
Approximating the non-contiguous Multiple

Organization Packing Problem

Marin Bougeret⋆1, Pierre François Dutot1, Klaus Jansen2, Christina Otte2,
and Denis Trystram1

1 Grenoble University
ZIRST 51, avenue Jean Kuntzmann

38330 Montbonnot Saint Martin, France
{bougeret,pfdutot,trystram@imag.fr}

2 Department of Computer Science
Christian-Albrechts-University to Kiel

Christian-Albrechts-Platz 4, 24098 Kiel, Germany.
{kj,cot}@informatik.uni-kiel.de

Abstract. We present in this paper a 5/2-approximation algorithm for
scheduling rigid jobs on multi-organizations. For a given set of n jobs,
the goal is to construct a schedule for N organizations (composed each
of m identical processors) minimizing the maximum completion time
(makespan). This algorithm runs in O(n(N +log(n)) log(npmax)), where
pmax is the maximum processing time of the jobs. It improves the best ex-
isting low cost approximation algorithms. Moreover, the proposed anal-
ysis can be extended to a more generic approach which suggests different
job partitions that could lead to low cost approximation algorithms of
ratio better than 5/2.

1 Problem statement

In this paper we consider the problem of scheduling rigid jobs on
Multi-organizations. An organization is a set of m identical available proces-
sors. A job j must be executed on qj processors (sometimes called the degree
of parallelism) during pj units of time. The qj processors must be allocated on
the same organization. The makespan of the schedule is defined as the maxi-
mum finishing time over all the jobs. Given a set of n jobs, the goal is to find
a non-overlapping schedule of all the jobs on N organizations while minimizing
the makespan.

This problem is closely related to strip packing problems. Indeed, if we add
the constraint of using contiguous processors, then scheduling a job j on qj

contiguous processors during pj units of time is equivalent to packing a rectangle
of width qj and height pj .

⋆ This work has been supported by DGA-CNRS

2 Bougeret, Dutot, Jansen, Otte, Trystram

Related works. Strip packing, rigid jobs scheduling and Multi-organizations
scheduling problems are all strongly NP -hard, and Zhuk [1] showed that there
is no polynomial time approximation algorithm with absolute ratio better than
2 for strip packing.

For Strip Packing problem, Coffman et al. gave in [2] an overview about per-
formance bounds for shelf-oriented algorithms as NFDH (Next Fit Decreasing
Height) and FFDH (First Fit Decreasing Height). These algorithms have a ap-
proximation ratio of 3 and 2.7, respectively. Schiermeyer [3] and Steinberg [4]
presented independently an algorithm for Strip Packing with absolute ratio 2.
A further important result for the Strip Packing problem is an AFPTAS with
additive constant O(1/ǫ2) of Kenyon and Rémila [5]. This constant was improved
by Jansen and Solis-Oba, who presented in [6] an APTAS with additive constant
1. Concerning the multi-strip packing problem, there is a 2 + ǫ approximation
in [7] whose algorithmic cost is doubly exponential in 1

ǫ
. In [8] we gave a 2

approximation with a large algorithmic cost and an AFPTAS for this problem.
Let us now review the related work about rigid job scheduling. For one orga-

nization, the famous List Algorithm for scheduling with resource constraints of
Garey and Graham [9] can be applied (when there is only one resource to share)
to schedule rigid jobs, and is then a 2 approximation. The rigid job schedul-
ing problem on multi-organization has been studied with an on-line setting in
[10]. The authors achieved a ratio of 3 without release times (and 5 with release
times). Notice that these results do not require the knowledge of the processing
times of the jobs. Moreover, the organizations may have a different number of
processors. The rigid job scheduling problem on multi-organizations has been
extended in [11] for the case where the jobs are submitted to local queues on
each cluster with the extra constraint that the initial local schedules must not
be worsened. The authors provide a 3-approximation.

Generally, the results about rigid job scheduling cannot be adapted to the
more constrained contiguous version. To the best of our best knowledge, there is
still no (reasonable) α such that for any instance I, Optc(I) ≤ αOptnc(I) (where
Optc denotes the contiguous optimal value and Optnc the non-contiguous one).
The authors of [12] show that α > 1 by constructing a (rather) simple instance
with 8 jobs and 4 machines.

Our contribution. In this paper, we present a 5
2 approximation algorithm for the

rigid job scheduling problem on multi-organizations that runs in
O(n(N +log(n)) log(npmax)), where pmax is the maximum processing time of the
jobs. Moreover, we suggest how the approach used for the 5/2-algorithm could ex-
tended to get approximation algorithms with better ratio and a low algorithmic
cost.

Organization of the Paper. The preliminaries for the 5/2-approximation are in
Section 2. In Section 3.1 to 3.4 we describe how to construct a preallocation of
the “big” jobs that fits in the targeted makespan. In Section 4 we show how to
turn this preallocation into a compact schedule, and in Section 5 we analyze the
complexity of the algorithm. The discussions on the approach are in Section 6.

Approximating the non-contiguous Multiple Organization Packing Problem 3

2 Principle and definitions

Let us now give some definitions that are used throughout the proofs and the
description of the algorithm. We first extend the previous pj and qj notations to
Q(X) and P (X) where X is a set of jobs. We also define the surface (sometimes
also called the area) of a set of jobs as S(X) = Σj∈Xqjpj. A layer is a set of
jobs which are scheduled sequentially on the same organization. The length of
a layer Lay is P (Lay), the sum of the processing time of all the jobs in Lay. A
shelf is a set of jobs which are scheduled on the same organization, and which
start at the same time. Given a shelf sh, the value Q(sh) is called the height
of sh. What we call a bin can be seen as a reservation of a certain number of
processors (generally m) during a certain amount of time. The algorithm will
add some jobs to bins, and given a bin b, we denote by Q(b) the value Σ{j∈b}qj .
Given a sequence of bins seq, we denote by Q(seq) the value Σb∈seqQ(b). These
notations are extended in the same way for P and S. In the whole paper, we
consider that the sets of jobs used as parameters in the algorithms are modified
after the calls.

Let us sketch how 5/2 algorithm is constructed. Let OPT denote the value
of an optimal solution. We target a 5

2 ratio by both ensuring that, for each
organization at least half of the processors are used at any time before the
starting time of the last job, and that the small jobs (whose processing time is
lower than OPT/2 and height lower than m/2) are scheduled at the end. Thus,
if the makespan of the final schedule is due to a small job, it is lower than the
processing time of the small job plus the starting time of this job, implying a
makespan lower than OPT/2 + 2OPT = 5OPT/2. As the optimal value is not
known, we use the well known dual approximation technique [13]. Let w denote
the current guess of OPT . The schedule is built in three steps. In the first one
we compute a preallocation π0 of the “big” (pj > w/2 or qj > m/2) jobs. Then
we apply a list algorithm which turns π0 into a “compact” schedule π1 (see
Section 4). Finally, the final schedule π is constructed by adding to π1 the small
remaining jobs using again a list algorithm (see also Section 4).

Let us define the following sets:

• let LH = {j|qj > m/2} be the set of high jobs
• let LXL = {j|pj > 3w/4} be the set of extra long jobs
• let LL = {j|3w/4 ≥ pj > w/2} be the set of long jobs
• let LB = (LXL

⋃

LL)
⋂

LH be the set of huge jobs
• let I ′ = LH

⋃

LXL

⋃

LL

We will prove that either we schedule I with a resulting makespan lower
than 5w/2, or w < OPT . Notice that for the sake of simplicity we did not add
the “reject” instructions in the algorithm. Thus we consider in all the proof that
w ≥ OPT , and it is implicit that if one of the claimed properties is wrong during
the execution, the considered w should be rejected. Notice that we only consider
the w values such that Q(LXL

⋃

LL) ≤ Nm and P (LH) ≤ Nw.
We start by providing in Section 3 the three phase algorithm Build Prealloc

that builds the preallocation π0 of the jobs of I ′. We will denote by πi
0 the set of

4 Bougeret, Dutot, Jansen, Otte, Trystram

preallocated jobs in organization Oi. In phase 1 we preallocate the high jobs. In
phase 2 and phase 3 we preallocate the long and extra long jobs by first packing
shelves of jobs into bins, and then putting these bins into organizations. An
example of a preallocation is depicted Figure 1.

3 Construction of the preallocation

3.1 Phase 1

Let N1 be the number of organizations used in phase 1. In phase 1, the jobs of
LH are packed in N1 organizations. The Create Layer(X, l) procedure creates
a layer Lay of length at most l, using a Best Fit (according to the processing
times) policy (BFP). Thus, Create Layer(X, l) add at each step the longest
job that fits. Thus, phase 1 calls for each organization (until LH is empty)
Create Layer(LH , 5w/2).

Let us introduce some notations. Let Layi denote the set of jobs scheduled
in the layer created in organization Oi. Let L1

XL and L1
L denote the remaining

jobs of LXL and LL after phase 1. Thus, for the moment we have πi
0 = Layi for

all i ≤ N1.

Lemma 1 (phase 1). If ∃i0 < N1 such that P (πi0
0) ≤ 2w then it is straight-

forward to pack all the jobs of I ′. Otherwise, we get ∀i ∈ {1, . . . , N1 − 1},
S(πi

0) > wm and N1 ≤ ⌈N/2⌉ .

Proof. First let us notice that phase 1 ends, as P (LH) ≤ Nw and P (πi
0) > w

for every organization where we do not run out of jobs to schedule. We first
suppose that ∃i0 < N1 such that P (πi0

0) ≤ 2w. In this case we just have to prove
that it is straightforward to preallocate LXL

⋃

LL. We proceed by contradiction
by supposing that we never ran out of jobs of LXL

⋃

LL. When the algorithm
creates a layer for a organization i, we know due to the BFP order that it
will pack at least two jobs of LB, if LB is not empty. The hypothesis implies
that during the execution of phase 1, LH \ LB was empty before LB. Thus, for
i < N1, there is at least two jobs of LB in πi

0, meaning that ∀i with 1 ≤ i <
N1, Q((LXL

⋃

LL)
⋂

πi
0) > m.

Concerning the N −N1 other organizations, we can create shelves of jobs of
LL

⋃

LXL using a best fit according to the height (BFH), implying that each
shelf has a height of at least 2m/3 according to Lemma 2. Packing two shelves in
each organization, we get ∀i > N1, Q((LXL

⋃

LL)
⋂

πi
0) > 4m/3 > m.

Finally, let us check what is scheduled in organization N1. If two jobs of
LB are scheduled in this organization, then Q((LXL

⋃

LL)
⋂

πN1

0) > m. If one
job of LB is scheduled, then we create one shelf of jobs of LXL

⋃

LL, and
Q((LXL

⋃

LL)
⋂

πN1

0) > m/2 + 2m/3. If no huge job is scheduled in organiza-
tion N1, we pack as before two shelves of jobs of LXL

⋃

LL. Thus, if in every
case we have Q((LXL

⋃

LL)
⋂

πN1

0) > m. Thus, we get Q((LXL

⋃

LL)) > Nm,
which is impossible.

Approximating the non-contiguous Multiple Organization Packing Problem 5

Let us prove the second part of the lemma. First notice that for any i <
N1, S(πi

0) > 2wm/2 = mw. Moreover, we have 2(N1 − 1)w < ΣN1

i=1P (πi
0) =

P (LH) ≤ Nw, implying N1 ≤ ⌈N/2⌉.⊓⊔

Thus, we now assume until the end of the proof that we are in the second
case of Lemma 1 where ∀i ∈ {1, . . . , N1 − 1}, S(πi

0) > mw and N1 ≤ ⌈N/2⌉.

3.2 Phase 2

In phase 2 the jobs of L1
XL

⋃

L1
L are scheduled in organization N1 by creating

shelves according to what is already scheduled in organization N1. We denote
by L2

XL and L2
L the remaining jobs of L1

XL and L1
L after phase 2. Let us first

define two procedures used for phase 2 and phase 3.

The procedure Pack Shelf(X, b, f) creates a shelf sh using the Best Fit (ac-
cording to the height) policy (BFH), and packs it into bin b. The f parameter
represents the available height of b (meaning that b corresponds to f free pro-
cessors during a certain amount of time), implying of course that Q(sh) ≤ f .
Thus Pack Shelf(X, b, f) adds at each step the highest possible job of X that
fits. We assume that the length of the bin is larger than pj , for all j ∈ X .

The procedure GreedyPack(X, seq) creates for each empty bin b ∈ seq one
shelf of jobs of X using Pack Shelf(X, b, m). This procedure returns the last
bin in which a shelf has been created. Let us now come back to the description
of phase 2.

Depending on the set of jobs already scheduled in ON1
, the Create Padding()

procedure creates nbinL
empty bins of length 3w/4 and nbinXL

empty bins of
length w, which are added in organization ON1

. Let us define for each case how
many bins of each type are created by Create Padding():

• If P (LayN1
) ∈]3w/2, 7w/4] then set (nbinL

, nbinXL
) to (1, 0)

• If P (LayN1
) ∈]w, 3w/2] then set (nbinL

, nbinXL
) to (0, 1)

• If P (LayN1
) ∈]3w/4, w] then

if Q(L1
L) ≥ 5/4 then set (nbinL

, nbinXL
) to (2, 0)

else set (nbinL
, nbinXL

) to (0, 1)

• If P (LayN1
) ∈]w/2, 3w/4] then set (nbinL

, nbinXL
) to (1, 1)

• If P (LayN1
) ∈ [0, w/2] then set (nbinL

, nbinXL
) to (0, 2)

Let padL be a sequence of nbinL
bins of length 3w/4 and padXL be a sequence

of nbinXL
bins of length w. Create Padding() returns (padL, padXL). All in all,

phase 2 can be described by the following procedure calls:

• Let (padL, padXL) = Create Padding()

• GreedyPack(L1
XL, padXL)

• GreedyPack(L1
L, padL)

• GreedyPack(L1
L, padXL)

6 Bougeret, Dutot, Jansen, Otte, Trystram

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
����
����
����
����

����
����
����
��������
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����

���
���
���
���

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

����������

w 2w

O_1

O_2

w 2w

O_3

O_4
Bin created by
"Create_Padding"

Shelves packed by

L_B

L_L

L_H

L_XL

procedure "add"

Fig. 1. An example of pre-allocation

3.3 Phase 3

In phase 3 we first schedule the jobs of L2
XL using the N2 = N − N1 remaining

organizations. Then, we schedule the jobs of L2
L using also this N2 organizations.

Finally, the possibly remaining jobs of L2
L are added to the last bin used for the

extra long jobs. Therefore, let us define the add(X, b) procedure. The add(X, b)
procedure packs one or two “small” shelves of jobs of X in the bin b (starting
from the top of the bin for the sake of clarity). Notice that, as b will be the last
bin used for extra long jobs, the available height (for the jobs of X) in b will be
generally lower than m. Here is the description of add(X, b):

• If the left side of b is at time w then let l = 2 else let l = 1
• Repeat l times the call Pack Shelf(X, b, m − Q(b)) and pack the created

shelves in b.

An example of a call to the add procedure is given in Figure 1 for the case where
l = 2.

We now define two sequences of bins seqXL and seqL, such that every bin
of seqXL (resp. seqL) will (possibly) contains one shelf of jobs of L2

XL (resp.
L2

L). Notice that a free organization can be seen as two bins of length w (and
height m), three bins of length 3w/4, or one bin of length w and two bins of
length 3w/4. Thus, seqXL is composed of 2(N − N1) bins

(

b1, . . . , b2(N−N1)

)

of
length w, considering that we created two bins in each of the organizations
{ON1+1, . . . ON}, starting from ON1+1. This implies that for all i ≥ 1, bins
b2i−1 and b2i are in ON1+i. The sequence seqL is composed of 3(N − N1) bins
(

b′1, . . . , b
′
3(N−N1)

)

of length 3w/4, considering that we created three bins in each

of the organizations {ON1+1, . . . ON}, from ON to ON1+1. This implies that for
all i ≥ 1, bins b′3i−2, b′3i−1 and b′3i are in ON−i+1. Notice that these two sequences
are not ordered in the same way.

All in all, phase 3 can be described by the following procedure calls:

• Let last = GreedyPack(L2
XL, seqXL)

• GreedyPack(L2
L, seqL)

Approximating the non-contiguous Multiple Organization Packing Problem 7

• add(L2
L, last)

Let start the analysis of phase 3 with a remark about Pack Shelf(X, b, f).

Lemma 2. Let Sh denote the shelf created by Pack Shelf(X, b, f). If we know
that the k highest jobs of X fit in f , then Q(Sh) > k

k+1f .

Proof. Let x be the cardinal of X . Let us assume that qi ≥ qi+1 for 1 ≤ i < x.
Let i0 ≥ k+1 be the first index such that job i0 is not in Sh. Let a = Σi0−1

i=1 qi. We
have Q(Sh) ≥ a ≥ (i0 − 1)qi0 > (i0 − 1)(f − a) leading to a > i0−1

i0
f ≥ k

k+1f .⊓⊔

Lemma 3 (phase 3). If there remains an unscheduled job after phase 3, then
S(L2

XL

⋃

L2
L) > (N2 + 1/8)mw.

Proof. Let us first suppose that L2
XL 6= ∅. Let aXL = 2(N −N1) be the number

of bins in seqXL. After having filled the first aXL − 1 bins (using a width of at
least 2/3 according to Lemma 2), the width of remaining jobs of L2

XL is strictly
larger than m. Thus we get Q(L2

XL) > 2m/3(aXL − 1) + m = 4m/3N2 + m/3 and
S(L2

XL) > (N2 + 1/4)mw.
We now suppose that L2

XL = ∅. In every organization that contains two bins
of jobs of L2

XL, the total scheduled area is strictly larger than 2× 2m/3 × 3w/4 =
wm. In every organization that contains three bins of jobs of L2

L, the total
scheduled area is strictly larger than 3 × 2m/3 × w/2 = wm. We have to consider
two cases according to the position of the last bin last (the left side of last may
be located at time 0 or w). Let i0 be the index of the organization that contains
last.

In the first case where the left side of last is at time 0, two bins (of length
3w/4 and height m) were created after the bin last in organization Oi0 . Then, if
the remaining jobs of L2

L do not fit in last, the total area of the jobs scheduled
in organization Oi0 is strictly larger than (22m/3 + m)w/2 > 7wm/6. Then we just
sum the area packed over all the organizations, and get the desired result.

In the second case where the left side of last is at time w (as depicted in
Figure 1), the only room in organization Oi0 to schedule jobs of L2

L is in last.
In organization Oi0 , the area of (extra long) jobs contained in the first bin is
strictly larger than wm/2. The add procedure will create two shelves (one next
to the other) of jobs of L2

L in last.
Let last′ and L′

L be the set of jobs in last and L2
L respectively, just before the

call of the add procedure. If Q(last′) > m/2, and as the remaining jobs of L2
L don’t

fit in last, we have that Q(L′
L) > m − Q(last′)′. This implies S(last′

⋃

L′
L) >

3w/4Q(last′) + w/2(m − Q(last)′) > 5wm/8. If Q(last′) ≤ m/2 (see Figure 1) then
add creates a first shelf of jobs of L2

L of height at least (m−Q(last′))/2, and then tries
to pack the remaining jobs in the second shelf. Thus in this case, S(last′

⋃

L′
L) >

3w/4Q(last′) + w/2

(

(m−Q(last′))
2 + m − Q(last′)

)

> 3mw/4.⊓⊔

3.4 Main algorithm

In this section we recall the overall algorithm that builds the preallocation, and
we provide the main proof of the preallocation. Notice that we drop the Li

L and

8 Bougeret, Dutot, Jansen, Otte, Trystram

Li
XL notations for writing the algorithm as we consider that the sets of jobs

(used as parameters in the procedures) are modified after the calls.

Algorithm 1 Build Prealloc(I ′)
Phase 1 [1] Let i = 0

[2] Let i = i + 1, and let Layi = Create Layer(LH , 5w/2)
Pack Layi in organization Si from time 0
[3] Repeat step 3 until LH is empty

Phase 2 [4] Let (padL, padXL) = Create Padding()
[5] Let last = GreedyPack(LXL, padXL)
[6] Call GreedyPack(LL, padL)
[7] Call GreedyPack(LL, padXL)

Phase 3 [8] Let seqXL and seqL be defined as described in Section 3.3
[9] Let last2 = GreedyPack(LXL, seqXL)
[10] If last2 is not null, set last to last2
[11] Call GreedyPack(LL, seqL)
[12] Call add(LL, last)

Theorem 1. Build Prealloc(I ′) creates a preallocation π0 of makespan lower
than 5w/2.

Proof. Remind that L1
XL and L1

L denote the remaining jobs of LXL and LL after
Phase 1. The makespan of the preallocation is by construction lower than 5w/2.
We know that according to Lemma 1 phase 1 terminates and the area scheduled
in the first N1 − 1 organizations is greater than (N1 − 1)wm. We proceed by
contradiction by supposing that L1

XL

⋃

L1
L is not empty after Phase 2 and Phase

3, and showing that S(I ′) > Nmw. We proceed by case analysis according to
what is scheduled in ON1

.
If P (LayN1

) > 7
4w, then S(LayN1

) > 7
8mw and CreatePadding doesn’t

create any bin. If L1
XL and L1

L are not completely scheduled by phase 3, then
according to Lemma 3 we get S(L1

XL

⋃

L1
L) > (N2 + 1

8)mw. Thus in this case
we have S(LayN1

⋃

L1
XL

⋃

L1
L) > (N2 + 1)mw, implying S(I ′) > Nmw.

If 7
4w ≥ P (LayN1

) > 3
2w, then S(LayN1

) > 3
4mw and CreatePadding cre-

ates one bin of length 3
4w. Recall that the jobs of L1

L are first scheduled in padL.
If Q(padL) is larger than m

2 , then S(LayN1

⋃

padL) > 3
4mw + 1

4mw = mw.
Thus, the total area packed in the first N1 is strictly larger than N1wm. Then,
according to Lemma 3, L2

XL

⋃

L2
L must fit in the N2 remaining organizations. If

Q(padL) ≤ m
2 , then the N2 remaining organizations are available for L1

XL. Thus,
if L1

XL 6= ∅ at the end, then S(L1
XL) > (N2 + 1

4)mw, and S(LayN1

⋃

L1
XL) >

(N2 + 1)mw.
If 3

2w ≥ P (LayN1
) > w, then S(LayN1

) > 1
2mw and CreatePadding creates

one bin of length w. If Q(padXL) is larger than 2m
3 then S(LayN1

⋃

pad1
XL) >

mw and we conclude with Lemma 3. Otherwise, the N2 remaining organizations
are available for L1

L. Moreover, remind that in this case the only bin in padXL

will be used for jobs of LL during the call of add. Then, if L1
L does not fit, we have

Q(L1
L

⋃

L1
XL) > (2N2 +1)m and S(LayN1

⋃

L1
L

⋃

L1
XL) > mw

2 +N2wm+ wm
2 =

(N2 + 1)mw.

Approximating the non-contiguous Multiple Organization Packing Problem 9

If w ≥ P (LayN1
) > 3

4w, then S(LayN1
) > 3

8mw and two cases are possi-
ble according to the value of Q(L1

L). If Q(L1
L) ≥ 5m

4 , CreatePadding creates
two bins of length 3

4w. Then, S(LayN1

⋃

padL) > (3
8 + 5

8)mw and we conclude
with Lemma 3. Otherwise, if Q(L1

L) < 5m
4 , CreatePadding creates one bin

padXL of length w. If Q(padXL) (after the call line 5) is larger than 2m
3 then

S(LayN1

⋃

pad1
XL) > 7

8mw and we conclude with Lemma 3. Otherwise, jobs of
L1

XL are all scheduled in padXL. As N2 ≥ 1, at least three bins are available for
L1

L, which is sufficient given that Q(L1
L) < 5m

4 .
If 3

4w ≥ P (LayN1
) > 1

2w, then S(LayN1
) > 1

4mw and CreatePadding cre-
ates one bin of length w and one bin of length 3

4w. If extra long jobs are not
scheduled at the end of the algorithm, then S(LayN1

⋃

padXL) > 3
4mw. Since

L2
XL do not fit into N2 free organizations, we have also S(L2

XL) > (N2 + 1
4)mw.

Thus we conclude that the extra long jobs are successfully scheduled. Let us sup-
pose now that the long jobs are not completely scheduled. If Q(padXL) ≥ 5m

9
then S(LayN1

⋃

padXL

⋃

padL) > (1
4 + 5

12 + 1
3)mw = mw. Otherwise, let L′

L

denote the set of remaining jobs of L1
L just before the call to add. The area sched-

uled in the N2 last organizations is larger than the one scheduled in the optimal.
If L′

L does not fit in padXL during the call to add, then Q(L1
XL + L′

L) > m and
S(LayN1

⋃

padL

⋃

padXL

⋃

L′
L) > (1

4 + 1
3 + 1

2)mw > mw.
If 1

2w > P (LayN1
), CreatePadding creates two bins of length w. If N1 > 1,

then S(
⋃N1

i=1 Layi) > S(
⋃N1−2

i=1 Layi) + 5
4mw > (N1 − 1)mw + 1

4mw because the
first job of LayN1

does not fit in the previous organization. Thus, if Q(L1
XL) > m

then we have S(
⋃N1

i=1 Layi

⋃

padXL) > N1mw and we conclude with Lemma 3.
Otherwise, we have an empty bin in the sequence padXL and N2 free organi-
zations available for L1

L. Let L′
L be L1

L before the call to add. If add does not

schedule L′
L in last then Q(L1

XL)+Q(L′
L) > m and S(

⋃N1

i=1 Layi

⋃

L1
XL

⋃

L′
L) >

(N1 − 3
4 + 1

3 + 1
2)mw > N1mw. If N1 ≤ 1 then we have two bins of length w in

each of the N organizations, which is of course sufficient to pack L1
XL

⋃

L1
L.⊓⊔

4 From the preallocation to the final schedule

From now on, we suppose that the preallocation π0 is built. For each organiza-
tion Oi, π0 indicates first a (possibly empty) sequence of high jobs ji

1, . . . , j
i
xi

that have to be scheduled sequentially from time 0. Then, π0 contains an or-
dered sequence of shelves Shi

1, . . . , Shi
x′

i

. Moreover, the makespan of π0 is by

construction less than 5w/2.

Definition 1. Let ui(t) be the utilization of organization Oi at time t, i.e. ui(t)
is the sum of all the qj for any job j which scheduled on organization i at time
t. A schedule is 1/2 compact if and only if for every organization Oi there exists
a time ti such that for all t ≤ ti, ui(t) ≥ m/2 and ui restricted to t > ti is not
increasing.

Let us now describe the algorithm LSπ0
which turns π0 into a 1/2 compact

schedule π1 of I ′. We first define the procedure Add Asap(X, Oi) which scans

10 Bougeret, Dutot, Jansen, Otte, Trystram

organization Oi from time 0, and for every time t starts any possible job(s) in X
that fit(s) at time t. The LSπ0

works as follows: for every organization Oi, pack
first sequentially the high jobs ji

x for 1 ≤ x ≤ xi and then call Add Asap(Shx, Oi)
for 1 ≤ x ≤ x′

i.

Lemma 4. The makespan of π1 is lower than the one of π0, and π1 is 1/2

compact.

Proof. Let σi be a schedule in a (single) organization Oi (of makespan Ci), let
X be a set of jobs and let σ′

i be the schedule (of makespan C′
i) produced by

Add Asap(X, Oi). If σi is 1/2 compact and if forall j ∈ X, qj ≤ m/2, then σ′
i is

1/2 compact. The proof is straightforward by induction on the cardinality of X .
Moreover, if

∑

X qj ≤ m, then C′
i ≤ Ci + maxXpj because in the worst case

all the jobs of X only start at time Ci. Using these two properties, we prove
the lemma for every organization Oi by induction on the number of call(s) to
Add Asap(Shx, Oi).⊓⊔

Remark 1. Notice that in Lemma 4 we do not take care of the particular struc-
ture which occurs when add creates two shelves of jobs of LL as depicted Figure 1.
However, it is easy to see that the proof can be adapted.

Now that π1 is built, we add the small remaining jobs (I \ I ′) using a list
algorithm that scans all the organizations from time 0 and schedules as soon as
possible any non scheduled job. Let π denote the obtained schedule.

Theorem 2. The makespan of π is lower than 5w/2.

Proof. The proof is by induction on the cardinal of I \ I ′. At the beginning, π1

is 1/2 compact, as proved in Lemma 4. Each time a job j is scheduled by the list
algorithm, the obtained packing remains 1/2 compact because qj ≤ m

2 . Thus it
is clear that π is 1/2 compact.

Let us assume that the makespan of π is due to a job j ∈ I \ I ′ that starts
at time s. As π is 1/2 compact, this implies that when scheduling job j we had

ti ≥ s for any organization i. Thus, we have S(I) >
∑N

i=1
ti

2 ≥ N s
2 , implying

that s < 2w, and thus that the makespan of π is lower than 5w/2.⊓⊔

5 Complexity

Phase 1 can be implemented in O(Nn + n log(n)). Indeed, we first sort the high
jobs in non increasing order of their processing times. Then, each layer can be
created in O(n). Phase 2 and phase 3 can also be implemented in O(Nn +
n log(n)) by sorting the long (and extra long) jobs in non increasing order of
their required processors. Thus π0 is constructed in O(Nn + n log(n)).

The LSπ0
algorithm can be implemented in O(n log(n)). Instead of scanning

time by time and organization by organization, this algorithm can be imple-
mented by maintaining a list that contains the set of “currently” scheduled jobs.
The list contains 3-tuples (j, t, i) indicating that job j (scheduled on organization

Approximating the non-contiguous Multiple Organization Packing Problem 11

i) finishes at time t. Thus, instead of scanning every time from 0 it is sufficient
to maintain sorted this list according to the t values (in non decreasing order),
and to only consider at every step the first element of the list. Then, it takes
O(log(n)) to find a job j0 in the appropriate shelf that fits at time t, because a
shelf can be created as a sorted array. It also takes O(log(n)) to insert the new
event corresponding to the end of j0 in the list.

The last step, which turns π1 into the final schedule can also be implemented
in O(n log(n)) using a similar global list of events. Notice that for any orga-
nization Oi, there exists a ti such that before ti the utilization is an arbitrary
function strictly larger than m/2, and after ti a non increasing after. Scheduling a
small job before ti would require additional data structure to handle the complex
shape. Thus we do not schedule any small job before ti as it is not necessary for
achieving the 5/2 ratio. Therefore, we only add those events that happen after
ti when initializing the global list for this step. To summarize, for this step we
only need to sort the small jobs in non increasing order of their required number
of processors, and then apply the same global list algorithm.

The binary search on w to find the smallest w which is not rejected can be
done in O(log(npmax)) as all the processing times can be assumed to be integers.
Thus the overall complexity of the 5w/2 approximation is in O(log(npmax)n(N +
log(n))).

6 Toward better approximation ratios

In this paper we provided a low cost 5/2-approximation algorithm using a new
approach. We discuss in this section how the proposed approach can be used for
reaching better approximation bounds. The approach can be summarized in the
two following main steps. The first one consists in constructing a 1/2 compact
schedule π1 of the big jobs I ′ by creating a pre-allocation π0 and “compressing”
it. Then, the remaining small jobs (I \ I ′) are added to π1 in a second step using
the classical list scheduling algorithm LS.

We would like to recall the arguments that make our second step easy to
analyze, and see what could be some other promising partitions. In our partition,
the second step guaranties a makespan lower than 5w/2 because:

• adding a job j with qj ≤ m/2 to a 1/2 compact schedule with LS produces
another 1/2 compact schedule,

• if the makespan is due to a small job j0 that starts at time s0, then s0 ≤
2w (since the schedule is 1/2 compact), leading to a makespan lower than
s0 + pj0 ≤ 5w/2.

Let us now propose other partitions that could be considered. We could define
I ′ = {j|qj > αmi or pj > βw} with appropriate values 0 < α < 1 and 0 < β < 1.
Then, the previous steps become:

1. construct a pre-allocation π0 of I ′ (for instance based on shelves and layers)
and make sure that, when compressed using LSπ0

, the obtained schedule

12 Bougeret, Dutot, Jansen, Otte, Trystram

π1 is 1 − α compact (meaning that for every organization, the utilization is
greater than 1 − α, and then it is non-increasing),

2. add the small remaining jobs (I \ I ′) using LS.

Thus, the makespan of jobs added in the second step would be bounded by
b = (1

1−α
+ β)w, implying that the makespan of the pre-allocation should also

be bounded by b.
For example, we can target a 7/3 ratio by only studying how to pre-allocate

I ′ = {j|qj > mi

2 or pj > w
3 }, or a ratio 2 by studying how to pre-allocate

I ′ = {j|qj > mi

3 or pj > w
2 }. Obviously, if the preallocation is built using again

shelves and layers, the difficulty will probably arise when merging the different
types of jobs (high, extra long or long ones for example), and will may be only
need to handle more particular cases.

Let us remark that this technique will not be easy to apply with (contiguous)
rectangles, since the property of 1/2 compactness becomes hard to guarantee.

References

1. S. Zhuk, “Approximate algorithms to pack rectangles into several strips,” Discrete
Mathematics and Applications, vol. 16, no. 1, pp. 73–85, 2006.

2. E. Coffman Jr, M. Garey, D. Johnson, and R. Tarjan, “Performance bounds for
level-oriented two-dimensional packing algorithms,” SIAM J. Comput., vol. 9,
p. 808, 1980.

3. I. Schiermeyer, “Reverse-fit: A 2-optimal algorithm for packing rectangles,” Lecture
Notes in Computer Science, pp. 290–290, 1994.

4. A. Steinberg, “A strip-packing algorithm with absolute performance bound 2,”
SIAM Journal on Computing, vol. 26, p. 401, 1997.

5. C. Kenyon and E. Rémila, “A near-optimal solution to a two-dimensional cutting
stock problem,” Mathematics of Operations Research, pp. 645–656, 2000.

6. K. Jansen and R. Solis-Oba, “New approximability results for 2-dimensional pack-
ing problems,” Lecture Notes in Computer Science, vol. 4708, p. 103, 2007.

7. D. Ye, X. Han, and G. Zhang, “On-Line Multiple-Strip Packing,” in Proceedings of
the 3rd International Conference on Combinatorial Optimization and Applications,
p. 165, Springer, 2009.

8. M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram, “Approxima-
tion algorithm for multiple strip packing,” Proceedings of the 7th Workshop on
Approximation and Online Algorithms (WAOA), 2009.

9. M. Garey and R. Graham, “Bounds for multiprocessor scheduling with resource
constraints,” SIAM J. Comput., vol. 4, no. 2, pp. 187–200, 1975.

10. U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour, “Online scheduling in grids,”
in Proceedings of IPDPS, pp. 1–10, 2008.

11. P.-F. Dutot, F. Pascual, K. Rzadca, and D. Trystram, “Approximation algorithms
for the multi-organization scheduling problem,” Submitted to: IEEE Transactions
on Parallel and Distributed Systems (TPDS), 2010.

12. P.-F. Dutot, G. Mounié, and D. Trystram, Handbook of Scheduling, ch. Scheduling
Parallel Tasks: Approximation Algorithms. CRC Press, 2004.

13. D. S. Hochbaum and D. B. Shmoys, “A polynomial approximation scheme for
scheduling on uniform processors: Using the dual approximation approach,” SIAM
J. Comput., vol. 17, no. 3, pp. 539–551, 1988.

