Approximating the non-contiguous Multiple Organization Packing Problem Marin Bougeret^{⋆1}, Pierre François Dutot¹, Klaus Jansen², Christina Otte², and Denis Trystram¹ ¹ Grenoble University ZIRST 51, avenue Jean Kuntzmann 38330 Montbonnot Saint Martin, France {bougeret,pfdutot,trystram@imag.fr} ² Department of Computer Science Christian-Albrechts-University to Kiel Christian-Albrechts-Platz 4, 24098 Kiel, Germany. {kj,cot}@informatik.uni-kiel.de **Abstract.** We present in this paper a 5 /2-approximation algorithm for scheduling rigid jobs on multi-organizations. For a given set of n jobs, the goal is to construct a schedule for N organizations (composed each of m identical processors) minimizing the maximum completion time (makespan). This algorithm runs in $O(n(N + \log(n)) \log(np_{max}))$, where p_{max} is the maximum processing time of the jobs. It improves the best existing low cost approximation algorithms. Moreover, the proposed analysis can be extended to a more generic approach which suggests different job partitions that could lead to low cost approximation algorithms of ratio better than 5 /2. # 1 Problem statement In this paper we consider the problem of scheduling rigid jobs on Multi-organizations. An organization is a set of m identical available processors. A job j must be executed on q_j processors (sometimes called the degree of parallelism) during p_j units of time. The q_j processors must be allocated on the same organization. The makespan of the schedule is defined as the maximum finishing time over all the jobs. Given a set of n jobs, the goal is to find a non-overlapping schedule of all the jobs on N organizations while minimizing the makespan. This problem is closely related to strip packing problems. Indeed, if we add the constraint of using contiguous processors, then scheduling a job j on q_j contiguous processors during p_j units of time is equivalent to packing a rectangle of width q_j and height p_j . $^{^{\}star}$ This work has been supported by DGA-CNRS Related works. Strip packing, rigid jobs scheduling and Multi-organizations scheduling problems are all strongly $\mathcal{N}P$ -hard, and Zhuk [1] showed that there is no polynomial time approximation algorithm with absolute ratio better than 2 for strip packing. For Strip Packing problem, Coffman et al. gave in [2] an overview about performance bounds for shelf-oriented algorithms as NFDH (Next Fit Decreasing Height) and FFDH (First Fit Decreasing Height). These algorithms have a approximation ratio of 3 and 2.7, respectively. Schiermeyer [3] and Steinberg [4] presented independently an algorithm for Strip Packing with absolute ratio 2. A further important result for the Strip Packing problem is an AFPTAS with additive constant $\mathcal{O}(1/\epsilon^2)$ of Kenyon and Rémila [5]. This constant was improved by Jansen and Solis-Oba, who presented in [6] an APTAS with additive constant 1. Concerning the multi-strip packing problem, there is a $2 + \epsilon$ approximation in [7] whose algorithmic cost is doubly exponential in $\frac{1}{\epsilon}$. In [8] we gave a 2 approximation with a large algorithmic cost and an AFPTAS for this problem. Let us now review the related work about rigid job scheduling. For one organization, the famous List Algorithm for scheduling with resource constraints of Garey and Graham [9] can be applied (when there is only one resource to share) to schedule rigid jobs, and is then a 2 approximation. The rigid job scheduling problem on multi-organization has been studied with an on-line setting in [10]. The authors achieved a ratio of 3 without release times (and 5 with release times). Notice that these results do not require the knowledge of the processing times of the jobs. Moreover, the organizations may have a different number of processors. The rigid job scheduling problem on multi-organizations has been extended in [11] for the case where the jobs are submitted to local queues on each cluster with the extra constraint that the initial local schedules must not be worsened. The authors provide a 3-approximation. Generally, the results about rigid job scheduling cannot be adapted to the more constrained contiguous version. To the best of our best knowledge, there is still no (reasonable) α such that for any instance I, $Optc(I) \leq \alpha Optnc(I)$ (where Optc denotes the contiguous optimal value and Optnc the non-contiguous one). The authors of [12] show that $\alpha > 1$ by constructing a (rather) simple instance with 8 jobs and 4 machines. Our contribution. In this paper, we present a $\frac{5}{2}$ approximation algorithm for the rigid job scheduling problem on multi-organizations that runs in $O(n(N+\log(n))\log(np_{max}))$, where p_{max} is the maximum processing time of the jobs. Moreover, we suggest how the approach used for the $\frac{5}{2}$ -algorithm could extended to get approximation algorithms with better ratio and a low algorithmic cost. Organization of the Paper. The preliminaries for the ⁵/₂-approximation are in Section 2. In Section 3.1 to 3.4 we describe how to construct a preallocation of the "big" jobs that fits in the targeted makespan. In Section 4 we show how to turn this preallocation into a compact schedule, and in Section 5 we analyze the complexity of the algorithm. The discussions on the approach are in Section 6. # 2 Principle and definitions Let us now give some definitions that are used throughout the proofs and the description of the algorithm. We first extend the previous p_j and q_j notations to Q(X) and P(X) where X is a set of jobs. We also define the surface (sometimes also called the area) of a set of jobs as $S(X) = \Sigma_{j \in X} q_j p_j$. A layer is a set of jobs which are scheduled sequentially on the same organization. The length of a layer Lay is P(Lay), the sum of the processing time of all the jobs in Lay. A shelf is a set of jobs which are scheduled on the same organization, and which start at the same time. Given a shelf sh, the value Q(sh) is called the height of sh. What we call a bin can be seen as a reservation of a certain number of processors (generally m) during a certain amount of time. The algorithm will add some jobs to bins, and given a bin b, we denote by Q(b) the value $\Sigma_{\{j \in b\}} q_j$. Given a sequence of bins seq, we denote by Q(seq) the value $\Sigma_{b \in seq} Q(b)$. These notations are extended in the same way for P and S. In the whole paper, we consider that the sets of jobs used as parameters in the algorithms are modified after the calls. Let us sketch how $^{5}/_{2}$ algorithm is constructed. Let OPT denote the value of an optimal solution. We target a $\frac{5}{2}$ ratio by both ensuring that, for each organization at least half of the processors are used at any time before the starting time of the last job, and that the small jobs (whose processing time is lower than $^{OPT}/_{2}$ and height lower than $^{m}/_{2}$) are scheduled at the end. Thus, if the makespan of the final schedule is due to a small job, it is lower than the processing time of the small job plus the starting time of this job, implying a makespan lower than $^{OPT}/_{2} + 2OPT = ^{5OPT}/_{2}$. As the optimal value is not known, we use the well known dual approximation technique [13]. Let w denote the current guess of OPT. The schedule is built in three steps. In the first one we compute a preallocation π_{0} of the "big" $(p_{j} > ^{w}/_{2})$ or $q_{j} > ^{m}/_{2}$) jobs. Then we apply a list algorithm which turns π_{0} into a "compact" schedule π_{1} (see Section 4). Finally, the final schedule π is constructed by adding to π_{1} the small remaining jobs using again a list algorithm (see also Section 4). Let us define the following sets: - let $L_H = \{j|q_j > m/2\}$ be the set of high jobs - let $L_{XL} = \{j | p_j > \frac{3w}{4} \}$ be the set of extra long jobs - let $L_L = \{j|^{3w}/4 \ge p_j > w/2\}$ be the set of long jobs - let $L_B = (L_{XL} \bigcup L_L) \cap L_H$ be the set of huge jobs - let $I' = L_H \bigcup L_{XL} \bigcup L_L$ We will prove that either we schedule I with a resulting makespan lower than $^{5w}/_2$, or w < OPT. Notice that for the sake of simplicity we did not add the "reject" instructions in the algorithm. Thus we consider in all the proof that $w \geq OPT$, and it is implicit that if one of the claimed properties is wrong during the execution, the considered w should be rejected. Notice that we only consider the w values such that $Q(L_{XL} \bigcup L_L) \leq Nm$ and $P(L_H) \leq Nw$. We start by providing in Section 3 the three phase algorithm $Build_Prealloc$ that builds the preallocation π_0 of the jobs of I'. We will denote by π_0^i the set of preallocated jobs in organization O_i . In phase 1 we preallocate the high jobs. In phase 2 and phase 3 we preallocate the long and extra long jobs by first packing shelves of jobs into bins, and then putting these bins into organizations. An example of a preallocation is depicted Figure 1. ## 3 Construction of the preallocation #### 3.1 Phase 1 Let N_1 be the number of organizations used in phase 1. In phase 1, the jobs of L_H are packed in N_1 organizations. The $Create_Layer(X,l)$ procedure creates a layer Lay of length at most l, using a Best Fit (according to the processing times) policy (BFP). Thus, $Create_Layer(X,l)$ add at each step the longest job that fits. Thus, phase 1 calls for each organization (until L_H is empty) $Create_Layer(L_H, {}^{5w}/2)$. Let us introduce some notations. Let Lay_i denote the set of jobs scheduled in the layer created in organization O_i . Let L^1_{XL} and L^1_L denote the remaining jobs of L_{XL} and L_L after phase 1. Thus, for the moment we have $\pi^i_0 = Lay_i$ for all $i \leq N_1$. **Lemma 1 (phase 1).** If $\exists i_0 < N_1$ such that $P(\pi_0^{i_0}) \leq 2w$ then it is straightforward to pack all the jobs of I'. Otherwise, we get $\forall i \in \{1, \ldots, N_1 - 1\}$, $S(\pi_0^i) > wm$ and $N_1 \leq \lceil N/2 \rceil$. Proof. First let us notice that phase 1 ends, as $P(L_H) \leq Nw$ and $P(\pi_0^i) > w$ for every organization where we do not run out of jobs to schedule. We first suppose that $\exists i_0 < N_1$ such that $P(\pi_0^{i_0}) \leq 2w$. In this case we just have to prove that it is straightforward to preallocate $L_{XL} \bigcup L_L$. We proceed by contradiction by supposing that we never ran out of jobs of $L_{XL} \bigcup L_L$. When the algorithm creates a layer for a organization i, we know due to the BFP order that it will pack at least two jobs of L_B , if L_B is not empty. The hypothesis implies that during the execution of phase 1, $L_H \setminus L_B$ was empty before L_B . Thus, for $i < N_1$, there is at least two jobs of L_B in π_0^i , meaning that $\forall i$ with $1 \leq i < N_1, Q((L_{XL} \bigcup L_L) \cap \pi_0^i) > m$. Concerning the $N-N_1$ other organizations, we can create shelves of jobs of $L_L \bigcup L_{XL}$ using a best fit according to the height (BFH), implying that each shelf has a height of at least $2^m/3$ according to Lemma 2. Packing two shelves in each organization, we get $\forall i > N_1, Q((L_{XL} \bigcup L_L) \cap \pi_0^i) > 4^m/3 > m$. Finally, let us check what is scheduled in organization N_1 . If two jobs of L_B are scheduled in this organization, then $Q((L_{XL} \bigcup L_L) \bigcap \pi_0^{N_1}) > m$. If one job of L_B is scheduled, then we create one shelf of jobs of $L_{XL} \bigcup L_L$, and $Q((L_{XL} \bigcup L_L) \bigcap \pi_0^{N_1}) > m/2 + 2m/3$. If no huge job is scheduled in organization N_1 , we pack as before two shelves of jobs of $L_{XL} \bigcup L_L$. Thus, if in every case we have $Q((L_{XL} \bigcup L_L) \bigcap \pi_0^{N_1}) > m$. Thus, we get $Q((L_{XL} \bigcup L_L)) > Nm$, which is impossible. Let us prove the second part of the lemma. First notice that for any $i < N_1, S(\pi_0^i) > 2w^m/2 = mw$. Moreover, we have $2(N_1 - 1)w < \sum_{i=1}^{N_1} P(\pi_0^i) = P(L_H) \leq Nw$, implying $N_1 \leq \lceil N/2 \rceil$. Thus, we now assume until the end of the proof that we are in the second case of Lemma 1 where $\forall i \in \{1, ..., N_1 - 1\}, S(\pi_0^i) > mw$ and $N_1 \leq \lceil N/2 \rceil$. #### 3.2 Phase 2 In phase 2 the jobs of $L_{XL}^1 \bigcup L_L^1$ are scheduled in organization N_1 by creating shelves according to what is already scheduled in organization N_1 . We denote by L_{XL}^2 and L_L^2 the remaining jobs of L_{XL}^1 and L_L^1 after phase 2. Let us first define two procedures used for phase 2 and phase 3. The procedure $Pack_Shelf(X, b, f)$ creates a shelf sh using the Best Fit (according to the height) policy (BFH), and packs it into bin b. The f parameter represents the available height of b (meaning that b corresponds to f free processors during a certain amount of time), implying of course that $Q(sh) \leq f$. Thus $Pack_Shelf(X, b, f)$ adds at each step the highest possible job of X that fits. We assume that the length of the bin is larger than p_i , for all $j \in X$. The procedure GreedyPack(X, seq) creates for each empty bin $b \in seq$ one shelf of jobs of X using $Pack_Shelf(X, b, m)$. This procedure returns the last bin in which a shelf has been created. Let us now come back to the description of phase 2. Depending on the set of jobs already scheduled in O_{N_1} , the $Create_Padding()$ procedure creates n_{bin_L} empty bins of length $^{3w}/_4$ and $n_{bin_{XL}}$ empty bins of length w, which are added in organization O_{N_1} . Let us define for each case how many bins of each type are created by $Create_Padding()$: - If $P(Lay_{N_1}) \in]3w/2, 7w/4]$ then set $(n_{bin_L}, n_{bin_{XL}})$ to (1,0) - If $P(Lay_{N_1}) \in]w, {}^{3w/2}]$ then set $(n_{bin_L}, n_{bin_{XL}})$ to (0,1) - If $P(Lay_{N_1}) \in]^{3w/4}$, w] then if $Q(L_L^1) \geq {5/4}$ then set $(n_{bin_L}, n_{bin_{XL}})$ to (2,0) else set $(n_{bin_L}, n_{bin_{XL}})$ to (0,1) - If $P(Lay_{N_1}) \in]w/2, 3w/4]$ then set $(n_{bin_L}, n_{bin_{XL}})$ to (1, 1) - If $P(Lay_{N_1}) \in [0, w/2]$ then set $(n_{bin_L}, n_{bin_{XL}})$ to (0, 2) Let pad_L be a sequence of n_{bin_L} bins of length ${}^{3w}/{}^{4}$ and pad_{XL} be a sequence of $n_{bin_{XL}}$ bins of length w. $Create_Padding()$ returns (pad_L, pad_{XL}) . All in all, phase 2 can be described by the following procedure calls: - Let $(pad_L, pad_{XL}) = Create_Padding()$ - $GreedyPack(L_{XL}^1, pad_{XL})$ - $GreedyPack(L_L^1, pad_L)$ - $GreedyPack(L_L^1, pad_{XL})$ Fig. 1. An example of pre-allocation #### 3.3 Phase 3 In phase 3 we first schedule the jobs of L^2_{XL} using the $N_2 = N - N_1$ remaining organizations. Then, we schedule the jobs of L^2_L using also this N_2 organizations. Finally, the possibly remaining jobs of L^2_L are added to the last bin used for the extra long jobs. Therefore, let us define the add(X,b) procedure. The add(X,b) procedure packs one or two "small" shelves of jobs of X in the bin b (starting from the top of the bin for the sake of clarity). Notice that, as b will be the last bin used for extra long jobs, the available height (for the jobs of X) in b will be generally lower than m. Here is the description of add(X,b): - If the left side of b is at time w then let l=2 else let l=1 - Repeat l times the call $Pack_Shelf(X, b, m Q(b))$ and pack the created shelves in b. An example of a call to the add procedure is given in Figure 1 for the case where l=2. We now define two sequences of bins seq_{XL} and seq_L , such that every bin of seq_{XL} (resp. seq_L) will (possibly) contains one shelf of jobs of L_{XL}^2 (resp. L_L^2). Notice that a free organization can be seen as two bins of length w (and height m), three bins of length $3^w/4$, or one bin of length w and two bins of length w4. Thus, seq_{XL} is composed of $2(N-N_1)$ bins $(b_1,\ldots,b_{2(N-N_1)})$ of length w, considering that we created two bins in each of the organizations $\{O_{N_1+1},\ldots O_N\}$, starting from O_{N_1+1} . This implies that for all $i\geq 1$, bins b_{2i-1} and b_{2i} are in O_{N_1+i} . The sequence seq_L is composed of $3(N-N_1)$ bins $(b'_1,\ldots,b'_{3(N-N_1)})$ of length $3^w/4$, considering that we created three bins in each of the organizations $\{O_{N_1+1},\ldots O_N\}$, from O_N to O_{N_1+1} . This implies that for all $i\geq 1$, bins b'_{3i-2},b'_{3i-1} and b'_{3i} are in O_{N-i+1} . Notice that these two sequences are not ordered in the same way. All in all, phase 3 can be described by the following procedure calls: - Let $last = GreedyPack(L_{XL}^2, seq_{XL})$ - $GreedyPack(L_L^2, seq_L)$ • $add(L_L^2, last)$ Let start the analysis of phase 3 with a remark about $Pack_Shelf(X, b, f)$. **Lemma 2.** Let Sh denote the shelf created by Pack_Shelf(X, b, f). If we know that the k highest jobs of X fit in f, then $Q(Sh) > \frac{k}{k+1}f$. *Proof.* Let x be the cardinal of X. Let us assume that $q_i \geq q_{i+1}$ for $1 \leq i < x$. Let $i_0 \geq k+1$ be the first index such that job i_0 is not in Sh. Let $a = \sum_{i=1}^{i_0-1} q_i$. We have $Q(Sh) \geq a \geq (i_0-1)q_{i_0} > (i_0-1)(f-a)$ leading to $a > \frac{i_0-1}{i_0}f \geq \frac{k}{k+1}f$. \square **Lemma 3 (phase 3).** If there remains an unscheduled job after phase 3, then $S(L_{XL}^2 \bigcup L_L^2) > (N_2 + 1/8)mw$. *Proof.* Let us first suppose that $L_{XL}^2 \neq \emptyset$. Let $a_{XL} = 2(N-N_1)$ be the number of bins in seq_{XL} . After having filled the first $a_{XL}-1$ bins (using a width of at least 2 /3 according to Lemma 2), the width of remaining jobs of L_{XL}^2 is strictly larger than m. Thus we get $Q(L_{XL}^2) > ^{2m}/_3(a_{XL}-1) + m = ^{4m}/_3N_2 + ^{m}/_3$ and $S(L_{XL}^2) > (N_2 + ^{1}/_4)mw$. We now suppose that $L_{XL}^2 = \emptyset$. In every organization that contains two bins of jobs of L_{XL}^2 , the total scheduled area is strictly larger than $2 \times \frac{2m}{3} \times \frac{3w}{4} = wm$. In every organization that contains three bins of jobs of L_L^2 , the total scheduled area is strictly larger than $3 \times \frac{2m}{3} \times \frac{w}{2} = wm$. We have to consider two cases according to the position of the last bin last (the left side of last may be located at time 0 or w). Let i_0 be the index of the organization that contains last. In the first case where the left side of last is at time 0, two bins (of length $^{3w}/_{4}$ and height m) were created after the bin last in organization O_{i_0} . Then, if the remaining jobs of L_L^2 do not fit in last, the total area of the jobs scheduled in organization O_{i_0} is strictly larger than $(2^{2m}/_{3} + m)^{w}/_{2} > {}^{7wm}/_{6}$. Then we just sum the area packed over all the organizations, and get the desired result. In the second case where the left side of last is at time w (as depicted in Figure 1), the only room in organization O_{i_0} to schedule jobs of L_L^2 is in last. In organization O_{i_0} , the area of (extra long) jobs contained in the first bin is strictly larger than $^{wm}/_2$. The add procedure will create two shelves (one next to the other) of jobs of L_L^2 in last. Let last' and L'_L be the set of jobs in last and L^2_L respectively, just before the call of the add procedure. If Q(last') > m/2, and as the remaining jobs of L^2_L don't fit in last, we have that $Q(L'_L) > m - Q(last')'$. This implies $S(last' \bigcup L'_L) > 3w/4Q(last') + w/2(m - Q(last)') > 5wm/8$. If $Q(last') \le m/2$ (see Figure 1) then add creates a first shelf of jobs of L^2_L of height at least (m - Q(last'))/2, and then tries to pack the remaining jobs in the second shelf. Thus in this case, $S(last' \bigcup L'_L) > 3w/4Q(last') + w/2\left(\frac{(m - Q(last'))}{2} + m - Q(last')\right) > 3mw/4$. \square ### 3.4 Main algorithm In this section we recall the overall algorithm that builds the preallocation, and we provide the main proof of the preallocation. Notice that we drop the L_L^i and L_{XL}^{i} notations for writing the algorithm as we consider that the sets of jobs (used as parameters in the procedures) are modified after the calls. ``` Algorithm 1 Build_Prealloc(I') Phase 1 [1] Let i = 0 [2] Let i = i + 1, and let Lay_i = Create_Layer(L_H, 5w/2) Pack Lay_i in organization S_i from time 0 [3] Repeat step 3 until L_H is empty Phase 2 [4] Let (pad_L, pad_{XL}) = Create_Padding() [5] Let last = GreedyPack(L_{XL}, pad_{XL}) [6] Call GreedyPack(L_L, pad_L) [7] Call GreedyPack(L_L, pad_{XL}) Phase 3 [8] Let seq_{XL} and seq_L be defined as described in Section 3.3 [9] Let last_2 = GreedyPack(L_{XL}, seq_{XL}) [10] If last_2 is not null, set last to last_2 [11] Call\ GreedyPack(L_L, seq_L) [12] Call\ add(L_L, last) ``` **Theorem 1.** Build_Prealloc(I') creates a preallocation π_0 of makespan lower than $^{5w}/_2$. Proof. Remind that L_{XL}^1 and L_L^1 denote the remaining jobs of L_{XL} and L_L after Phase 1. The makespan of the preallocation is by construction lower than $^{5w}/_2$. We know that according to Lemma 1 phase 1 terminates and the area scheduled in the first $N_1 - 1$ organizations is greater than $(N_1 - 1)wm$. We proceed by contradiction by supposing that $L_{XL}^1 \bigcup L_L^1$ is not empty after Phase 2 and Phase 3, and showing that S(I') > Nmw. We proceed by case analysis according to what is scheduled in O_{N_1} . If $P(Lay_{N_1}) > \frac{7}{4}w$, then $S(Lay_{N_1}) > \frac{7}{8}mw$ and CreatePadding doesn't create any bin. If L^1_{XL} and L^1_L are not completely scheduled by phase 3, then according to Lemma 3 we get $S(L^1_{XL} \bigcup L^1_L) > (N_2 + \frac{1}{8})mw$. Thus in this case we have $S(Lay_{N_1} \bigcup L^1_{XL} \bigcup L^1_L) > (N_2 + 1)mw$, implying S(I') > Nmw. we have $S(Lay_{N_1}\bigcup L^1_{XL}\bigcup L^1_L)>(N_2+1)mw$, implying S(I')>Nmw. If $\frac{7}{4}w\geq P(Lay_{N_1})>\frac{3}{2}w$, then $S(Lay_{N_1})>\frac{3}{4}mw$ and CreatePadding creates one bin of length $\frac{3}{4}w$. Recall that the jobs of L^1_L are first scheduled in pad_L . If $Q(pad_L)$ is larger than $\frac{m}{2}$, then $S(Lay_{N_1}\bigcup pad_L)>\frac{3}{4}mw+\frac{1}{4}mw=mw$. Thus, the total area packed in the first N_1 is strictly larger than N_1wm . Then, according to Lemma 3, $L^2_{XL}\bigcup L^2_L$ must fit in the N_2 remaining organizations. If $Q(pad_L)\leq \frac{m}{2}$, then the N_2 remaining organizations are available for L^1_{XL} . Thus, if $L^1_{XL}\neq\emptyset$ at the end, then $S(L^1_{XL})>(N_2+\frac{1}{4})mw$, and $S(Lay_{N_1}\bigcup L^1_{XL})>(N_2+1)mw$. If $\frac{3}{2}w \geq P(Lay_{N_1}) > w$, then $S(Lay_{N_1}) > \frac{1}{2}mw$ and CreatePadding creates one bin of length w. If $Q(pad_{XL})$ is larger than $\frac{2m}{3}$ then $S(Lay_{N_1} \bigcup pad_{XL}^1) > mw$ and we conclude with Lemma 3. Otherwise, the N_2 remaining organizations are available for L_L^1 . Moreover, remind that in this case the only bin in pad_{XL} will be used for jobs of L_L during the call of add. Then, if L_L^1 does not fit, we have $Q(L_L^1 \bigcup L_{XL}^1) > (2N_2 + 1)m$ and $S(Lay_{N_1} \bigcup L_L^1 \bigcup L_{XL}^1) > \frac{mw}{2} + N_2wm + \frac{wm}{2} = (N_2 + 1)mw$. If $w \geq P(Lay_{N_1}) > \frac{3}{4}w$, then $S(Lay_{N_1}) > \frac{3}{8}mw$ and two cases are possible according to the value of $Q(L_L^1)$. If $Q(L_L^1) \geq \frac{5m}{4}$, CreatePadding creates two bins of length $\frac{3}{4}w$. Then, $S(Lay_{N_1} \bigcup pad_L) > (\frac{3}{8} + \frac{5}{8})mw$ and we conclude with Lemma 3. Otherwise, if $Q(L_L^1) < \frac{5m}{4}$, CreatePadding creates one bin pad_{XL} of length w. If $Q(pad_{XL})$ (after the call line 5) is larger than $\frac{2m}{3}$ then $S(Lay_{N_1} \bigcup pad_{XL}^1) > \frac{7}{8}mw$ and we conclude with Lemma 3. Otherwise, jobs of L_{XL}^1 are all scheduled in pad_{XL} . As $N_2 \geq 1$, at least three bins are available for L_L^1 , which is sufficient given that $Q(L_L^1) < \frac{5m}{4}$. If $\frac{3}{4}w \geq P(Lay_{N_1}) > \frac{1}{2}w$, then $S(Lay_{N_1}) > \frac{1}{4}mw$ and CreatePadding creates one bin of length w and one bin of length $\frac{3}{4}w$. If extra long jobs are not scheduled at the end of the algorithm, then $S(Lay_{N_1} \bigcup pad_{XL}) > \frac{3}{4}mw$. Since L_{XL}^2 do not fit into N_2 free organizations, we have also $S(L_{XL}^2) > (N_2 + \frac{1}{4})mw$. Thus we conclude that the extra long jobs are successfully scheduled. Let us suppose now that the long jobs are not completely scheduled. If $Q(pad_{XL}) \geq \frac{5m}{9}$ then $S(Lay_{N_1} \bigcup pad_{XL} \bigcup pad_L) > (\frac{1}{4} + \frac{5}{12} + \frac{1}{3})mw = mw$. Otherwise, let L_L' denote the set of remaining jobs of L_L^1 just before the call to add. The area scheduled in the N_2 last organizations is larger than the one scheduled in the optimal. If L_L' does not fit in $pad_{XL} \bigcup pad_{XL} \bigcup L_L' > (\frac{1}{4} + \frac{1}{3} + \frac{1}{2})mw > mw$. $S(Lay_{N_1}\bigcup pad_L\bigcup pad_{XL}\bigcup L_L')>(\frac{1}{4}+\frac{1}{3}+\frac{1}{2})mw>mw.$ If $\frac{1}{2}w>P(Lay_{N_1})$, CreatePadding creates two bins of length w. If $N_1>1$, then $S(\bigcup_{i=1}^{N_1}Lay_i)>S(\bigcup_{i=1}^{N_1-2}Lay_i)+\frac{5}{4}mw>(N_1-1)mw+\frac{1}{4}mw$ because the first job of Lay_{N_1} does not fit in the previous organization. Thus, if $Q(L_{XL}^1)>m$ then we have $S(\bigcup_{i=1}^{N_1}Lay_i\bigcup pad_{XL})>N_1mw$ and we conclude with Lemma 3. Otherwise, we have an empty bin in the sequence pad_{XL} and N_2 free organizations available for L_L^1 . Let L_L' be L_L^1 before the call to add. If add does not schedule L_L' in last then $Q(L_{XL}^1)+Q(L_L')>m$ and $S(\bigcup_{i=1}^{N_1}Lay_i\bigcup L_{XL}^1\bigcup L_L')>(N_1-\frac{3}{4}+\frac{1}{3}+\frac{1}{2})mw>N_1mw$. If $N_1\leq 1$ then we have two bins of length w in each of the N organizations, which is of course sufficient to pack $L_{XL}^1\bigcup L_L^1$. ### 4 From the preallocation to the final schedule From now on, we suppose that the preallocation π_0 is built. For each organization O_i , π_0 indicates first a (possibly empty) sequence of high jobs $j_1^i, \ldots, j_{x_i}^i$ that have to be scheduled sequentially from time 0. Then, π_0 contains an ordered sequence of shelves $Sh_1^i, \ldots, Sh_{x_i'}^i$. Moreover, the makespan of π_0 is by construction less than 5w/2. **Definition 1.** Let $u_i(t)$ be the utilization of organization O_i at time t, i.e. $u_i(t)$ is the sum of all the q_j for any job j which scheduled on organization i at time t. A schedule is 1/2 compact if and only if for every organization O_i there exists a time t_i such that for all $t \leq t_i, u_i(t) \geq m/2$ and u_i restricted to $t > t_i$ is not increasing. Let us now describe the algorithm LS_{π_0} which turns π_0 into a $^{1/2}$ compact schedule π_1 of I'. We first define the procedure $Add_Asap(X, O_i)$ which scans organization O_i from time 0, and for every time t starts any possible job(s) in X that fit(s) at time t. The LS_{π_0} works as follows: for every organization O_i , pack first sequentially the high jobs j_x^i for $1 \le x \le x_i$ and then call $Add_Asap(Sh_x, O_i)$ for $1 \le x \le x_i'$. **Lemma 4.** The makespan of π_1 is lower than the one of π_0 , and π_1 is $^1\!/_2$ compact. Proof. Let σ_i be a schedule in a (single) organization O_i (of makespan C_i), let X be a set of jobs and let σ_i' be the schedule (of makespan C_i') produced by $Add_Asap(X,O_i)$. If σ_i is $^1/^2$ compact and if for all $j \in X$, $q_j \leq ^m/^2$, then σ_i' is $^1/^2$ compact. The proof is straightforward by induction on the cardinality of X. Moreover, if $\sum_X q_j \leq m$, then $C_i' \leq C_i + max_X p_j$ because in the worst case all the jobs of X only start at time C_i . Using these two properties, we prove the lemma for every organization O_i by induction on the number of call(s) to $Add_Asap(Sh_x, O_i)$. \square Remark 1. Notice that in Lemma 4 we do not take care of the particular structure which occurs when add creates two shelves of jobs of L_L as depicted Figure 1. However, it is easy to see that the proof can be adapted. Now that π_1 is built, we add the small remaining jobs $(I \setminus I')$ using a list algorithm that scans all the organizations from time 0 and schedules as soon as possible any non-scheduled job. Let π denote the obtained schedule. **Theorem 2.** The makespan of π is lower than 5w/2. *Proof.* The proof is by induction on the cardinal of $I \setminus I'$. At the beginning, π_1 is $^{1}/_{2}$ compact, as proved in Lemma 4. Each time a job j is scheduled by the list algorithm, the obtained packing remains $^{1}/_{2}$ compact because $q_{j} \leq \frac{m}{2}$. Thus it is clear that π is $^{1}/_{2}$ compact. Let us assume that the makespan of π is due to a job $j \in I \setminus I'$ that starts at time s. As π is $^1\!/_2$ compact, this implies that when scheduling job j we had $t_i \geq s$ for any organization i. Thus, we have $S(I) > \sum_{i=1}^N \frac{t_i}{2} \geq N \frac{s}{2}$, implying that s < 2w, and thus that the makespan of π is lower than $^{5w}/_2$. \square # 5 Complexity Phase 1 can be implemented in $O(Nn + n \log(n))$. Indeed, we first sort the high jobs in non increasing order of their processing times. Then, each layer can be created in O(n). Phase 2 and phase 3 can also be implemented in $O(Nn + n \log(n))$ by sorting the long (and extra long) jobs in non increasing order of their required processors. Thus π_0 is constructed in $O(Nn + n \log(n))$. The LS_{π_0} algorithm can be implemented in $O(n \log(n))$. Instead of scanning time by time and organization by organization, this algorithm can be implemented by maintaining a list that contains the set of "currently" scheduled jobs. The list contains 3-tuples (j, t, i) indicating that job j (scheduled on organization i) finishes at time t. Thus, instead of scanning every time from 0 it is sufficient to maintain sorted this list according to the t values (in non decreasing order), and to only consider at every step the first element of the list. Then, it takes $O(\log(n))$ to find a job j_0 in the appropriate shelf that fits at time t, because a shelf can be created as a sorted array. It also takes $O(\log(n))$ to insert the new event corresponding to the end of j_0 in the list. The last step, which turns π_1 into the final schedule can also be implemented in $O(n \log(n))$ using a similar global list of events. Notice that for any organization O_i , there exists a t_i such that before t_i the utilization is an arbitrary function strictly larger than m/2, and after t_i a non increasing after. Scheduling a small job before t_i would require additional data structure to handle the complex shape. Thus we do not schedule any small job before t_i as it is not necessary for achieving the 5/2 ratio. Therefore, we only add those events that happen after t_i when initializing the global list for this step. To summarize, for this step we only need to sort the small jobs in non increasing order of their required number of processors, and then apply the same global list algorithm. The binary search on w to find the smallest w which is not rejected can be done in $O(\log(np_{max}))$ as all the processing times can be assumed to be integers. Thus the overall complexity of the $^{5w}/_2$ approximation is in $O(\log(np_{max})n(N + \log(n)))$. ## 6 Toward better approximation ratios In this paper we provided a low cost $^{5}/_{2}$ -approximation algorithm using a new approach. We discuss in this section how the proposed approach can be used for reaching better approximation bounds. The approach can be summarized in the two following main steps. The first one consists in constructing a $^{1}/_{2}$ compact schedule π_{1} of the big jobs I' by creating a pre-allocation π_{0} and "compressing" it. Then, the remaining small jobs $(I \setminus I')$ are added to π_{1} in a second step using the classical list scheduling algorithm LS. We would like to recall the arguments that make our second step easy to analyze, and see what could be some other promising partitions. In our partition, the second step guaranties a makespan lower than $^{5w}/_{2}$ because: - adding a job j with $q_j \leq m/2$ to a 1/2 compact schedule with LS produces another 1/2 compact schedule, - if the makespan is due to a small job j_0 that starts at time s_0 , then $s_0 \le 2w$ (since the schedule is 1/2 compact), leading to a makespan lower than $s_0 + p_{j_0} \le 5w/2$. Let us now propose other partitions that could be considered. We could define $I' = \{j | q_j > \alpha m_i \text{ or } p_j > \beta w\}$ with appropriate values $0 < \alpha < 1$ and $0 < \beta < 1$. Then, the previous steps become: 1. construct a pre-allocation π_0 of I' (for instance based on shelves and layers) and make sure that, when compressed using LS_{π_0} , the obtained schedule π_1 is $1 - \alpha$ compact (meaning that for every organization, the utilization is greater than $1 - \alpha$, and then it is non-increasing), 2. add the small remaining jobs $(I \setminus I')$ using LS. Thus, the makespan of jobs added in the second step would be bounded by $b = (\frac{1}{1-\alpha} + \beta)w$, implying that the makespan of the pre-allocation should also be bounded by b. For example, we can target a 7/3 ratio by only studying how to pre-allocate $I'=\{j|q_j>\frac{m_i}{2} \text{ or } p_j>\frac{w}{3}\}$, or a ratio 2 by studying how to pre-allocate $I'=\{j|q_j>\frac{m_i}{3} \text{ or } p_j>\frac{w}{2}\}$. Obviously, if the preallocation is built using again shelves and layers, the difficulty will probably arise when merging the different types of jobs (high, extra long or long ones for example), and will may be only need to handle more particular cases. Let us remark that this technique will not be easy to apply with (contiguous) rectangles, since the property of 1/2 compactness becomes hard to guarantee. # References - S. Zhuk, "Approximate algorithms to pack rectangles into several strips," Discrete Mathematics and Applications, vol. 16, no. 1, pp. 73–85, 2006. - E. Coffman Jr, M. Garey, D. Johnson, and R. Tarjan, "Performance bounds for level-oriented two-dimensional packing algorithms," SIAM J. Comput., vol. 9, p. 808, 1980. - 3. I. Schiermeyer, "Reverse-fit: A 2-optimal algorithm for packing rectangles," *Lecture Notes in Computer Science*, pp. 290–290, 1994. - A. Steinberg, "A strip-packing algorithm with absolute performance bound 2," SIAM Journal on Computing, vol. 26, p. 401, 1997. - 5. C. Kenyon and E. Rémila, "A near-optimal solution to a two-dimensional cutting stock problem," *Mathematics of Operations Research*, pp. 645–656, 2000. - K. Jansen and R. Solis-Oba, "New approximability results for 2-dimensional packing problems," Lecture Notes in Computer Science, vol. 4708, p. 103, 2007. - 7. D. Ye, X. Han, and G. Zhang, "On-Line Multiple-Strip Packing," in *Proceedings of the 3rd International Conference on Combinatorial Optimization and Applications*, p. 165, Springer, 2009. - 8. M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram, "Approximation algorithm for multiple strip packing," *Proceedings of the 7th Workshop on Approximation and Online Algorithms (WAOA)*, 2009. - 9. M. Garey and R. Graham, "Bounds for multiprocessor scheduling with resource constraints," SIAM J. Comput., vol. 4, no. 2, pp. 187–200, 1975. - 10. U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour, "Online scheduling in grids," in *Proceedings of IPDPS*, pp. 1–10, 2008. - 11. P.-F. Dutot, F. Pascual, K. Rzadca, and D. Trystram, "Approximation algorithms for the multi-organization scheduling problem," *Submitted to: IEEE Transactions on Parallel and Distributed Systems (TPDS)*, 2010. - 12. P.-F. Dutot, G. Mounié, and D. Trystram, *Handbook of Scheduling*, ch. Scheduling Parallel Tasks: Approximation Algorithms. CRC Press, 2004. - D. S. Hochbaum and D. B. Shmoys, "A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach," SIAM J. Comput., vol. 17, no. 3, pp. 539–551, 1988.