking is
always given by the constraints C, which are described later. We denote the set of all
possible functions bl for a game G (i.e. E and m are fixed) by BLG or simply by BL
when the context is clear.

Network states and plays. The positions or states of a dynamic network routing game
G are called network states. A network state is a triple (0/1, λi, bl i) where 0 (resp. 1)
indicates that routing agent (resp. demand agent) moves next, λi is a packet distribution,
and bl i is a blocked links function. We denote by QG the set of all network states in
the game G; note that QG can be infinite in general, since we do not impose an a priori
bound on the number of packets in the network.

The initial network state is (1, λ0, bl0) with λ0(u) = ∅ and bl0(e) = 0 for all
u ∈ V , e ∈ E, i.e. no packets are in the network, no edges are blocked, and demand
agent starts. The subsequent moves are chosen by routing agent and demand agent in
alternation. A turn is defined as two consecutive movements: the first one by demand
agent and the second one by routing agent; each of the player’s moves we call a half-
turn. In the i-th half-turn where i is even, demand agent moves and the network state
(1, λi, bl i) is updated according to demand agent’s action to (0, λi+1, bl i+1). In the
subsequent half-turn (where i+ 1 is odd), routing agent acts and generates the network
state (1, λi+2, bl i+2). A detailed explanation of these updates follows. A play is an
infinite sequence of network states that is generated in this way, i.e. a sequence ρ =
ρ0ρ1ρ2 . . . ∈ QωG with ρ0 = (1, λ0, bl0).

4

Constraints and moves. When it is demand agent’s half-turn, he generates new packets
and blocks edges for a certain amount of turns. We restrict demand agent’s movements
that are possible in the game G = (G,C,W) by a list C of “constraints”. An example of
a constraint is the following:

node u has a packet ∧ ¬ edge (u, v)a is blocked −→
block2((u, v)a) | block1((u, v)a), generate(u, v′) .

This constraint says that, when there exists a packet at node u and the edge (u, v)a is not
blocked, then demand agent either must block the edge (u, v)a for the next two turns
or he has to block the edge (u, v)a for one turn and generate a packet at node u with
destination v′. If C is a list of more than one constraint, they are processed in their given
order. Generally, a constraint C is a list of rules of the form

Condition −→ Behavior .

Here, the condition is a Boolean combination of statements of the following form:

1. edge (u, v)a is blocked
2. node u has a packet (possibly with destination d and/or timestamp t)

A constraint is called weak if all of its conditions only depend on blocked edges, i.e. every
condition is a Boolean combination of statements of the first form. Weak constraints
reflect the natural assumption that the possibility of demands (either channel blocking or
packet generation) should be restricted by information on the currently blocked channels,
but not on packets in the cognitive network.

The behavior is a disjunction (separated by “|”) of conjunctions (separated by “,”)
of demands, i.e. instructions of the form (1) generate(u, d) and (2) blockm((u, v)a)
The first says that demand agent must generate a packet at node u with destination d.
The second says that demand agent has to block the edge (u, v)a for the next m turns.
Notice that also an edge (u, v)a with bl i((u, v)a) 6= 0 can be blocked again; in this case
bl((u, v)a) is updated to its new value k according to the rule blockk(u, v).

In order to rule out some very exotic situations, the constraints always impose a
uniform bound m on the number of turns for which an edge can be blocked and on the
number of packets generated per turn. The blocked links function bl is then a function
from E to {0, 1, . . . ,m} (if no “block” instruction exists in the constraints, we set
m := 0). A bound for the maximal number of packets generated per turn can be defined
by the number of all “generate” instructions in the constraints.

The semantics of the constraints is defined in the natural way: The list of constraints
is processed in their given order, and whenever the condition (left hand side) is true
(matches the current network state), demand agent has to choose exactly one of the con-
junctions of the behavior (right hand side). Then all statements of the chosen conjunction
are carried out.

On a more abstract level, the constraints can be seen as a function C : QG → 2QG
which assigns to each network state of demand player a set of possible successor network
states that are described by the given list of constraints. Since in weak constraints only
conditions of form 1 are used, these constraints depend on the blocked links only. So, on

5

this abstract level, weak constraints can be seen as a function C : BLG → 2QG which
assigns to each blocked links function a set of possible successor network states that are
described by the given list of constraints.

When it is routing agent’s half-turn, she can send packets to neighboring nodes.
For each node v ∈ V and each available frequency a ∈ Σ, at most one packet can
be transmitted from node v via frequency a. Delivered packets, i.e. packets that reach
their destination in this turn, are removed from the network. For all other packets the
timestamp is increased by 1. After routing agent’s half-turn the value of the blocked
links function bl is decremented by one for every edge (if it is not already 0).

Strategies. In this paper we only consider deterministic strategies. A strategy for demand
agent (resp. routing agent) is a function, here denoted by σ (resp. τ) that describes the
decisions of the agents (possibly depending on the history of the play). Formally, a
strategy for demand (resp. routing) agent is a (partial) function σ : Q+

G → QG (resp.
τ : Q+

G → QG) that maps each possible play prefix ρ1 · · · ρk to a new network state
which is permitted by the before mentioned rules.

Winning conditions. The winning condition W (for routing agent) describes for each
play ρ ∈ QωG whether routing agent wins ρ. We consider the following fundamental
winning conditions:

– DELIVERY. Routing agent wins a play ρ if in ρ each generated packet is eventually
delivered.

– DELIVERY`. Routing agent wins a play ρ if in ρ each packet is delivered within `
turns after it was generated.

– BOUNDEDNESS. Routing agent wins a play ρ if in ρ the number of packets in the
network is bounded, i.e. there is a k such that the number of packets is always ≤ k.

Demand agent wins a play if it is not won by routing agent. We say that demand agent
(resp. routing routing) wins a game G if there exists a strategy σ (resp. τ) such that he
(resp. she) wins every play ρ ∈ QωG that is played according to this strategy.

Some basic problems. From the theory of infinite games it is known that in a very
abstract view of winning conditions, there are winning conditions that do not allow a
winning strategy for either player. Such games are called non-determined. All winning
conditions in this paper are of a somewhat concrete and simple kind (called Borel
conditions) that leads to games that are determined; so one of the two players has a
winning strategy. So we do not not address the problem of determinacy in the sequel.

A solution of a game consists then of

1. the decision which of the two players wins
2. and then a presentation of a winning strategy for the winner.

We will first show that the first problem is undecidable for the winning conditions
BOUNDEDNESS and DELIVERY. On the other hand, for DELIVERY` both problems 1
and 2 will be shown to be solvable. We will then present a variant where we restrict the
constraints C to be weak; these games turn out to be solvable also for the DELIVERY
winning condition.

6

3 Toy Example

Consider the tiny network G in Figure 1 with channels over Σ = {a, b}. We define the
dynamic network routing game G = (G,C,W) where demand agent’s constraints C
are the following. In each turn, demand agent generates at node v1 two packets with
destination v4. Also he blocks exactly one of the a-labeled edges for one turn; so,
exactly one of these edges is blocked every turn. The constraints C are weak and can be
formalized as follows:

true −→ generate(v1, v4), generate(v1, v4)
true −→ block1(v1, v2)a | block1(v1, v4)a | block1(v2, v3)a | block1(v3, v4)a .

•v1 • v2

• v3•v4

a

a

a b a b

Fig. 1. A network graph of a dynamic network routing game.

First, we analyze the game G for the DELIVERY winning condition. Routing agent
wins the game with the strategy that she sends the packet with the highest timestamp
at v1 to v4 via the b-labeled edge. This operation is always possible since demand agent
cannot block the b-labeled edge in this game. With this strategy, the packet with the
highest timestamp always reaches its destination in every turn. So, routing agent wins G
for the DELIVERY winning condition.

Next, we discuss the game with the DELIVERY` winning condition. Routing agent
does not win with the above strategy for the DELIVERY winning condition, because by
playing this strategy more and more packets have to be kept at v1. So, routing agent
has to route packets via channel a either using the edge (v1, v4)a or the path v1v2v3v4.
Now, consider that demand agent blocks the edge (v1, v4)a; so, routing agent has to
send a packet via the path v1v2v3v4. In this case, demand agent can keep this packet at
the nodes v2 and v3 by deleting the edge (v1, v2)a if the packet is at v2 (resp. the edge
(v3, v4)a if the packet is at v3). Such a packet will never be delivered. So, demand agent
wins G with the DELIVERY` winning condition for every `.

Surprisingly, routing agent can win the game for the BOUNDEDNESS winning con-
dition. Her strategy is the following: In every turn routing agent delivers one of the
generated packets at v1 directly via the b-labeled edge. She also delivers the other gener-
ated packet via the a-labeled edge to v4 if this edge is not blocked; otherwise, she sends
this packet to v2. Furthermore, routing agent sends packets at node v2 always to v3, and
she sends packets at v3 to v4 whenever this is possible. It is easy to see that, by playing
this strategy, each of the generated packets at v1 is sent immediately to another node,
and that the number of packets at node v2 (resp. v3) is at most 1 (resp. 2). So, the number
of packets in the network is bounded.

7

4 Negative Results

Our first result shows that one has to assume a certain coarseness of the constraints in
order to enable an algorithmic analysis of dynamic network routing games. For general
(or exotic) constraints we obtain undecidability:

Theorem 4.1. The following problem is undecidable: Given a network routing game
with the BOUNDEDNESS winning condition, does routing agent have a winning strategy?

Proof. We show this result by a reduction of the boundedness problem for 2-register ma-
chines to games with the BOUNDEDNESS winning condition. The boundedness problem
for 2-register machines, which are Turing-complete, is known to be undecidable.

A 2-register machine is a program which operations are the modification of two
registers X1, X2; the allowed operations of these registers are the increment and decre-
ment by 1, and the test whether a particular register is 0. Formally, a 2-register machine
has the form R = I1; I2; . . . ; Ik where each Ij is one of the following instructions:
j : INC(Xi), i.e. increment register Xi by 1, j : DEC(Xi), i.e. decrement Xi by 1
if Xi > 0, j : IF Xi = 0 GOTO m, i.e. a conditional jump to instruction m, and
j : GOTO m, i.e. an unconditional jump to m (with 1 ≤ m ≤ k). The last instruction
stops the computation: Ik = k : STOP.

We construct, given a 2-register machine R = I1; I2; . . . ; Ik, a dynamic network
routing game G = (G,C, BOUNDEDNESS). The game arena G = (V,E) has |k| + 5
vertices V = {v1, . . . , vk, c1, c2, c′1, c′2, s}. Each of the vertices v1, . . . , vk corresponds
to an instruction of the register machine. A packet starting on vertex v1 with destination
vk will move according to the instructions of R. The vertices c1, c2 represent the two
counters (their values are given by the numbers of packets located at c1, c2), and in order
to decrement a counter, the vertex s is used as destination for packets from c1, c2. The
vertex c1 (resp. c2) is connected to s via the vertex c′1 (resp. c′2) and is used to force
routing agent to decrement the number of packets in c1 (resp. c2). The construction only
uses an edge relation over single edges; it is defined as follows:

E :={(vj , vj+1) | j : IF Xi = 0 GOTO j′, or j : INC Xi, or j : DEC Xi ∈ R}
∪ {(vj , vj′) | j : IF Xi = 0 GOTO j′, or j : GOTO j′ ∈ R}
∪ {(c1, c′1), (c2, c′2), (c′1, s), (c′2, s)} .

When there are no packets in the network – especially in the first turn – demand
agent creates a packet with destination vk at vertex v1, which mimics the instruction
pointer. The constraints ensure that exactly the edge between two vertices vi and vj is
enabled when the packet is at vi and the instruction which must be executed next inR
corresponds to the vertex vj . At the vertices c1 and c2 packets are generated according
to the increment instructions, and the paths to the vertex s are enabled according to the
decrement instructions. The vertices c′1 and c′2 allow that we can encode in the constraints
a check whether routing agent really sends a packet towards s according to a decrement
instruction. If the instruction pointer packet reaches its destination vk, the game switches
in a mode where all remaining packets in the network will be delivered.

With some work on the exact formulation of the constraints one can see, that with
such a construction routing agent wins G iff the register machineR is bounded. ut

8

Theorem 4.2. The following problem is undecidable: Given a network routing game
with the DELIVERY winning condition, does routing agent have a winning strategy?

Proof. The argument is a one-to-one copy of the previous proof. Here we reduce the
halting problem for 2-register machines to games with the DELIVERY winning condition.
Namely, with the same construction as above, we see that if a 2-register machine reaches
the stop instruction Ik, then all packets are delivered; so, routing agent wins. Conversely,
if the 2-register machine does not reach the stop instruction Ik, at least the packet which
mimics the instruction pointer does not reach its destination; so, demand agent wins. ut

Note that the undecidability results above can be sharpened. They are still valid if
we only consider single channel networks (using only one frequency) since only single
edges are involved in the constructed network graphs.

The results can be also sharpened regarding the conditions used in the constraints.
For the informally given description of the constraints, only statements of the form “edge
e blocked” and “node u has a packet” are necessary. So, it is not necessary to check the
destination or the timestamp of a packet in the network to obtain undecidability.

5 Positive Results

In this section we show first that dynamic network routing games with the DELIVERY`
winning condition are solvable by a reduction to the so-called safety games. Then we
show that dynamic network routing games with weak constraints are solvable even for
the BOUNDEDNESS and the (unrestricted) DELIVERY winning condition.

5.1 Solving Games with the DELIVERY` Winning Condition

Before turning to dynamic network routing games with the DELIVERY` winning condi-
tion, we recall the fundamental notion of safety game from the theory of infinite games.
In the case of network routing games, a safety winning condition for routing agent is
given by a set A of “admissible network states”. Routing agent wins a play ρ = ρ0ρ1 . . .
if each network state ρi belongs to A. In other words, she has to avoid getting outside A
at some point.

If the set of possible network states is finite, one can compute whether routing agent
has a winning strategy (starting from the initial network state) in a safety game specified
by the set A and, in this case, one can compute her winning strategy (a constructive
proof can be found in [18,9]). We can now easily prove the following result:

Theorem 5.1. Dynamic network routing games with the DELIVERY` winning condition,
where ` ∈ N, are solvable (so that one can decide whether routing agent wins and in
this case provide a winning strategy in terms of a suitable routing scheme).

Proof. The idea is that the DELIVERY` winning condition ensures that the set of network
states of the game G = (G,C, DELIVERY`) can be assumed to be finite with a winning
condition in the safety format, so that the remark above gives the desired solution.

It remains to be shown that it suffices to inspect only a finite subset of the network
states. We can assume that the game is over when the timestamp of a packet exceeds `

9

(routing agent loses in this case). So, we can assume that it is sufficient to consider packet
timestamps of at most `+ 1. Also, the number of packets that can be generated in one
turn is bounded by the constraints, say by a constant k. So, the total number of packets
in the network is at most (`+1) · k. Since each packet gets the lowest available identifier
when generated, the identifiers are also bounded by (`+ 1) · k. So, in this case a packet
distribution λ is a function from V to 2[(`+1)k]×V×[`+1] where [n] := {0, . . . , n}. The
number of different functions of this form is finite. ut

5.2 Solving Games under Weak Constraints

We exhibit another natural scenario under which the dynamic network routing game
becomes solvable, even for the conditions BOUNDEDNESS and DELIVERY.

This scenario is given by a certain format of constraints of the demand player, taking
into account the division of demands into those by the primary systems and the cognitive
network. A natural assumption on the constraints is that the demand actions may depend
on blocked frequencies (i.e. currently active demands of the primary systems) but not on
information about packets that are currently in the cognitive network. This leads to the
assumption that constraints depend on the information about blocked channels only.

We already defined these weak constraints in Section 2; they can be seen as a function
C : BL→ 2QG which assigns to each blocked links function a set of possible successor
network states. We shall show, in contrast to the results of Section 4, the solvability of
games with weak constraints. The central observation will be that – assuming weak con-
straints – inspecting only finitely many network states is sufficient to decide DELIVERY
resp. BOUNDEDNESS. As a preparation we state some auxiliary propositions.

Remark 5.2. In a dynamic network routing game with weak constraints, consider a
play ρ that is won by routing agent and results from demand agent playing according to a
strategy σ and routing agent playing according to a strategy τ . If demand agent changes
his strategy σ to σ′ by leaving out the generation of some packets, he will also lose the
resulting play, i.e. demand agent cannot improve his strategy in this way.

Remark 5.3. Consider a dynamic network routing game with weak constraints, a play ρ
which is currently in a network state qi with blocked links function bl i. Let us assume
that demand agent has a strategy to reach from qi a network state qj with blocked
links function bl j . Then, since the constraints do not depend on the packet distribution,
demand agent has a strategy from qi to reach a network state q′j with same blocked links
function bl j within at most |BL| − 1 turns (note that |BL| is always ≥ 1).

For the proofs in this section, we use the following terminology. We say that a packet
(id , d, k) which is currently at vertex u (in a given network state) has the type (u, d). So,
in a network with a vertex set V the packets have at most |V |2 different types.

Further, for a given game, we denote with ∆out the maximal number of outgoing
packets that routing agent can send per node; formally, it is defined as

∆out = max
u∈V
{ |{a ∈ Σ}| : it exists v ∈ V such that (u, v) ∈ Ea } .

First we show solvability for the BOUNDEDNESS condition under weak constraints.
For this winning condition we can give a uniform bound on the number of packets in the
network (which is sufficient to achieve for routing agent).

10

Theorem 5.4. Consider a network routing game G with weak constraints. Then, routing
agent wins G with the BOUNDEDNESS winning condition iff she can guarantee in G that
there exists at most b := |BL| · (∆out + k) packets at each vertex where k is the maximal
number of packets that can be generated per turn (given by the constraints).

Proof. Clearly, if routing agent can guarantee the bound b for the number of packets at
each vertex, she can guarantee the bound |V | · b for the total number of packets in the
network; hence, she wins with the BOUNDEDNESS winning condition.

For the converse, we only sketch the proof. We assume that routing agent wins with
the BOUNDEDNESS condition. Since demand agent’s moves do not depend on the packet
distribution, we can partition the network states QG in a set Inf for which demand agent
has a strategy to visit a network state with the same blocked links function infinitely often
and a set Fin which are network states whose blocked links function can occur at most
once in a play. The sum of packets that can be generated in states in Fin in a play can be
bounded by the constant c := |BL| · k. For the states in Inf demand agent can revisit a
network state with same blocked links function at least every |BL| turns (see Remark 5.3).
Since routing agent can send at most ∆out packets to a neighboring node in each turn,
routing agent can keep the number of packets at each vertex below c + |BL| · ∆out
turns (with the c above); otherwise demand agent would have a strategy to generate an
unbounded number of packets in the network (which would be a contradiction). ut

With the previous theorem, we can easily reduce the game to a safety game with
finite state space where routing agent has to ensure that there are at most b packets at
each network node.

Corollary 5.5. Dynamic network routing games with weak constraints and winning
condition BOUNDEDNESS are solvable (so that one can decide whether routing agent
wins and in this case provide a winning strategy in terms of a suitable routing scheme).

Solving network routing games with DELIVERY winning condition under weak
constraints requires a more involved proof. We start with some technical lemmata:

Lemma 5.6. Given a game with weak constraints on a game arena ({v1, . . . , vk}, E).
Assume demand agent can reach a network state with blocked links function bl where
vl stores at least nlm packets with destination vm (1 ≤ l,m ≤ k). Let n :=

∑
l,m nlm.

Then, demand agent can also reach such a state within |BL|n+1 ·(∆out)n turns; moreover
it suffices to keep at most |BL|n · (∆out)n−1 packets of each type for n > 0 (and 0 for
n = 0), i.e. all other packets of each type may be discarded after each turn.

Proof. We show the claim by induction over n. The case n = 0 is easy; demand agent
has to reach a network state with blocked links function bl , which he can reach within
|BL|−1 turns according to Remark 5.3. For n > 0 demand agent has to generate at least
n packets, say P1, . . . , Pn, and thereafter demand agent has to reach a network state qj
with bl j = bl such that the packets P1, . . . , Pn (or equivalently n packets of the same
types) remain at their vertices where there were generated. We distinguish two cases: In
the first case, demand agent has a strategy to generate each packet Pi (1 ≤ i ≤ n), say in
a network state qi, without visiting a network state with blocked links function bl i twice,
and after generating all n packets in this way he reaches a network state qj with bl j = bl
where the packets P1, . . . , Pn still exist at their required vertices vlm. This is the trivial

11

case where demand agent can reach qj within (n+ 1) · (|BL| − 1) ≤ |BL|n+1 · (∆out)n

turns (and it suffices to keep (∆out + 1) · (n + 1) · (|BL| − 1) packets of each type).
In the second case, there exists a packet Pi (in {P1, . . . , Pn}) such that demand agent
agent can reach the network state qj only by revisiting a network state with blocked links
function bl i. We may assume due to our induction hypothesis that there is a strategy
for demand agent to reach a network state q′j with blocked links function bl within
xn−1 := |BL|n · (∆out)n−1 turns where at least the packets P1, . . . , Pi−1, Pi+1, . . . , Pn
exist at their required vertices. Now, demand agent has a strategy to revisit a network
state with blocked link function bl i; hence, he can generate sufficiently many packets
of the same type as Pi, so that at least one of these packets remains at its origin after
taking the xn−1 turns for reaching a network state qj with bl j = bl . Since in the worst
case routing agent can send at most ∆out packets per node and turn, it is sufficient for
demand agent to visit a network state with function bl i at most xn−1 ·∆out times. For
that demand agent needs at most xn−1 ·∆out ·(|BL|−1) turns (due to Remark 5.3). Then,
from this state, demand agent needs at most xn−1 turns to reach a network state qj with
bl j = bl and packets P1, . . . , Pn at their required vertices vlm. Overall, demand agent
can reach qj within xn−1 ·∆out · (|BL| − 1) + xn−1 = |BL|n+1 · (∆out)n turns (and
keeping xn−1 = |BL|n · (∆out)n−1 packets of the same type at each vertex suffices). ut

Lemma 5.7. Given a network routing game with weak constraints on a game arena
({v1, . . . , vk}, E), and given a network state q with blocked links function bl where each
vertex vl stores nlm packets with destination vm (1 ≤ l,m ≤ k). Assume that demand
agent has a strategy such that from network state q routing agent cannot deliver one of
the packets that are currently in the network. Then, from a network state q′ with the same
function bl where each vertex vl stores only n′lm = min{nlm, |BL| ·∆out} packets with
destination vm in the network, demand agent can also prevent the delivery of a packet.

Proof. Towards a contradiction, we assume that demand agent has a strategy in q to
prevent the delivery of at least one packet, but that routing agent has a winning strategy τ
in state q′. If demand agent can prevent the delivery of a packet forever, he can do so due
to reaching a network state q− with a certain blocked links function bl− such that from
q− onwards a particular packet, say P−, will never be delivered. Due to Remark 5.3
demand agent has a strategy σ to reach such a network state from q within |BL| − 1
turns. Also note it follows from Remark 5.2 that, if routing agent plays his winning
strategy τ (which we assumed he has in q′) in the network state q, he can guarantee that
all of the nlm packets of a type with nlm ≤ |BL| ·∆out will be delivered and that at least
|BL| ·∆out of the packets with nlm > |BL| ·∆out will be delivered. But since demand
agent has a strategy in network state q to prevent the delivery of one of the packets, there
is a type with nlm > |BL| ·∆out such that one of the nlm packets of this type will never
be delivered if demand and routing agent play σ and τ from q. Since there are at least
|BL| · ∆out many packets of this type in q′ as well as in q, routing agent can deliver
these packets at best in |BL|·∆out

∆out
= |BL| turns. So, if the routing agent plays τ in q′,

there is still at least one of the nlm packets of this type left at vl after |BL| − 1 turns.
But according to Remark 5.3 demand agent can reach from q′ a state with function bl−
within |BL| − 1 turns; so, there is still one packet left that will never be delivered, which
is a contradiction to our assumption that τ is a winning strategy in q′. ut

12

For a game G, we define the modified game G�b where at most b packets with the
same destination are stored at each node. More precisely, for all vertices u and d, the
following happen in G�b after each player’s half-turn: While the number of packets at u
with destination d is higher than b, the packet (id , d, t) at u with the highest id is deleted.

Theorem 5.8. Consider a dynamic network routing game with weak constraints. Let
b := (|BL| ·∆out)|V |

2·|BL|·∆out . Then, routing agent wins G with the DELIVERY winning
condition iff she wins G�b with the DELIVERY winning condition.

Proof. Assume that routing agent wins G. Towards a contradiction, we assume that
demand agent wins G�b, say with a strategy σ. We take demand agent’s strategy σ for G.
Since the constraints C are independent from the packet distribution, routing agent must
at least deliver all packets which would not be deleted by the additional rule in the
modified game G�b. Since routing agent cannot deliver all packets in G�b, so in G. Hence,
demand agent wins G by playing σ, which is a contradiction to our assumption.

Conversely, assume that routing agent wins G�b. Towards a contradiction, we assume
that demand agent wins G. Then demand agent has a strategy (for G) to reach a network
state q− where he can guarantee that one of the packets will never be delivered. Due to
Lemma 5.7 it suffices to keep at most |BL| ·∆out packets of each type from the network
state q− onwards. Since the number of different types is bounded by |V |2, there have to
be kept at most n = |V |2 ·|BL|·∆out packets in the network from q− onwards. According
to Lemma 5.6 demand agent has a strategy to reach q− if only |BL|n · (∆out)n−1 ≤ b
(and 0 in the case n = 0) packets of each type are kept in the network. So, demand agent
also wins G�b, which contradicts our assumption. ut

So, for a network routing game G with weak constraints, deciding the restricted
game G�b with bound b on the number of packets is sufficient for deciding the unbounded
game G. Although the number of network states of the restricted game is finite, it has
not the safety game format as games with the DELIVERY` winning condition. With the
following theorem, every restricted game with a DELIVERY winning condition can be
turned into a game with DELIVERY` winning condition.

Theorem 5.9. Given a restricted network routing game G�b with weak constraints,
routing agent wins G�b with the DELIVERY` winning condition for ` = |BL|2 · |V |2 · b if
and only if she wins G�b with the DELIVERY winning condition.

Proof. Winning according to the DELIVERY` condition directly implies winning accord-
ing to the DELIVERY condition. For the converse, we assume that routing agent wins the
game G�b with the DELIVERY winning condition, say with a strategy τ . Since the the
number of packets at each node is bounded by |V | · b (because there exist at most |V |
different destinations), we can assume that routing agent may delay sending a packet to
a neighboring node due to other packets with a higher timestamp at least |V | · b times.
Also, we can assume that routing agent has to wait at most |BL| − 1 turns until she sends
one of the packets of a certain type at a certain node to a neighboring node. Otherwise
a network state with the same blocked frequencies function would be reached twice in
the meantime (see Remark 5.3), which would imply that there are no new possibilities
for routing agent to route one of the packets towards its destination. Finally, we can

13

assume by a similar argument that routing agent sends a packet to the same node at
most |BL| · |V | times. Otherwise a packet would visit a node twice while also a network
state with the same blocked frequencies function is reached (and this would imply that
there are no new possibilities for routing agent to deliver this packet in the reached
network state). Altogether, we can assume that routing agent can guarantee by playing
his strategy τ for the game with the DELIVERY winning condition implies that each
packet is delivered within at most |V | · b · (|BL| − 1) · |BL| · |V | turns (which is less
than |BL|2 · |V |2 · b turns). Hence, by playing τ routing agent also wins the game G�b

with the DELIVERY` winning condition. ut
Now we have all ingredients to solve games with weak constraints. First we transform

the game G in a restricted game G�b with a bound for the maximal number of packets at
a node provided by Theorem 5.8. Then, the previous theorem give us a bound ` such
that we can solve G�b with the DELIVERY` winning condition using Theorem 5.1. The
bounds b and ` are computable and the reduction to a safety game allows the construction
of a winning strategy for routing agent if one exists. We obtain the following result:

Corollary 5.10. Dynamic network routing games with weak constraints and winning
condition DELIVERY are solvable (so that one can decide whether routing agent wins
and in this case provide a winning strategy in terms of a suitable routing scheme).

6 Conclusion and Perspective

In this paper we introduced a game-theoretic framework for routing problems in a
dynamic or adversarial environment that covers the aspects of reactivity and non-
termination. We showed some principal results on the solvability of this problem in
terms of routing procedures.

In these results, complexity issues and questions on optimization were suppressed.
Under the very liberal assumptions on constraints as considered here, reasonable com-
plexity bounds are not conceivable, both for computing a solution (if it exists at all) and
for the mere description of the resulting routing scheme.

Let us mention some variants of the game and of possible solutions that allow a more
efficient treatment or a refinement of solutions regarding efficiency. More uniformity
can be introduced both into the network model and the format of routing algorithms. For
example, one might assume that the possibilities of the primary systems for blocking a
frequency are globally the same for all edges (and not dependent on any information of
the cognitive network). Similarly, one can pursue the idea that the demands by primary
systems are best described in a stochastic model and using identical (but stochastic)
constraints for different nodes. Also the routing algorithms can be required to be more
uniform.

In current work we address also refined solutions that include aspects of optimization.
Only then it is possible to compare the performance of truly reactive routing algorithms
with solutions in terms of online algorithms as discussed in the introduction. Rather
than requiring delivery of packets “eventually” or “with fixed time bounds” it seems
more reasonable to search for solutions that simply guarantee the “best possible” time
intervals for delivery under the conditions of the considered network game. In [10] we
developed a method to compute optimal strategies for a natural setting.

14

References

1. Afek, Y., Awerbuch, B., Gafni, E., Mansour, Y., Rosén, A., Shavit, N.: Slide – the key to
polynomial end-to-end communication. Journal of Algorithms 22(1), 158–186 (1997)

2. Aiello, W., Ostrovsky, R., Kushilevitz, E., Rosén, A.: Dynamic routing on networks with
fixed-size buffers. In: Proceedings of SODA. pp. 771–780 (2003)

3. Awerbuch, B., Brinkmann, A., Scheideler, C.: Anycasting in adversarial systems: Routing
and admission control. In: Proceedings of ICALP. Lecture Notes in Computer Science, vol.
2719, pp. 1153–1168. Springer (2003)

4. Awerbuch, B., Mansour, Y., Shavit, N.: Polynomial end-to-end communication (extended
abstract). In: Proceedings of FOCS. pp. 358–363. IEEE (1989)

5. van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.)
Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion
of His 60th Birthday. Lecture Notes in Computer Science, vol. 2605, pp. 268–276. Springer
(2005)

6. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA,
USA (1999)

7. Gao, L., Wang, X.: A game approach for multi-channel allocation in multi-hop wireless
networks. In: Proceedings of MobiHoc. pp. 303–312. ACM (2008)

8. Gierasimczuk, N., Kurzen, L., Velázquez-Quesada, F.R.: Learning and teaching as a game: A
sabotage approach. In: Proceedings of LORI. Lecture Notes in Computer Science, vol. 5834,
pp. 119–132. Springer (2009)

9. Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games, Lecture Notes in
Computer Science, vol. 2500. Springer (2002)

10. Horn, F., Thomas, W., Wallmeier, N.: Optimal strategy synthesis in request-response games.
In: Proceedings of ATVA. Lecture Notes in Computer Science, vol. 5311, pp. 361–373.
Springer (2008)

11. Klein, D., Radmacher, F.G., Thomas, W.: The complexity of reachability in randomized
sabotage games. In: Proceedings of FSEN. Lecture Notes in Computer Science, vol. 5961, pp.
162–177. Springer (2009)

12. Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic. In: Pro-
ceedings of FSTTCS. Lecture Notes in Computer Science, vol. 2914, pp. 302–313. Springer
(2003)

13. Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. In: Proceedings of MFCS.
Lecture Notes in Computer Science, vol. 2747, pp. 531–540. Springer (2003)

14. Radmacher, F.G., Thomas, W.: A game theoretic approach to the analysis of dynamic networks.
In: Proceedings of VerAS. Electronic Notes in Theoretical Computer Science, vol. 200 (2), pp.
21–37. Elsevier (2008)

15. Rohde, P.: Moving in a crumbling network: The balanced case. In: Proceedings of CSL.
Lecture Notes in Computer Science, vol. 3210, pp. 310–324. Springer (2004)

16. Rohde, P.: On Games and Logics over Dynamically Changing Structures. Ph.D. thesis, RWTH
Aachen (2005)

17. Shiang, H.P., van der Schaar, M.: Distributed resource management in multihop cognitive
radio networks for delay-sensitive transmission. IEEE Transactions on Vehicular Technology
58(2), 941–953 (2009)

18. Thomas, W.: On the synthesis of strategies in infinite games. In: Proceedings of STACS.
Lecture Notes in Computer Science, vol. 900, pp. 1–13. Springer (1995)

19. Xin, C., Ma, L., Shen, C.C.: A path-centric channel assignment framework for cognitive radio
wireless networks. Mobile Networks and Applications 13(5), 463–476 (2008)

15

