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Abstract. We show that the description logic SOQ with number re-
strictions on transitive roles is decidable by a terminating tableau cal-
culus. The language decided by the calculus includes the universal role,
which allows us to internalize TBox axioms. Termination of the system
is achieved through pattern-based blocking.

1 Introduction

Number restrictions on roles are an expressive feature of description logics that
allows to impose counting constraints on the number of objects that are related
via a certain role. Qualified number restrictions [6] correspond to graded modal-
ities [4, 3, 5] in modal logics. Transitive roles are prominently used in description
logics for representing parthood relationships [21].

Efficient tableau algorithms are available for a wide range of description log-
ics, including logics that contain both transitive roles and number restrictions,
such as SIN [11], SHIF [8, 13], SHIQ [12], SHOQ [9], SHOIQ [10], and
SROIQ [7]. In all cases, however, the language is restricted to contain no num-
ber restrictions on complex roles, e.g., on transitive roles, or roles containing
transitive subroles. Although desirable for applications [19], number restrictions
on complex roles lead to undecidability for logics extending SHIN [13]. In the
absence of inverse roles (I), however, the limitation of number restrictions to
simple roles can be significantly relaxed [19]. In particular, the result in [19] im-
plies the decidability of SQ extended by number restrictions on transitive roles.
Obtained via a small model theorem, this decidability result does not yield prac-
tical decision procedures. Nor does it imply the decidability of extensions of SQ
with nominals.

We consider the logic SOQ with number restrictions on transitive roles, and
call it SOQ+. As indicated by its name, SOQ+ extends the basic description
logic ALC [23] by primitive transitive roles (S), nominals (O), and qualified num-
ber restrictions (Q), where we allow such restrictions on transitive roles (+). We
show that reasoning in SOQ+ is decidable by giving a terminating tableau cal-
culus for concept satisfiability in SOQ+ extended by the universal role. Having
the universal role in the language allows us to internalize terminological axioms,
reducing reasoning with respect to TBoxes to concept satisfiability [1, 22].

⋆ A preliminary version of this work appeared in [17].



For termination, our calculus employs pattern-based blocking. Pattern-based
blocking is introduced in [15, 16] for converse-free hybrid logic with global modal-
ities. In [14], the technique is extended to graded logics subsuming SOQ and
SHOQ. To provide a complete treatment of number restrictions on transitive
roles, we extend pattern-based blocking further, incorporating ideas [25, 2] used
in tableau systems for propositional dynamic logic and propositional µ-calculus.

2 Preliminaries

Following [15, 16, 14], our formal presentation is based on simple type theory.
Notationally, our presentation is based on modal syntax, but can easily be trans-
lated to the traditional DL notation [22]. We start with two base types B and
I. The interpretation of B is fixed and consists of the two truth values. The in-
terpretation of I is a nonempty set whose elements are called individuals. Given
two types σ and τ , the functional type στ is interpreted as the set of all total
functions from the interpretation of σ to that of τ . We write σ1σ2σ3 for σ1(σ2σ3).

We employ three kinds of variables: Nominals x, y, z of type I (we assume
there are infinitely many nominals), propositional variables p, q of type IB, and
role variables r of type IIB. Since the language in question contains no role
expressions other than role variables, we call role variables roles for short. We
use the logical constants ⊥,⊤ : B, ¬ : BB, ∨,∧,→: BBB,

.
= : IIB, ∃, ∀ : (IB)B.

Terms are defined as usual. We write st for applications, λx.s for abstractions,
and s1s2s3 for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational
conventions: ∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x6

.
=y for ¬(x

.
=y).

Let us write ∃X.s for ∃x1 . . . xn.s if |X | = n and X = {x1, . . . , xn}. Also,
given a set X of nominals, we use the following abbreviation:

DX :=
∧

x,y∈X
x 6=y

x6
.
=y

We use the following constants, which we call modal operators.

¬̇ : (IB)IB ¬̇p = λx.¬px

∧̇ : (IB)(IB)IB p ∧̇ q = λx. px ∧ qx

∨̇ : (IB)(IB)IB p ∨̇ q = λx. px ∨ qx

〈 〉n : (IIB)(IB)IB 〈r〉np = λx.∃Y.DY ∧ (
∧

y∈Y rxy ∧ py)

[ ]n : (IIB)(IB)IB [r]np = λx.∀Y. (
∧

y∈Y rxy) ∧DY →
∨

y∈Y py

En : (IB)IB Enp = λx.∃Y.DY ∧
∧

y∈Y py

An : (IB)IB Anp = λx.∀Y.DY →
∨

y∈Y py

˙ : IIB ẋ = λy.x
.
=y

T : (IIB)B Tr = ∀xyz.rxy ∧ ryz → rxz

where n ≥ 0 and |Y | = n + 1 in all equations



To the right of each constant is an equation defining its semantics. Formulas of
the form [r]ntx are called box formulas or boxes, and formulas 〈r〉ntx are called
diamond formulas or diamonds. The semantics of boxes and diamonds is defined
following [3, 5]. Intuitively, it can be described as follows:
– 〈r〉np: There are at least n+ 1 r-successors satisfying p.
– [r]np: All r-successors but possibly n exceptions satisfy p.
Our language does not contain a dedicated symbol for the universal role. Instead,
we use graded global modalities En and An, which are semantically equivalent
to qualified number restrictions on the universal role. So, for instance, E1p holds
if there are at least two distinct states satisfying p. Formulas of the form Tr are
called transitivity assertions. We assume the application of modal operators to
have a higher precedence than regular functional application. So, for instance,
we write ¬̇〈r〉2ẏ ∨̇ p x for ((¬̇(〈r〉2(ẏ))) ∨̇ p)x.

A modal interpretation M is an interpretation of simple type theory that
interprets B as the set {0, 1}, ⊥ as 0 (i.e., false), ⊤ as 1 (i.e., true), maps I
to a non-empty set, gives the logical constants ¬, ∧, ∨, →, ∃, ∀,

.
= their usual

meaning, and satisfies the equations defining the modal operators ¬̇, ∧̇, ∨̇, 〈 〉n,
[ ]n, E, A, ˙ and T . If Mt = 1, we say that M satisfies t. A formula is called
satisfiable if it has a satisfying modal interpretation.

3 Branches

For the sake of simplicity, we will define our tableau calculus T on negation
normal modal expressions, i.e., terms of the form:

t ::= p | ¬̇p | ẋ | ¬̇ẋ | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

A branch Γ is a finite set of formulas s of the form

s ::= tx | rxy | Tr | x
.
=y | x6

.
=y | ⊥ | α:[r]ntx

where t is a negation normal modal expression. The new form α:[r]ntx serves
algorithmic purposes. The label α of such label introductions is taken from a
countably infinite set of labels. Formulas of the form rxy are called edges. We
use the formula ⊥ to explicitly mark unsatisfiable branches. We call a branch
Γ closed if ⊥ ∈ Γ . Otherwise, Γ is called open. An interpretation M satisfies
a branch Γ if M satisfies all proper formulas on Γ , i.e., all formulas except for
label introductions. Given a finite set of input formulas (i.e., a branch) Γ0, our
tableau calculus decides if Γ0 is satisfiable. We call Γ0 the initial branch. The
initial branch must contain no edges or label introductions. This restriction is
inessential for the expressiveness of the language since label introductions are
semantically irrelevant, and edges rxy can equivalently be expressed as 〈r〉0ẏx.

Let Γ be a branch. With ∼Γ we denote the least equivalence relation ∼ on
nominals such that x ∼ y for every equation x

.
=y ∈ Γ . We define the equational

closure Γ̃ of a branch Γ as

Γ̃ := Γ ∪ {tx | t modal expression and ∃x′ : x′ ∼Γ x and tx′ ∈ Γ}

∪ {rxy | ∃x′, y′ : x′ ∼Γ x and y′ ∼Γ y and rx′y′ ∈ Γ}



4 Evidence and Pre-evidence

The proof of model existence for our calculus T proceeds in three stages. Applied
to a satisfiable initial branch, the rules of T (defined in Sect. 5) construct a quasi-

evident branch (defined in Sect. 6). We show that every quasi-evident branch
can be extended to a pre-evident branch, which, in turn, can be extended to an
evident branch. For evident branches, we show model existence.

We write DΓX as an abbreviation for ∀x, y ∈ X : x 6= y =⇒ x6
.
=y ∈ Γ .

A branch Γ is called evident if it satisfies all of the following evidence conditions :

(t1 ∧̇ t2)x ∈ Γ =⇒ t1x ∈ Γ̃ and t2x ∈ Γ̃

(t1 ∨̇ t2)x ∈ Γ =⇒ t1x ∈ Γ̃ or t2x ∈ Γ̃

〈r〉ntx ∈ Γ =⇒ ∃Y : |Y | = n+ 1 and DΓY and {rxy, ty | y ∈ Y } ⊆ Γ̃

[r]ntx ∈ Γ =⇒ |{y | rxy ∈ Γ̃ , ty /∈ Γ̃}/∼Γ
| ≤ n

Entx ∈ Γ =⇒ ∃Y : |Y | = n+ 1 and DΓY and {ty | y ∈ Y } ⊆ Γ̃

Antx ∈ Γ =⇒ |{y | ty /∈ Γ̃}/∼Γ
| ≤ n

ẋy ∈ Γ =⇒ x ∼Γ y

¬̇ẋy ∈ Γ =⇒ x 6∼Γ y

x6
.
=y ∈ Γ =⇒ x 6∼Γ y

¬̇px ∈ Γ =⇒ px /∈ Γ̃

T r ∈ Γ =⇒ ∀x, y, z : rxy ∈ Γ̃ and ryz ∈ Γ̃ =⇒ rxz ∈ Γ̃

A formula s is called evident on Γ if Γ satisfies the right-hand side of the evidence
condition corresponding to s. For instance, (t1 ∧̇ t2)x is evident on Γ if and only
if {t1x, t2x} ⊆ Γ̃ .

We will now show that evident branches are satisfiable. Given a term t, we
write N t for the set of nominals that occur in t. The notation is extended to
sets of terms in the natural way: NΓ :=

⋃

{N t | t ∈ Γ}.
Given a branch Γ , we construct the interpretation M

Γ by taking as the
domain of S the nominals on Γ , and interpreting propositional variables and
roles as the smallest sets that are consistent with the respective assertions on Γ .
To satisfy the equality constraints on Γ , all nominals that are equivalent modulo
∼Γ are mapped to the same fixed representative.

Let Γ be a branch and let x0 ∈ NΓ . Let ρ be a function from finite sets of
nominals to nominals such that ρX ∈ X whenever X is nonempty. We define
the interpretation M

Γ as follows:

M
Γ S := NΓ

M
Γx := if x ∈ NΓ then ρ{y ∈ NΓ | y ∼Γ x} else x0

M
Γ p := {x ∈ NΓ | px ∈ Γ̃}

M
Γ r := {(x, y) ∈ (NΓ )2 | rxy ∈ Γ̃}

Note that in the last two lines of the definition, we interpret the set notation as
a convenient description for the respective characteristic functions.



Theorem 4.1 (Model Existence). If Γ is an evident branch, then M
Γ sat-

isfies Γ .

Proof. Let Γ be an evident branch. For every s ∈ Γ , we show that M
Γ satisfies

s by induction on s. The details are straightforward. ⊓⊔

To simplify the treatment of transitivity, we introduce the notion of pre-
evidence. We define the relation ⊲r

Γ as the least relation such that:

rxy ∈ Γ̃ =⇒ x ⊲
r
Γ y

x ⊲
r
Γ y and y ⊲

r
Γ z and Tr ∈ Γ =⇒ x ⊲

r
Γ z

We write x Dr
Γ y iff x ∼Γ y or x ⊲r

Γ y.
The pre-evidence conditions are obtained from the evidence conditions by

omitting the condition for transitivity assertions and replacing the condition for
boxes as follows:

[r]ntx ∈ Γ =⇒ |{y |x ⊲
r
Γ y and ty /∈ Γ̃}/∼Γ

| ≤ n

Pre-evidence of individual formulas is defined analogously to the correspond-
ing evidence condition. Note that for all formulas but boxes and transitivity
assertions, the notions of evidence and pre-evidence coincide.

We now show that every pre-evident branch can be extended to an evident
branch. Let the evidence closure Γ̂ of a branch Γ be defined as Γ∪{rxy |x ⊲r

Γ y}.

Proposition 4.1. rxy ∈ Γ̂ ⇐⇒ rxy ∈ ˜̂
Γ ⇐⇒ x ⊲r

Γ y

Theorem 4.2 (Evidence Completion). Γ pre-evident =⇒ Γ̂ evident

Proof. Since Γ̂ differs from Γ only in that Γ̂ may contain more edges, and Γ is
pre-evident, Γ̂ satisfies all of the evidence conditions but possibly the ones for
boxes and transitivity assertions. The evidence condition for transitivity asser-
tions holds in Γ̂ by Proposition 4.1 since ⊲r

Γ is transitively closed for every r
such that Tr ∈ Γ . The condition for boxes is immediate by Proposition 4.1. ⊓⊔

5 Tableau Rules

The tableau rules of our calculus T are defined in Fig. 1. In the rules, we write
∃x ∈ X : Γ (x) for Γ (x1) | . . . | Γ (xn), where X = {x1, . . . , xn} and Γ (x) is
a set of formulas parametrized by x. In case X = ∅, the notation translates to
⊥. Dually, we write ∀x ∈ X : Γ (x) for Γ (x1), . . . , Γ (xn) (X = {x1, . . . , xn}). If
X = ∅, the notation stands for the empty set of formulas.

The side condition of R♦ uses the notion of quasi-evidence, which we will
introduce in Sect. 6. For now, assume the rule is formulated with the restriction
“〈r〉ntx not evident on Γ”.

A box formula [r]ntx is subsumed on Γ if there is a nominal y and a label α
such that y Dr

Γ x and α:[r]nty ∈ Γ . The rule RT is constrained to be applicable



R∧̇

(s ∧̇ t)x

sx, tx
R∨̇

(s ∨̇ t)x

sx | tx

R♦

〈r〉ntx

∀y∈Y : rxy, ty, ∀z ∈ Y, y 6= z : y 6
.
=z

Y fresh, |Y | = n + 1,
〈r〉ntx not quasi-evident on Γ

R�

[r]ntx

∃y, z ∈Y, y 6= z : y
.
=z | ∃y∈Y : ty

Y ⊆ {y |x ⊲
r

Γ y}, |Y | = |Y/∼Γ
| = n + 1

RT

Tr, rxy

α:[r]ntx
α fresh, [r]ntx ∈ Γ̃ , [r]ntx not subsumed on Γ

RE

Entx

∀y∈Y : ty, ∀z∈Y, y 6= z : y 6
.
=z

Y fresh, |Y | = n + 1, Entx not evident on Γ

RA

Antx

∃y, z ∈Y, y 6= z : y
.
=z | ∃y∈Y : ty

Y ⊆ NΓ, |Y | = |Y/∼Γ
| = n + 1

RN

ẋy

x
.
=y

RN̄

¬̇ẋy

x 6
.
=y

R⊥
¬̇

¬̇px

⊥
px ∈ Γ̃ R⊥

6
.
=

x 6
.
=y

⊥
x ∼Γ y

Γ is the branch to which a rule is applied. “Y fresh” stands for Y ∩ NΓ = ∅.
“α fresh” stands for ∄t, x : α:tx ∈ Γ

Fig. 1. Tableau rules for T

only to boxes that are not subsumed on Γ . This ensures, in particular, that RT

is applied at most once to each individual box formula on the branch.
A branch ∆ is called a proper extension of a branch Γ if ∆ ⊇ Γ and ∆̃ ) Γ̃ .

Note that if ∆ is a proper extension of Γ , then in particular it holds ∆ ) Γ .
The converse does not hold: Let Γ := {ẋy, x

.
=z, z

.
=y} and ∆ := Γ ∪ {x

.
=y}.

Then ∆ ) Γ but ∆ is not a proper extension of Γ . We implicitly restrict the
applicability of the tableau rules so that a rule R is only applicable to a formula
s ∈ Γ if all of the alternative branches∆1, . . . , ∆n resulting from this application
are proper extensions of Γ .

Proposition 5.1 (Soundness). Let ∆1, . . . , ∆n be the branches obtained from

a branch Γ by a rule of T . Then Γ is satisfiable if and only if there is some

i ∈ {1, . . . , n} such that ∆i is satisfiable.

6 Blocking Conditions and Quasi-evidence

The restrictions on the applicability of the tableau rules given by the pre-evidence
conditions are not sufficient for termination. Consider Γ0 := {A0〈r〉0px}. An



application of RA to Γ0 yields Γ1 := Γ0 ∪ {〈r〉0px}, which can be extended
by R♦ to Γ2 := Γ1 ∪ {rxy, py}. Now RA is applicable again and yields Γ3 :=
Γ2 ∪ {〈r〉0py}, which in turn can be extended by R♦, and so ad infinitum.

To obtain a terminating calculus, we restrict the rule R♦ by weakening the
notion of pre-evidence for diamond formulas. The weaker notion, called quasi-
evidence, is then used in the side condition of R♦ in place of pre-evidence. Quasi-
evidence must be weak enough to guarantee termination but strong enough to
preserve completeness.

The edge graph of a branch Γ is a labelled graph with the nodes NΓ and
edges {(x, y) | ∃r : rxy ∈ Γ}, where a node x is labelled with all expressions t
such that tx ∈ Γ , and an edge (x, y) is labelled with all roles r such that rxy ∈ Γ .
A branch can always be represented graphically through its edge graph.

u: [r]1¬̇p u: [r]1¬̇p

x: 〈r〉0p y: 〈r〉0p v: p x: 〈r〉0p, ¬̇p y: 〈r〉0p x: 〈r〉0p, ¬̇p y: 〈r〉0p, ¬̇p

z: p z: p z: p

a) b) r transitive c) r transitive

rr

rr

rr

r r

rr

Fig. 2. Number restrictions and transitivity

In [14], the notion of quasi-evidence is based on the following observation.
Let Γ be a branch and x, y be nominals such that: (1) x has no r-successor on Γ ,
i.e., there is no z such that rxz ∈ Γ̃ , (2) for every r-diamond or r-box tx ∈ Γ̃ , it
holds ty ∈ Γ̃ , and (3) all r-diamonds and r-boxes sy ∈ Γ̃ are evident on Γ . Then
all r-diamonds and r-boxes sx ∈ Γ̃ can be made evident by extending Γ with
{rxz | ryz ∈ Γ̃}. As an example, consider the edge graph in Fig. 2(a). There,
the formula 〈r〉0px can be made evident by adding the edge rxz (represented
by the dashed arrow) to the branch. In the presence of transitivity, extending
a branch Γ by an edge rxz may destroy the evidence of r-boxes tu such that
u ⊲r

Γ x (Fig. 2(b)). Note, however, that adding an edge rxz cannot destroy the
evidence of a box tu such that u ⊲r

Γ x if we already have u ⊲r
Γ z (Fig. 2(c)).

To deal with non-local constraints introduced by number restrictions on tran-
sitive roles, we refine the notion of a pattern and the quasi-evidence conditions
from [14]. When blocking a nominal x we have to make sure not to violate any
graded boxes at the predecessors of x. To track the relevant boxes we tag them
with labels.

Given a role r, an r-pattern is a set consisting of modal expressions of the
form µt, where µ ∈ {〈r〉n, [r]n |n ∈ IN}, and labels α, such that, for some n, t, x:
α:[r]ntx ∈ Γ (although not required by the definition, in all cases where patterns



play a role for termination they will contain at least one diamond). We define:

x:Γα ⇐⇒ ∃r, n, t, y : α:[r]nty ∈ Γ and y ⊲
r
Γ x

We write P r
Γx for the largest r-pattern P such that P ⊆ {µt |µtx ∈ Γ̃} ∪

{α |x:Γα}. We call P r
Γx the r-pattern of x on Γ . Looking back at Fig. 2 (b), we

have P r
Γx = {〈r〉0p}, P r

Γu = {[r]1¬̇p}, and P r′

Γ x = ∅ for all r′ 6= r. An r-pattern
P is expanded on Γ if there are nominals x, y such that rxy ∈ Γ and P ⊆ P r

Γx.
In this case, we say that the nominal x expands P on Γ .

A diamond 〈r〉nsx ∈ Γ is quasi-evident on Γ if it is either evident on Γ or
x has no r-successor on Γ and P r

Γx is expanded on Γ . The rule R♦ can only be
applied to diamonds that are not quasi-evident. Note that whenever 〈r〉nsx ∈ Γ
is quasi-evident but not evident (on Γ ), there is a nominal y that expands P r

Γx.
The quasi-evidence conditions are obtained from the pre-evidence conditions

by replacing the condition for diamond formulas and adding a condition for
transitivity assertions and label introductions as follows:

〈r〉ntx∈Γ =⇒ 〈r〉ntx is quasi-evident on Γ

Tr∈Γ =⇒ ∀n, t, x : [r]ntx∈ Γ̃ =⇒ ∃z, α : z D
r
Γ x and α:[r]ntz ∈Γ

α:[r]ntx∈Γ =⇒ [r]ntx∈ Γ̃ and ∃y : rxy ∈Γ and ∀s, z : α:sz ∈Γ =⇒ s= [r]nt

Proposition 6.1. If Γ satisfies the quasi-evidence condition for label introduc-

tions and α:[r]ntx ∈ Γ , then for all y, x ⊲r
Γ y ⇐⇒ y:Γα.

Lemma 6.1. Let Γ be a branch. Let {[r]ntx, [r]nty} ⊆ Γ̃ such that Tr ∈ Γ and

x Dr
Γ y. Then: [r]ntx is pre-evident on Γ =⇒ [r]nty is pre-evident on Γ .

Proof. Let Γ be a branch such that {[r]ntx, [r]nty} ⊆ Γ̃ , Tr ∈ Γ and x Dr
Γ y.

Because ⊲r
Γ is transitively closed, we have x ⊲r

Γ z whenever y ⊲r
Γ z. The claim

follows. ⊓⊔

Lemma 6.2. Let Γ be a quasi-evident branch. Let 〈r〉nsx ∈ Γ be not evident on

Γ , y be a nominal that expands P r
Γx on Γ , and ∆ := Γ ∪{rxz | ryz ∈ Γ̃}. Then:

1. ∀z : rxz ∈ ∆̃ ⇐⇒ ryz ∈ Γ̃ and x ⊲r
∆ z ⇐⇒ y ⊲r

Γ z,
2. ∀m, t : 〈r〉mt ∈ P r

Γx =⇒ 〈r〉mtx is evident on ∆,

3. 〈r〉nsx is evident on ∆,

4. ∀r′,m, t, z : 〈r′〉mtz is evident on Γ =⇒ 〈r′〉mtz is evident on ∆,

5. ∆ is quasi-evident.

Proof. We begin with (1). Let z be a nominal. We only show rxz ∈ ∆̃ ⇔ ryz ∈
Γ̃ . The other claim follows by induction on the construction of ⊲r

Γ and ⊲r
∆. By

construction, it holds ryz ∈ Γ̃ ⇒ rxz ∈ ∆. The converse implication holds by
the fact that 〈r〉nsx is quasi-evident but not evident on Γ , meaning that x has
no r-successor on Γ . It remains to show: rxz ∈ ∆ ⇔ rxz ∈ ∆̃. The direction
from left to right is obvious. For the other direction, assume rxz ∈ ∆̃. Then there
are x′, z′ such that x′ ∼Γ x, z′ ∼Γ z, and rx′z′ ∈ ∆. Since x has no r-successor



on Γ , neither does x′. Hence, since rx′z′ ∈ ∆− Γ , we must have x′ = x, and so
rxz′ ∈ ∆. But then ryz′ ∈ Γ̃ , and consequently, ryz ∈ Γ̃ . The claim follows by
the definition of ∆.

Now to (2). Let 〈r〉mt ∈ P r
Γx. Since P r

Γ y ⊇ P r
Γx, in particular it holds

〈r〉mty ∈ Γ̃ , i.e., there is some y′ ∼Γ y such that 〈r〉mty′ ∈ Γ . By (1), it suffices
to show that 〈r〉mty is evident on Γ . This is the case since 〈r〉mty′ is quasi-
evident on Γ (as Γ is quasi-evident) and y′ has an r-successor on Γ (as y has
one on Γ ).

Claim (3) immediately follows from (2), and (4) is obvious as the evidence
of diamonds on a branch cannot be destroyed by adding edges.

Now to (5). Note that the quasi-evidence condition for transitivity assertions
holds in ∆ as Dr

Γ ⊆Dr
∆. The quasi-evidence of diamonds 〈r〉mtx ∈ ∆ holds

by (2). So, the only conditions that might in principle be violated in ∆ are:
a) the pre-evidence condition for boxes [r]mtx ∈ ∆̃ and
b) the pre-evidence condition for boxes [r]mtz ∈ ∆ such that z ⊲r

∆ x, if Tr ∈ Γ .
For (a), it holds [r]mty ∈ Γ̃ as P r

Γ y ⊇ P r
Γx = P r

∆x. Hence by (1) it suffices to
show that [r]mty is pre-evident on Γ , which is the case since Γ is quasi-evident.
For (b), by the quasi-evidence condition for transitivity assertions, there is a
nominal u and a label α such that u Dr

Γ z and α:[r]mtu ∈ Γ . Since Tr ∈ Γ ,
u Dr

Γ z and z ⊲r
∆ x, it holds u ⊲r

Γ x. Then x:Γα and, by the quasi-evidence
condition for label introductions, [r]mtu ∈ Γ̃ . By Lemma 6.1, it suffices to show
that [r]mtu is pre-evident on ∆. Since P r

Γ y ⊇ P r
Γx, we have y:Γα and hence

u ⊲r
Γ y (Proposition 6.1). So, by (1), x ⊲r

∆ v implies u ⊲r
Γ v for all nominals

v, and consequently, ∀v : u ⊲r
∆ v ⇔ u ⊲r

Γ v. The claim follows since [r]mtu is
pre-evident on Γ . ⊓⊔

For an illustration of Lemma 6.2, let the edge graph in Fig. 2(a) (without the
dashed arrow) represent Γ . Then 〈r〉0px is quasi-evident but not evident on Γ ,
and y expands P r

Γx. The graph with the dashed arrow added corresponds to the
branch ∆ in the lemma. The five claims for Γ and ∆ are easy to verify.

Theorem 6.1 (Pre-evidence Completion). For every quasi-evident branch

Γ there is a pre-evident branch ∆ such that Γ ⊆ ∆.

Proof. For every branch Γ , we define: ϕΓ := |{〈r〉nsx | 〈r〉nsx ∈ Γ and 〈r〉nsx is
not evident on Γ}|. Let Γ be quasi-evident. We proceed by induction on ϕΓ . If
ϕΓ = 0, then Γ is pre-evident and we are done. Otherwise, there is a diamond
〈r〉nsx ∈ Γ that is not pre-evident on Γ . Let y be a nominal that expands P r

Γx
on Γ , and let Γ ′ := Γ ∪{rxz | ryz ∈ Γ̃}. By Lemma 6.2(3-5), Γ ′ is quasi-evident
and ϕΓ ′ < ϕΓ . So, by the inductive hypothesis, there is some pre-evident branch
∆ such that ∆ ⊇ Γ ′ ⊇ Γ . ⊓⊔

We write Γ
R
→ ∆ to denote that ∆ is obtained from Γ by a single application

of the rule R. We write Γ → ∆ if there is some R such that Γ
R
→ ∆. A branch

is called maximal if it cannot be extended by any tableau rule.

Lemma 6.3. Let Γ be a branch that is obtained from an initial branch. Then

Γ satisfies the quasi-evidence condition for label introductions.



Proof. Let Γ0 → . . .→ Γn be a derivation such that Γ0 is an initial branch and
Γn = Γ . The claim is shown by induction on n. Note that the claim is trivial for
n = 0 since initial branches must contain no edges or label introductions. ⊓⊔

In conjunction with Theorems 4.1, 4.2 and 6.1, the following theorem shows
that open maximal branches are satisfiable. Taken together with the termination
argument in Section 7, this establishes the completeness of our calculus.

Theorem 6.2 (Quasi-evidence). Every open and maximal branch obtained in

T from an initial branch is quasi-evident.

Proof. Let Γ be an open and maximal branch obtained from an initial branch.
We show that every s ∈ Γ that is not of the form px, rxy or x

.
=y is either

pre-evident or quasi-evident on Γ by induction on the size of s. Quasi-evidence
for label introductions follows by Lemma 6.3. ⊓⊔

7 Termination

We will now show that every tableau derivation is finite. Since the tableau rules
are all finitely branching, by König’s lemma it suffices to show that the con-
struction of every individual branch terminates. Since rule application always
produces proper extensions of branches, it then suffices to show that the size
(i.e., cardinality) of an individual branch is bounded. First, we show that the size
of a branch Γ is bounded by a function in the number of nominals on Γ . Then,
we show that this number itself is bounded, completing the termination proof.

We write SΓ for the set of all modal expressions occurring on Γ , possibly
as subterms of other expressions, and RelΓ for the set of all roles that occur
on Γ . Crucial for the termination argument is the fact the tableau rules cannot
introduce any modal expressions that do not already occur on the initial branch.

Proposition 7.1. If Γ,∆ are branches such that ∆ is obtained from Γ by any

rule of T , then S∆ = SΓ .

For every pair of nominals x, y and every role r, a branch Γ may contain an
edge rxy, an equation x

.
=y or a disequation x6

.
=y. For every expression s ∈ SΓ , Γ

may contain a formula sx. The tableau rules can introduce at most one formula
α:[r]ntx for each box expression [r]nt and each nominal x. Finally, a branch may
contain ⊥. So, since the initial branch Γ0 contains no formulas of the form α:tx,
the size of Γ derived from Γ0 is bounded by |RelΓ | · |NΓ |2 + 2|NΓ |2 + 2|SΓ | ·
|NΓ |+1. By Proposition 7.1, we know that |SΓ | and |RelΓ | depend only on Γ0.

By the above, it suffices to show that |NΓ | is bounded in the sum of the
sizes of the input formulas (of which there are only finitely many). We do so by
giving a bound on the number of applications of R♦ and RE that can occur in
the derivation of a branch, which suffices since the two rules are the only ones
that can introduce new nominals.

For RE , we do so by defining ψEΓ := {Ens ∈ SΓ | ∃x ∈ NΓ : Ensx is not
evident on Γ} and showing that |ψEΓ | decreases with every application of RE

(and is non-increasing otherwise, which is obvious).



Proposition 7.2. Γ
RE→ ∆ =⇒ |ψEΓ | > |ψE∆|

The proof proceeds analogously to the corresponding arguments in [15, 16].
Now we show that R♦ can be applied only finitely often. Since RelΓ is

bounded, it suffices to show that R♦ can be applied only finitely often for each
role. Since R♦ is only applicable to diamonds that are not quasi-evident, we have:

Proposition 7.3. If R♦ is applicable to a formula 〈r〉nsx ∈ Γ , then either

1. x has an r-successor on Γ , or

2. P r
Γx is not expanded on Γ .

Since Γ → ∆ implies Γ̃ ⊆ ∆̃, it holds:

Proposition 7.4. Let s ∈ Γ be a diamond formula and Γ → ∆.

1. If s is evident on Γ , then s is evident on ∆.

2. If ∆ is obtained from Γ by applying R♦ to s, then s is evident on ∆.

Proposition 7.5. Let Γ → ∆, x ∈ NΓ , and P be an r-pattern.

1. P r
Γx ⊆ P r

∆x.
2. If P is expanded on Γ , then P is expanded on ∆.

In the case of [14], the bound on the number of applications of R♦ for each
role r can be given as |Pat rΓ0| where Γ0 is the initial branch and Pat rΓ :=
P({〈r〉ns | 〈r〉ns ∈ SΓ} ∪ {[r]ns | [r]ns ∈ SΓ}). The present situation is more
complex since now patterns may contain labels in addition to modal expressions.
Unlike SΓ , the set of labels on the branch may grow during tableau construction.
Still, we can bound the number of applications of R♦ for every given set of labels.

A rule R is said to be applied to a nominal x ∈ NΓ if R is applied to a formula
tx ∈ Γ . Given a pattern P , we define AP := {α |α ∈ P}. Let NΓ0

〈r〉 be the number

of distinct r-diamonds occurring on Γ0: N
Γ0

〈r〉 := |{〈r〉kt | 〈r〉kt ∈ SΓ0}|. Let ∆ be

obtained from Γ by applying R♦ to a formula 〈r〉nsx ∈ Γ such that P r
Γx is not

expanded on Γ . Clearly, P r
∆x must be expanded on ∆. Hence, let us call such

an application of R♦ pattern-expanding.

Lemma 7.1. Let Γ0 be an initial branch and Γ0 → Γ1 → . . . a derivation. Let

r be a role, A a set of labels, and

Ir
A := {i | ∃x : Γi+1 is obtained from Γi by applying R♦ to x and A(P r

Γi
x) = A}

Then |Ir
A| ≤ 2|A| · |Pat rΓ0| ·N

Γ0

〈r〉.

Proof. Let Γ0 → Γ1 → . . . be a derivation, r a role and A a set of labels. We
begin with two observations:

1. For every set B of labels, there are at most |Pat rΓ0| distinct patterns
P such that AP = B. Hence, by Proposition 7.5 (2), for every B there are at
most |Pat rΓ0| pattern-expanding applications of R♦ in the entire derivation,



i.e., at most |Pat rΓ0| indices i ∈ Ir
B such that the application of R♦ to Γi is

pattern-expanding. Let us denote the set of such indices by Jr
B.

2. By Propositions 7.4 and 7.5 (2), every pattern-expanding application of R♦

to a nominal x is followed by at most NΓ0

〈r〉 − 1 applications of R♦ to nominals

that are equivalent to x at the time of the respective application (clearly, none
of these following applications is pattern-expanding).

By definition, every index in Ir
A corresponds to an application of R♦. Let

i ∈ Ir
A and let x be the nominal to which R♦ is applied on Γi. By Proposition 7.3,

either the application is pattern-expanding or x already has a successor on Γi.
In the latter case, the application must be preceded by a pattern-expanding
application of R♦ to some nominal y that is equivalent to x (x ∼Γi

y). As for
the index j corresponding to this preceding application, by Proposition 7.5 (1),
we must have j ∈ Jr

B for some B ⊆ A. By the above two observations, we obtain:

|Ir
A| ≤ |Jr

A| +
∑

B⊆A

|Jr
B| · (NΓ0

〈r〉 − 1)

≤ |Pat rΓ0| + 2|A| · |Pat rΓ0| · (N
Γ0

〈r〉 − 1) ≤ 2|A| · |Pat rΓ0| ·N
Γ0

〈r〉 ⊓⊔

A set of labels A is called a pattern space for a role r on a branch Γ if there
is some x ∈ NΓ such that A(P r

Γx) = A. By Lemma 7.1, it suffices to show that
for each role r, the number of pattern spaces created in a derivation is bounded.

Lemma 7.2. Let Γ0 be an initial branch, r a role and A a set of labels. There

is a function f : IN → IN such that, for every derivation Γ0 → Γ1 → . . .:

|{x | ∃i, y : i ≥ 0 and A(P r
Γi
x) = A and rxy ∈ Γi}| ≤ f(|A|)

Proof. Let r and Γ0 → Γ1 → . . . be as required. Let XA := {x | ∃i, y : i ≥ 0
and A(P r

Γi
x) = A and rxy ∈ Γi}. We proceed by induction on n := |A|. For

every x ∈ XA, let ix be the least i such that

1. A(P r
Γi
x) = A, and

2. for some y, rxy ∈ Γi.

Since Γ0 is an initial branch, it contains no edges, and so ix ≥ 1. No single rule
application can make 1 and 2 true at the same time. Hence, for every x ∈ XA

exactly one of the following is true:

Case A(P r
Γix−1

x) ( A. Then there is some y such that rxy ∈ Γix−1. So, x ∈ XB

for some proper subset B of A. Clearly, this case is only possible if |A| > 0.
Case ∄y : rxy ∈ Γix−1. Then A(P r

Γix−1
x) = A. So, ix − 1 belongs to the set Ir

A

from Lemma 7.1. This is the only case possible if |A| = 0.

By the above, f can be defined as follows:

f0 := |Pat rΓ0| ·N
Γ0

〈r〉

fn := 2n · |Pat rΓ0| ·N
Γ0

〈r〉 +

n−1
∑

k=0

(

n

k

)

· fk if n > 0 ⊓⊔



We define the level of an r-pattern P on Γ as:

LΓP := |{[r]mt ∈ SΓ | ∃α, y : α ∈ P and α:[r]mty ∈ Γ}|

A label α is said to be generated at level n in a derivation Γ0 → Γ1 → . . . if
there is some i ≥ 0 such that α is generated by an application of RT extending
Γi by a formula α:[r]mtx, and LΓi

(P r
Γi
x) = n.

Lemma 7.3. Let Γ0 → Γ1 → . . . be a derivation where Γ0 is initial and Tr ∈ Γ0.

Let x ∈ NΓi. Then every label α ∈ P r
Γi
x is generated at level strictly less than

LΓi
(P r

Γi
x).

Proof. Assume, by contradiction, Γi, r, and x are all as required and there is some
α ∈ P r

Γi
x such that α is generated at level m ≥ LΓi

(P r
Γi
x). Then there is some

j < i such that α is generated by an application of RT to some ryz ∈ Γj such
that y ⊲r

Γi
x and LΓj

(P r
Γj
y) = m. Then A(P r

Γj
y) ∪ {α} ⊆ A(P r

Γk
x′) and hence

(by the applicability restriction on RT ) LΓk
(P r

Γk
x′) > m holds for all k ≥ j + 1

and all x′ such that y ⊲r
Γk

x′. Consequently, LΓi
(P r

Γi
x) > m ≥ LΓi

(P r
Γi
x).

Contradiction ⊓⊔

By Lemma 7.3, the number of pattern spaces with level n (i.e., pattern spaces
whose patterns have level n) is bounded from above by 2m, where m is the
number of labels generated at levels less than n. Clearly, the level of r-patterns in
a derivation from Γ0 is bounded by the number NΓ0

[r] of distinct r-boxes occurring

on Γ0 (NΓ0

[r] := |{[r]kt | [r]kt ∈ SΓ0}|). Also, by the applicability restriction on RT

(non-subsumption), no labels can be generated at level NΓ0

[r] . Hence, in order to

show that the number of pattern spaces created during a derivation is bounded,
it suffices to bound the number of labels generated at all levels less than NΓ0

[r] .

A label α is called r-label (in a derivation Γ0 → Γ1 → . . .) if there are i, n, t, x
such that α:[r]ntx ∈ Γi.

Lemma 7.4. Let Γ0 be an initial branch and Tr ∈ Γ0. There is a function

f : IN → IN such that, for every derivation Γ0 → Γ1 → . . . and 0 ≤ n < NΓ0

[r] :

|{α | ∃m < n : α is an r-label generated at level m}| ≤ fn.

Proof. We define f by induction on n. Let Am := {α | ∃k < m : α is an r-label
generated at level k}. Clearly, A0 = ∅. A new label can only be generated by an
application of RT . Therefore, by the applicability condition of RT :

|An| ≤ NΓ0

[r] · |{x | ∃i, y : i ≥ 0 and LΓi
(P r

Γi
x) ≤ n− 1 and rxy ∈ Γi}|

By Lemma 7.3, for all n > 0:

|An| ≤ NΓ0

[r] · |
⋃

B⊆An−1

{x | ∃i, y : i ≥ 0 and A(P r
Γi
x) = B and rxy ∈ Γi}|

Then, by Lemma 7.2, there is a function g such that, for all n > 0:

|An| ≤ NΓ0

[r] ·

|An−1|
∑

k=0

(

|An−1|

k

)

· gk ≤ NΓ0

[r] · 2
|An−1| · g(|An−1|)



Hence, we can define f0 := 0 and, for n > 0, fn := NΓ0

[r] ·2
f(n−1) ·g(f(n−1)) ⊓⊔

By Lemma 7.1, for every role r the number of applications of R♦ is bounded
by

∑

A∈Φ 2|A| · |Pat rΓ0| ·N
Γ0

〈r〉 where Φ := {A | ∃i ≥ 0: A is a pattern space for r

on Γi}. Using Lemma 7.3, this bound can be approximated from above by

|Pat rΓ0| ·N
Γ0

〈r〉 ·N
Γ0

[r] · (2
2f(N

Γ0
[r]

)) where f is the function from Lemma 7.4. Since

we have only finitely many roles, together with Proposition 7.2, this gives us a
bound on |NΓ | that we need for termination. Since f is clearly non-elementary
in its argument, the bound is non-elementary.

8 Conclusion

To account for non-local constraints introduced by number restrictions on tran-
sitive roles, the notion of patterns from [14] needs to be extended. The extension
is semantically intuitive and allows for a simple proof of model existence. As it
comes to termination, the reasoning in [14] needs to be refined considerably.

The termination proof establishes a non-elementary complexity bound for the
associated decision procedure. Presently, we do not know if this bound is tight.
The NExpTime completeness result for (nominal-free) graded modal logic over
transitive frames by Kazakov and Pratt-Hartmann [18] gives us a lower bound
for the complexity of SOQ+ and hence of the decision procedure ([19] provides
no complexity bounds). Despite the potentially high worst-case complexity of
our procedure, we believe it to be well-suited for efficient implementation. In
fact, on problems that do not contain number restrictions on transitive roles,
the complexity of the procedure matches the NExpTime bound of [14], which
is even lower than the 2-NExpTime bound established for practically successful
procedures of [8, 13, 12, 9, 10].

Schröder and Pattinson [24] show concept satisfiability decidable in the pres-
ence of role hierarchies and number restrictions on transitive roles, provided
the semantics is restricted to tree-like roles. They argue that the resulting logic,
PHQ, may be better suited for modeling parthood relations than the established
logics extending SH. We believe that our current approach for SOQ+ may be
adapted to obtain an efficient tableau calculus for PHQ.
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