
The duality of computation under focus

Pierre-Louis Curien (CNRS, Paris 7, and INRIA) and Guillaume Munch-Maccagnoni
(Paris 7 and INRIA)

Abstract. We review the relationship between abstract machines for (call-by-
name or call-by-value) λ-calculi (extended with Felleisen’s C) and sequent cal-
culus, reintroducing on the way Curien-Herbelin’s syntactic kit of the duality of
computation. We provide a term language for a presentation of LK (with conjunc-
tion, disjunction, and negation), and we transcribe cut elimination as (non conflu-
ent) rewriting. A key slogan, which may appear here in print for the first time, is
that commutative cut elimination rules are explicit substitution propagation rules.
We then describe the focalised proof search discipline (in the classical setting),
and narrow down the language and the rewriting rules to a confluent calculus (a
variant of the second author’s focalising system L). We then define a game of
patterns and counterpatterns, leading us to a fully focalised finitary syntax for a
synthetic presentation of classical logic, that provides a quotient on (focalised)
proofs, abstracting out the order of decomposition of negative connectives.

1 Introduction

This paper on one hand has an expository purpose and on the other hand pushes further
the syntactic investigations on the duality of computation undertaken in [3].

Section 2 discusses the relation between abstract machines for the λ-calculus (ex-
tended with control) and (classical) sequent calculus. Section 3 presents a language
(with a one-to-one correspondence between well-typed terms and proof trees) for a ver-
sion of LK in which we choose to give a dissymetric presentation for the conjunction on
the left and for the disjunction on the right, anticipating a key ingredient of focalisation.
We recall the non-confluence of unconstrained classical cut-elimination.

In Section 4, we present the focalised proof search discipline (for classical logic),
and adapt the syntactic framework of Section 3 to get a confluent system whose normal
forms are precisely the terms denoting (cut-free) focalised proofs. The system we arrive
at from these proof-search motivations is (a variant of) the second author’s focalising
system L (Lfoc) [19] We prove the completeness of Lfoc with respect to LK for provability.
In Section 5, we define some simple encodings having Lfoc as source or target, indicating
its suitability as an intermediate language.

Finally, in Section 6, further reinforcing of the focalisation discipline leads us to
synthetic system L (Lsynth), a logic of synthetic connectives in the spirit of Girard’s
ludics and Zeilberger’s CU, for which we offer a syntactic account based on a simple
game of patterns and counterpatterns. We show that the synthetic system L is complete
with respect to focalising system L.
Notation. We shall write t{v/x} the result of substituting v for x at all (free) occur-
rences of x in t, and t[v/x] for an explicit operator (as in [1]) added to the language
together with rules propagating it.

2 Abstract machines and sequent calculus

In this section, we would like to convey the idea that sequent calculus could have arisen
from the goal of providing a typing system for the states of an abstract machine for the
“mechanical evaluation of expressions” (to quote the title of Landin’s pioneering [15]).

Here is Krivine machine, a simple device for call-by-name λ-calculus [13]:

〈MN |E〉 → 〈M |N · E〉 〈λx.M |N · E〉 → 〈M{N/x} |E〉

A state of the machine is thus a pair 〈M |E〉 where M is “where the computation is
currently active”, andE is the stack of things that are waiting to be done in the future, or
the continuation, or the evaluation context. In λ-calculus litterature, contexts are more
traditionally presented as terms with a hole: with this tradition, 〈M |E〉 (resp. M · E)
reads as E[M] (resp. E[[]M]), or “fill the hole of E with M (resp. []M)”.

How can we type the components of this machine? We have three categories of
terms and of typing judgements:

Expressions Contexts Commands
M ::= x |λx.M |MM E ::= [] |M · E c ::= 〈M |E〉

(Γ `M : A) (Γ |E : A ` R) c : (Γ ` R)

where R is a (fixed) type of final results. The type of an expression (resp. a context) is
the type of the value that it is producing (resp. expecting). The typing rules for contexts
and commands are as follows:

Γ | [] : R ` R
Γ `M : A Γ |E : B ` R
Γ |M · E : A→ B ` R

Γ `M : A Γ |E : A ` R
〈M |E〉 : (Γ ` R)

and the typing rules for expressions are the usual ones for simply typed λ-calculus.
Stripping up the term information, the second and third rules are rules of sequent cal-
culus (left introduction of implication and cut).

We next review Griffin’s typing of Felleisen’s control operator C. As a matter of fact,
the behaviour of this constructor is best expressed at the level of an abstract machine:

〈C(M) |E〉 → 〈M |E∗ · []〉 〈E∗ |N · E′〉 → 〈N |E〉

The first rule explains how the continuation E gets captured, and the second rule how it
gets restored. Griffin [9] observed that the typing constraints induced by the well-typing
of these four commands are met when C(M) and E∗ are typed as follows:

Γ `M : (A→ R)→ R

Γ ` C(M) : A

Γ |E : A ` R
Γ ` E∗ : A→ R

These are the rules that one adds to intutionistic natural deduction to make it classical, if
we interpret R as ⊥ (false), and if we encode ¬A as A→ R. Hence, Griffin got no less
than Curry-Howard for classical logic! But how does this sound in sequent calculus
style? In classical sequent calculus, sequents have several formulas on the right and
Γ ` ∆ reads as “if all formulas in Γ hold, then at least one formula of ∆ holds”.

Then it is natural to associate continuation variables with the formulas in ∆: a term will
depend on its input variables, and on its output continuations. With this in mind, we
can read the operational rule for C(M) as “ C(M) is a map E 7→ 〈M |E∗ · []〉”, and
write it with a new binder (that comes from [23]): C(M) = µβ.〈M |β∗ · []〉, where []
is now a continuation variable (of “top-level” type R). Likewise, we synthesise E∗ =
λx.µα.〈x |E〉, with α, x fresh, from the operational rules for E∗ and for λx.M .

The typing judgements are now: (Γ ` M : A |∆), (Γ |E : A ` ∆), c : (Γ ` ∆).
The two relevant new typing rules are (axiom, right activation):

Γ |α : A ` α : A,∆

c : (Γ ` α : A,∆)

Γ ` µα.c : A |∆
plus a reduction rule: 〈µα.c |E〉 → c{E/α}.

Note that in this setting, there is no more need to “reify” a context E into an expres-
sion E∗, as it can be directly substituted for a continuation variable.

Similarly, we can read off a (call-by-name) definition of MN from its operational
rule: MN = µβ.〈M |N.β〉. Hence we can remove application from the syntax and
arrive at a system in sequent calculus style only (no more elimination rule). This yields
Herbelin’s λµ-calculus [10]:

Expressions Contexts Commands
M ::= x |λx.M |µα.c E ::= α |M · E c ::= 〈M |E〉

which combines the first two milestones above: “sequent calculus”, “classical”.

Let us step back to the λ-calculus. The following describes a call-by-value version
of Krivine machine:

〈MN | e〉 → 〈N |M � e〉 〈V |M � e〉 → 〈M |V · e〉

(the operational rule for λx.M is unchanged)1. Here, V is a value, defined as being
either a variable or an abstraction (this goes back to [24]). Again, we can read M � e
as “a map V 7→ 〈M |V · e〉”, or, introducing a new binder µ̃ (binding now ordinary
variables):M�e = µ̃x.〈M |x · e〉. The typing rule for this operator is (left activation):
c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆ , and the operational rule is 〈V | µ̃x.c〉 → c{V/x} (V value).

Finally, we get from the rule for MN a call-by-value definition of application:
MN = µα.

〈
N
∣∣ µ̃x.〈M |x · α〉〉.

We have arrived at Curien and Herbelin’s λµµ̃Q-calculus [3]:

Expressions Values Contexts Commands
M ::= V ♦ |µα.c V ::= x |λx.M e ::= α |V · e | µ̃x.c c ::= 〈M | e〉
Γ `M : A |∆ Γ ` V : A ; ∆ Γ | e : A ` ∆ c : (Γ ` ∆)

with a new judgement for values (more on this later) and an explicit coercion from
values to expressions. The syntax for contexts is both extended (µ̃x.c) and restricted
(V · e instead of M · e). The reduction rules are as follows:

〈(λx.M)♦ |V · e〉 → 〈M{V/x} | e〉
〈µα.c | e〉 → c{e/α} 〈V ♦ | µ̃x.c〉 → c{V/x}

1 The reason for switching notation from E to e will become clear in Section 5.

3 A language for LK proofs

In this section, we use some of the kit of the previous section to give a term language
for classical sequent calculus LK, with negation, conjunction, and disjunction as con-
nectives. Our term language is as follows:

Commands c ::= 〈x |α〉 | 〈v |α〉 | 〈x | e〉 | 〈µα.c | µ̃x.c〉
Expressions v ::= (µ̃x.c)• | (µα.c, µα.c) | inl(µα.c) | inr(µα.c)
Contexts e ::= µ̃α•.c | µ̃(x1, x2).c | µ̃[inl(x1).c1|inr(x2).c2]

(In 〈v |α〉 (resp. 〈x | e〉), we suppose α (resp. x) fresh for v (resp. e).) A term t is a
command, an expression, or a context. As in section 2, we have three kinds of sequents:
(Γ ` ∆), (Γ ` A |∆), and (Γ |A ` ∆). We decorate LK’s inference rules with terms,
yielding the following typing system (one term construction for each rule of LK):

(axiom and cut/contraction)

〈x |α〉 : (Γ, x : A ` α : A,∆)

c : (Γ ` α : A,∆) d : (Γ, x : A ` ∆)

〈µα.c | µ̃x.d〉 : (Γ ` ∆)

(right)
c : (Γ, x : A ` ∆)

Γ ` (µ̃x.c)• : ¬A |∆
c1 : (Γ ` α1 : A1,∆) c2 : (Γ ` α2 : A2,∆)

Γ ` (µα1.c1, µα2.c2) : A1 ∧A2 |∆

c1 : (Γ ` α1 : A1,∆)

Γ ` inl(µα1.c1) : A1 ∨A2 |∆
c2 : (Γ ` α2 : A2,∆)

Γ ` inr(µα2.c2) : A1 ∨A2 |∆

(left)
c : (Γ ` α : A,∆)

Γ | µ̃α•.c : ¬A ` ∆
c : (Γ, x1 : A1, x2 : A2 ` ∆)

Γ | µ̃(x1, x2).c : A1 ∧A2 ` ∆

c1 : (Γ, x1 : A1 ` ∆) c2 : (Γ, x2 : A2 ` ∆)

Γ | µ̃[inl(x1).c1|inr(x2).c2] : A1 ∨A2 ` ∆

(deactivation)

Γ ` v : A |∆
〈v |α〉 : (Γ ` α : A,∆)

Γ | e : A ` ∆
〈x | e〉 : (Γ, x : A ` ∆)

Note that the activation rules are packaged in the introduction rules and in the cut rule.
As for the underlying sequent calculus rules, we have made the following choices:

1. We have preferred additive formulations for the cut rule and for the right intro-
duction of conjunction (to stay in tune with the tradition of typed λ-calculi) over
a multiplicative one where the three occurrences of Γ would be resp. Γ1, Γ2, and
(Γ1, Γ2) (idem for ∆). An important consequence of this choice is that contraction
is a derived rule of our system, whence the name of cut/contraction rule above2:

Γ,A ` A,∆ Γ,A,A ` ∆
Γ,A ` ∆

Γ ` A,A,∆ Γ,A ` A,∆
Γ ` A,∆

2 In usual syntactic accounts of contraction, one says that if, say t denotes a proof of Γ, x :
A, y : A ` ∆, then t[z/x, z/y] denotes a proof of Γ, z : A ` ∆. Note that if this substitution
is explicit, then we are back to an overloading of cut and contraction.

2. Still in the λ-calculus tradition, weakening is “transparent”. If c : Γ ` ∆ is well-
typed, then c : (Γ, Γ ′ ` ∆,∆′) is well-typed (idem v, e). (Also, we recall that all
free variables of c are among the ones declared in Γ,∆.)

3. More importantly, we have adopted irreversible rules for right introduction of dis-
junction. On the other hand, we have given a reversible rule for left introduction of
conjunction: the premise is derivable from the conclusion. This choice prepares the
ground for the next section on focalisation.3

The relation between our typed terms and LK proofs is as follows.
- Every typing proof induces a proof tree of LK (one erases variables naming assump-
tions and conclusions, terms, the distinction between the three kinds of sequents, and
the application of the deactivation rules).
- If bound variables are explicitly typed (which we shall refrain from doing in the se-
quel), then every provable typing judgement, say Γ | e : A ` ∆, has a unique typing
proof, i.e. all information is in Γ , A, ∆, e.
- If Π is an LK proof tree of (A1, . . . , Am ` B1, . . . , Bn), and if names x1, . . . , xm,
α1, . . . , αn are provided, then there exists a unique command c : (x1 : A1, . . . , xm :
Am ` α1 : B1, . . . , αn : Bn), whose (unique) typing proof gives back Π by erasing.

With this syntax, we can express the cut-elimination rules of LK as rewriting rules:
Logical rules (redexes of the form

〈
µα.〈v |α〉

∣∣ µ̃x.〈x | e〉〉):〈
µα.〈(µ̃x.c)• |α〉

∣∣ µ̃y.〈y | µ̃α•.d〉〉 → 〈µα.d | µ̃x.c〉
(similar rules for conjunction and disjunction)

Commutative rules (going “up left”, redexes of the form
〈
µα.〈v |β〉

∣∣ µ̃x.c〉):〈
µα.〈(µ̃y.c)• |β〉

∣∣ µ̃x.d〉 → 〈
µβ′.

〈
(µ̃y.〈µα.c | µ̃x.d〉)•

∣∣β′〉 ∣∣∣ µ̃y.〈y |β〉〉 (¬ right)
(similar rules with the other right introduction rules and with the left introduction rules)〈
µα.
〈
µβ.〈y |β〉

∣∣ µ̃y′.c〉 ∣∣∣ µ̃x.d〉 → 〈
µβ.〈y |β〉

∣∣ µ̃y′.〈µα.c | µ̃x.d〉〉 (contraction right)〈
µα.
〈
µβ′.c

∣∣ µ̃y.〈y |β〉〉 ∣∣∣ µ̃x.d〉 → 〈
µβ′.〈µα.c | µ̃x.d〉

∣∣ µ̃y.〈y |β〉〉 (contraction left)〈
µα.
〈
µα′.c

∣∣∣ µ̃x′.〈x′ |α〉〉 ∣∣∣∣ µ̃x.d〉 → 〈
µα.〈µα′.c | µ̃x.d〉

∣∣∣ µ̃x.d〉 (duplication)〈
µα.〈y |β〉

∣∣ µ̃x.d〉 → 〈y |β〉 (erasing)

Commutative rules (going “up right”, redexes of the form
〈
µα.c

∣∣ µ̃x.〈y | e〉〉): similar.

The (only?) merit of this syntax is its tight fit with proof trees and traditional cut
elimination defined as transformations of undecorated proof trees. If we accept to losen
this, we arrive at the following more “atomic” syntax:

Commands c ::= 〈v | e〉 | c[σ]
Expressions v ::= x |µα.c | e• | (v, v) | inl(v) | inr(v) | v[σ]
Contexts e ::= α | µ̃x.c | µ̃α•.c | µ̃(x1, x2).c | µ̃[inl(x1).c1|inr(x2).c2] | e[σ]

where σ is a list v1/x1, . . . , vm/xm, e1/α1, . . . , en/αn. In this syntax, activation be-
comes “first class”, and two versions of the axiom are now present (x, α, which give
back the axiom of the previous syntax by deactivation). The typing rules are as follows

3 For the same reason, we have three connectives instead of just, say, ∨ and ¬, because in the
focalised setting ¬(¬A ∨ ¬B) is only equivalent to A ∧B at the level of provavility.

(we omit the rules for µ̃x.c, µ̃α•.c, µ̃(x1, x2).c, µ̃[inl(x1).c1|inr(x2).c2], which are
unchanged):

Γ , x : A ` x : A |∆ Γ |α : A ` α : A , ∆

Γ ` v : A |∆ Γ | e : A ` ∆
〈v | e〉 : (Γ ` ∆)

c : (Γ , x : A ` ∆)

Γ | µ̃x.c : A ` ∆
c : (Γ ` α : A , ∆)

Γ ` µα.c : A |∆

Γ | e : A ` ∆
Γ ` e• : ¬A |∆

Γ ` v1 : A1 |∆ Γ ` v2 : A2 |∆
Γ ` (v1, v2) : A1 ∧A2 |∆

Γ ` v1 : A1 |∆
Γ ` inl(v1) : A1 ∨A2 |∆

Γ ` v2 : A2 |∆
Γ ` inr(v2) : A1 ∨A2 |∆

c : (Γ, x1 : A1, . . . , xm : Am ` α1 : B1, . . . , αn : Bn)
. . . Γ ` vi : Ai |∆Γ | ej : Bj ` ∆ . . .

c[v1/x1, . . . , vm/xm, e1/α1, . . . , en/αn] : (Γ ` ∆) (idem v[σ], e[σ])

Note that we have now explicit substitutions t[σ], which feature a form of (multi-)cut
where the receiver t’s active formula, if any, is not among the cut formulas, in contrast
with the construct 〈v | e〉 where the cut formula is active on both sides.

It is still the case that, by erasing, a well-typed term of this new syntax induces a
proof of LK, and that all proofs of LK are reached (although not injectively anymore),
since all terms of the previous syntax are terms of the new syntax. The rewriting rules
divide now in three groups:

(control) 〈µα.c | e〉 → c[e/α] 〈v | µ̃x.c〉 → c[v/x]

(logical) 〈e• | µ̃α•.c〉 → c[e/α] 〈(v1, v2) | µ̃(x1, x2).c〉 → c[v1/x1, v2/x2]

〈inl(v1) | µ̃[inl(x1).c1|inr(x2).c2]〉 → c1[v1/x1] (idem inr)

(commutation) 〈v | e〉[σ]→ 〈v[σ] | e[σ]〉
x[σ]→ x (x not declared in σ) x[v/x, σ]→ v (idem α[σ])
(µα.c)[σ]→ µα.(c[σ]) (idem (µ̃x.c)[σ]) (capture avoiding)
(etc, no rule for composing substitutions)

The control rules mark the decision to launch a substitution (and, in this section, of the
direction in which to go, see below). The logical rules provide the interesting cases of
cut elimination, corresponding to cuts where the active formula has been just introduced
on both sides. The commutative cuts are now accounted for “trivially” by means of
the explicit substitution machinery that carries substitution progressively inside terms
towards their variable occurrences. Summarising, by liberalising the syntax, we have
gained considerably in readability of the cut elimination rules4

Remark 1. In the “atomic” syntax, contractions are transcribed as terms of the form
〈v |β〉 (resp. 〈x | e〉) where β (resp. x) occurs free in v (resp. e). If β (resp. x) does not
occur free in v (resp. e), then the command expresses a simple deactivation.

4 The precise relation with the previous rules is as follows: for all s1, s2 such that s1 → s2 in
the first system, there exists s such that s1 →∗ s and s2 →∗ s in the new system.

The problem with classical logic viewed as a computational system is its wild non
confluence, as captured by Lafont’s critical pair [6, 4], for which the µµ̃ kit offers a
crisp formulation. For any c1, c2 both of type (Γ ` ∆), we have (with α, x fresh for
c1, c2, respectively): c1 ∗← 〈µα.c1 | µ̃x.c2〉 →∗ c2. So, all proofs are identified...
Focalisation, discussed in the next section, will guide us to solve this dilemma.

4 A syntax for focalised classical logic

We adapt the focalisation discipline (originally introduced by [2] in the setting of linear
logic) to LK. A focalised proof search alternates between right and left phases:

- Left phase: Decompose (copies of) formulas on the left, in any order. Every decompo-
sition of a negation on the left feeds the right part of the sequent. At any moment, one
can change the phase from left to right.

- Right phase: Choose a formula A on the right, and hereditarily decompose a copy of
it in all branches of the proof search. This focusing in any branch can only end with
an axiom (which ends the proof search in that branch), or with a decomposition of a
negation, which prompts a phase change back to the left. Etc. . .

Note the irreversible (or positive, active) character of the whole right phase, by the
choice of A, by the choice of the left or right summand of a disjunction. One takes the
risk of not being able to eventually end a proof search branch with an axiom. In contrast,
all the choices on the left are reversible (or negative, passive). This strategy is not only
complete (see below), it also guides us to design a disciplined logic whose behaviour
will not collapse all the proofs.

To account for right focalisation, we introduce a fourth kind of judgement and a
fourth syntactic category of terms: the values, typed as (Γ ` V : A ; ∆) (the zone
between the turnstyle and the semicolon is called the stoup, after [7]). We also make
official the existence of two disjunctions (since the behaviours of the conjunction on the
left and of the disjunction on the right are different) and two conjunctions, by renaming
∧,∨,¬ as ⊗,⊕,¬+, respectively. Of course, this choice of linear logic like notation is
not fortuitous. Note however that the source of distinction is not based here on the use
of resources like in the founding work on linear logic, which divides the line between
additive and multiplicative connectives. In contrast, our motivating dividing line here is
that between irreversible and reversible connectives, and hopefully this provides addi-
tional motivation for the two conjunctions and the two disjunctions. Our formulas are
thus defined by the following syntax:

P ::= X |P ⊗ P |P ⊕ P |¬+P

These formulas are called positive. We can define their De Morgan duals as follows:

P1 ⊗ P2 = P1OP2 P1 ⊕ P2 = P1NP2 ¬+P = ¬−P

These duals are negative formulas: N ::= X |NON |NNN |¬−N . They restore the
duality of connectives, and are implicit in the presentation that follows (think of P on
the left as being a P in a unilateral sequent ` Γ ,∆).

Fig. 1. System LKQ

Γ , x : P ` x : P ; ∆ Γ |α : P ` α : P , ∆

Γ ` v : P |∆ Γ | e : P ` ∆
〈v | e〉 : (Γ ` ∆)

c : (Γ , x : P ` ∆)

Γ | µ̃x.c : P ` ∆
c : (Γ ` α : P , ∆)

Γ ` µα.c : P |∆
Γ ` V : P ; ∆

Γ ` V ♦ : P |∆

Γ | e : P ` ∆
Γ ` e• : ¬+P ; ∆

Γ ` V1 : P1 ; ∆ Γ ` V2 : P2 ; ∆

Γ ` (V1, V2) : P1 ⊗ P2 ; ∆

Γ ` V1 : P1 ; ∆

Γ ` inl(V1) : P1 ⊕ P2 ; ∆

c : (Γ ` α : P,∆)

Γ | µ̃α•.c : ¬+P ` ∆
c : (Γ, x1 : P1, x2 : P2 ` ∆)

Γ | µ̃(x1, x2).c : P1 ⊗ P2 ` ∆
c1 : (Γ, x1 : P1 ` ∆) c2 : (Γ, x2 : P2 ` ∆)

Γ | µ̃[inl(x1).c1|inr(x2).c2] : P1 ⊕ P2 ` ∆

c : (Γ . . . , q : P, . . . ` ∆, . . . , α : Q, . . .)
. . . Γ ` V : P ; ∆ . . . Γ | e : Q ` ∆ . . .

c[. . . , V/q, . . . , e/α] : (Γ ` ∆) (idem v[σ], V [σ], e[σ])

We are now ready to give the syntax of our calculus, which is a variant of the one
given by the second author in [19]5.

Commands c ::= 〈v | e〉 | c[σ]
Expressions v ::= V ♦ |µα.c | v[σ]
Values V ::= x | (V, V) | inl(V) | inr(V) | e• |V [σ]

Contexts e ::= α | µ̃x.c | µ̃α•.c | µ̃(x1, x2).c | µ̃[inl(x1).c1|inr(x2).c2] | e[σ]

The typing rules are given in Figure 1. Henceforth, we shall refer to the calculus of this
section (syntax + rewriting rules) as Lfoc, and to the typing system as LKQ (after [4]).
Here are examples of proof terms in LKQ.

Example 1. (` (µ̃(x, α•).〈x♦ |α〉)• : ¬+(P ⊗ ¬+P) ;), where µ̃(x, α•).c is an
abbreviation for µ̃(x, y).〈y♦ | µ̃α•.c〉.〈
inr((µ̃x.〈inl(x)♦ |α〉)•)♦

∣∣α〉 : (` α : P ⊕ ¬+P).
(| µ̃(x2, x1).〈(x1, x2)♦ |α〉 : P2 ⊗ P1 ` α : P1 ⊗ P2).

Proposition 1. If Γ ` ∆ is provable in LK, then it is provable in LKQ.

5 The main differences with the system presented in [19] is that we have here an explicit syntax
of values, with an associated form of typing judgement, while focalisation is dealt with at the
level of the reduction semantics in [19]. Also, the present system is bilateral but limited to
positive formulas on both sides, it thus corresponds to the positive fragment of the bilateral
version of Lfoc as presented in [19][long version, Appendix A].

Fig. 2. Cut eliminition in Lfoc

(control) 〈µα.c | e〉 → c[e/α] 〈V ♦ | µ̃x.c〉 → c[V/x]

(logical) 〈(e•)♦ | µ̃α•.c〉 → c[e/α] 〈(V1, V2)
♦ | µ̃(x1, x2).c〉 → c[V1/x1, V2/x2]

〈inl(V1)
♦ | µ̃[inl(x1).c1|inr(x2).c2]〉 → c1[V1/x1] (idem inr)

(commutation) 〈v | e〉[σ]→ 〈v[σ] | e[σ]〉 etc . . .

PROOF. We translate the syntax given in section 3 into the focalised one. All cases are
obvious except for the introduction of⊗ and⊕ on the right. We define (µα1.c1, µα2.c2)

as (Γ ` µα.
〈
µα2.c2

∣∣∣ µ̃x2.〈µα1.c1
∣∣ µ̃x1.〈(x1, x2)♦ |α〉〉〉 : P1 ⊗ P2 |∆). ut

We make two observations on the translation involved in the proof of Proposition 1.

Remark 2. The translation introduces cuts: in particular, a cut-free proof is translated to
a proof with cuts. It also fixes an order of evaluation: one should read the translation of
right and introduction as a protocol prescribing the evaluation of the second element of
a pair and then of the first (the pair is thus in particular strict, as observed independently
in [27] and [19]). An equally reasonable choice would have been to permute the two
µ̃s: that would have encoded a left-to-right order of evaluation. This non-determinism
of the translation has been known ever since Girard’s seminal work [7].

We move on to cut elimination, which (cf. Section 3) is expressed by means of
three sets of rewriting rules, given in Figure 2. Note that we now have only one way
to reduce 〈µα.c1 | µ̃x.c2〉 (no more critical pair). As already stressed in Section 3),
the commutation rules are the usual rules defining (capture-avoiding) substitution. The
overall operational semantics features call-by-value by the fact that variables x receive
values, and features also call-by-name (through symmetry, see the logic LKT in Section
5) by the fact that continuation variables α receive contexts.

The reduction system presented in Figure 2 is confluent, as it is an orthogonal system
in the sense of higher-order rewriting systems (left-linear rules, no critical pairs) [21].

Remark 3. About µ: we note that µβ.c is used only in a command 〈µβ.c | e〉, and in
such a context it can be expressed as 〈(e•)♦ | µ̃β•.c〉, which indeed reduces to c[e/β].
However, using such an encoding would mean to shift from a direct to an indirect style
for terms of the form µβ.c.

Proposition 2. Cut-elimination holds in LKQ.

PROOF. This is an easy consequence of the following three properties:
1) Subject reduction. This is checked as usual rule by rule.
2) Weak normalisation. As for LK, or for simply typed λ-calculus.
3) Characterisation of normal forms. A command in normal form has one of the fol-
lowing shapes (all contractions):

〈V ♦ |α〉 〈x♦ | µ̃α•.c〉 〈x♦ | µ̃(x1, x2).c〉 〈x♦ | µ̃[inl(x1).c1|inr(x2).c2]〉 ut

Corollary 1. Every sequent Γ ` ∆ that is provable in LK admits a (cut-free) proof
respecting the focalised discipline.

PROOF. Let π be a proof of Γ ` ∆. By Propositions 1 and 2, one obtains a term
denoting a focalised, cut-free proof of Γ ` ∆. ut

We can add η-equivalences (or expansion rules, when read from right to left) to the
system, as follows (where all mentioned variables are fresh for the mentioned terms):

µα.〈v |α〉 = v µ̃(x1, x2).〈(x1, x2)♦ | e〉 = e

µ̃x.〈x♦ | e〉 = e µ̃[inl(x1).〈inl(x1)♦ | e〉|inr(x2).〈inr(x2)♦ | e〉] = e

µ̃α•〈(α•)♦ | e〉 = e

The rules on the left column allow us to cancel a deactivation followed by an activation
(the control rules do the job for the sequence in the reverse order), while the rules in the
right column express the reversibility of the negative rules.

We end the section with a lemma that will be useful in Section 6.

Lemma 1. – If Γ, x : ¬+P | e : Q ` ∆, then Γ | e{α•/x} : Q ` α : P,∆.
– If Γ, x : P1 ⊗ P2 | e : Q ` ∆, then Γ, x1 : P1, x2 : P2 | e{(x1, x2)/x} : Q ` ∆.
– If Γ, x : P1 ⊕ P2 | e : Q ` ∆, then Γ, x1 : P1 | e{inl(x1)/x} : Q ` ∆ and
Γ, x2 : P2 | e{inr(x2)/x} : Q ` ∆.
(and similarly for c, V, v).

5 Encodings

Encoding CBV λ(µ)-calculus into LKQ. We are now in a position to hook up with
the material of Section 2. We can encode the call-by-value λ-calculus, by defining the
following derived CBV implication and terms:

P →v Q = ¬+(P ⊗ ¬+Q)

λx.v = ((µ̃(x, α•).〈v |α〉)•)♦ v1v2 = µα.
〈
v2
∣∣ µ̃x.〈v1 | ((x, α•)♦)�〉〉

where µ̃(x, α•).c is the abbreviation used in Example 1 and where V � stands for
µ̃α•.〈V ♦ |α〉. The translation extends to (call-by-value) λµ-calculus [22], and factors
though λµµ̃Q-calculus (cf. Section 2), defining V · e as (V, e•)�. The translation makes
also sense in the untyped setting, as the following example shows.

Example 2. Let ∆ = λx.xx. We have [[∆∆]]+v = µγ.c, and c→∗ c, with

c =
〈
(e•)♦

∣∣ µ̃z.〈(e•)♦ | (z, γ•)�〉〉 and e = µ̃(x, α•).
〈
x♦
∣∣ µ̃y.〈x♦ | (y, α•)�〉

〉
Encoding CBN λ(µ)-calculus. What about CBN? We can translate it to LKQ, but at the
price of translating terms to contexts, which is a violence to our goal of giving an intu-
itive semantics to the first abstract machine presented in Section 2. But keeping the same
term language, we can type sequents of the form (. . . , α : N, . . . ` . . . , x : N, . . .),
giving rise to a dual logic LKT, renaming the metavariables for expressions, values, and
contexts as e (now contexts), E (now covalues, also called applicative contexts in [3]),

Fig. 3. Translation of LKQ into the λ-calculus / NJ

Translation of formulas:

Xcps = X (¬+P)cps = RPcps

(P ⊗Q)cps = (Pcps)× (Qcps) P ⊕Qcps = Pcps +Qcps

Translation of terms:

〈v | e〉
cps

= (vcps)(ecps) (V ♦)cps = λk.k(Vcps) (µα.c)cps = λkα.(ccps) = µ̃α•.ccps
xcps = x (V1, V2)cps = ((V1)cps , (V2)cps) inl(V1)cps = inl((V1)cps) (e•)cps = ecps
αcps = kα (µ̃x.c)cps = λx.(ccps) (µ̃(x1, x2).c)cps = λz.(ccps [fst(z)/x1, snd(z)/x2])
(µ̃[inl(x1).c1|inr(x2).c2])cps = λz.case z [inl(x1) 7→ (c1)cps , inr(x2) 7→ (c2)cps]

and v (now expressions). For example the rules for left introduction of N and of right
introduction for O are as follows:

Γ ; E1 : N1 ` ∆
Γ ; inl(E1) : N1NN2 ` ∆

Γ ; E2 : N2 ` ∆
Γ ; inr(E2) : N1NN2 ` ∆

c : (Γ ` x1 : N1 , x2 : N2 , ∆)

Γ ` µ̃(x1, x2).c : N1ON2 |∆

In what follows, it will be handier (and closer to the tradition of CBN λµ-calculus)
to use x̃ (resp. α̃) instead of a negative variable α (resp. continuation variable x).

We would have arrived to this logic naturally if we had chosen in Section 3 to
present LK with a reversible disjunction on the right and an irreversible conjunction on
the left, and in Section 4 to present a focalisation discipline with focusing on formulas
on the left. In LKT we can define the following derived CBN implication and terms:

M →n N = (¬−M) ON

λx.v = µ̃(x̃•, α̃).〈v | α̃♦〉 v1v2 = µα̃.〈v1 | (v•2 , α̃)〉

The translation extends to λµ-calculus [23] and factors though the λµµ̃T -calculus of
[3], defining v ·E as (v•, E). Note that the covalues involved in executing call-by-name
λ-calculus are just stacks of expressions (cf. Section 2).

Translating LKQ into NJ. Figure 3 presents a translation from LKQ to intuitionistic
natural deduction NJ, or, via Curry-Howard, to λ-calculus extended with products and
sums. In the translation,R is a fixed target formula (cf. Section 2). We translate (¬+) as
“ impliesR” (cf. [12, 14]). We writeBA for function types / intuitionistic implications.
The rules of Lfoc are simulated by β-reductions. One may think of the source Lfoc terms
as a description of the target ones “in direct style” (cf. [5]).

Proposition 3. Let Γcps = {x : Pcps | x : P ∈ Γ}, R∆cps = {kα : RPcps | α : P ∈ ∆}.
We have:

C : (Γ ` ∆) ⇒ Γcps , R
∆cps ` Ccps : R

Γ ` V : P ; ∆⇒ Γcps , R
∆cps ` Vcps : Pcps

Γ ` v : P |∆ ⇒ Γcps , R
∆cps ` vcps : R

RPcps

Γ | e : P ` ∆ ⇒ Γcps , R
∆cps ` ecps : RPcps

Moreover, the translation preserves reduction: if t→ t′, then tcps →∗ (t′)cps .

6 A synthetic system

In this section we pursue two related goals.

1. We want to account for the full (or strong) focalisation (cf. [25]), which consists in
removing the use of contractions in the negative phases and carrying these phases
maximally, up to having only atoms on the left of the sequent. The positive phases
are made also “more maximal” by allowing the use of the axiom only on posi-
tive atoms X . This is of interest in a proof search perspective, since the stronger
discipline further reduces the search space.

2. We would like our syntax to quotient proofs over the order of decomposition of neg-
ative formulas. The use of structured pattern-matching (cf. Example 1) is relevant,
as we can describe the construction of a proof of (Γ, x : (P1⊗P2)⊗(P3⊗P4) ` ∆)
out of a proof of c : (Γ, x1 : P1, x2 : P2, x3 : P3, x4 : P4 ` ∆) “synthetically”,
by writing 〈x♦ | µ̃((x1, x2), (x3, x4)).c〉, where µ̃((x1, x2), (x3, x4)).c stands for
an abbreviation of either of the following two commands:〈

x♦

∣∣∣∣ µ̃(y, z).〈y♦
∣∣∣ µ̃(x1, x2).〈z♦ | µ̃(x3, x4).c〉

〉〉
〈
x♦

∣∣∣∣ µ̃(y, z).〈z♦
∣∣∣ µ̃(x3, x4).〈y♦ | µ̃(x1, x2).c〉

〉〉
The two goals are connected, since applying strong focalisation will forbid the for-
mation of these two terms (because y, z are values appearing with non atomic types),
keeping the synthetic form only... provided we make it first class.

We shall proceed in two steps. The first, intermediate one, consists in introducing
first-class counterpatterns and will serve goal 1 but not quite goal 2:

Simple commands c ::= 〈v | e〉 Commands C ::= c | [C q,q C]

Expressions v ::= V ♦ |µα.C Values V ::= x | (V, V) | inl(V) | inr(V) | e•
Contexts e ::= α | µ̃q.C Counterpatterns q ::= x |α• | (q, q) | [q, q]

The counterpatterns are to be thought of as constructs that match patterns (see below).
In this syntax, we have gained a unique µ̃ binder, but the price to pay is that now

commands are trees of copairings [q1,q2] whose leaves are simple commands.
The typing discipline is restricted with respect to that of Figure 1 (and adapted to

the setting with explicit counterpatterns). Let Ξ = x1 : X1, . . . , xn : Xn denote a left
context consisting of atomic formulas only. The rules are as follows:

Ξ , x : X ` x : X ; ∆

C : (Ξ , q : P ` ∆)

Ξ | µ̃q.C : P ` ∆
C : (Ξ ` α : P , ∆)

Ξ ` µα.C : P |∆

C : (Γ ` α : P , ∆)

C : (Γ , α• : ¬+P ` ∆)

C : (Γ , q1 : P1 , q2 : P2 ` ∆)

C : (Γ , (q1, q2) : P1 ⊗ P2 ` ∆)

C1 : (Γ , q1 : P1 ` ∆)C2 : (Γ , q2 : P2 ` ∆)

[C1
q1,q2 C2] : (Γ , [q1, q2] : P1 ⊕ P2 ` ∆)

(all the other rules as in Figure 1, with Ξ in place of Γ)

Our aim now (second step) is to get rid of the tree structure of a command. Indeed,
if cij : (Γ, xi : Pi, xj : Pj `S ∆) (i = 1, 2, j = 3, 4), we want to identify

[[c13 x3,x4 c14] x1,x2 [c23 x3,x4 c24]] and [[c13 x1,x2 c23] x3,x4 [c14 x1,x2 c24]] .

To this effect, we need a last ingredient. We introduce a syntax of patterns, and we
redefine the syntax of values, as follows:

V ::= x | e• V ::= p 〈Vi/i | i ∈ p〉 p ::= x |α• | (p, p) | inl(p) | inr(p)
where i ∈ p is defined by:

x ∈ x α• ∈ α•
i ∈ p1

i ∈ (p1, p2)

i ∈ p2
i ∈ (p1, p2)

i ∈ p1
i ∈ inl(p1)

i ∈ p2
i ∈ inr(p2)

Moreover, Vi must be of the form y (resp. e•) if i = x (resp. i = α•).
Patterns are required to be linear, as well as the counterpatterns, for which the def-

inition of “linear” is adjusted in the case [q1, q2], in which a variable can occur (but
recursively linearly so) in both q1 and q2.

We can now rephrase the logical reduction rules in terms of pattern/counterpattern
interaction (whence the terminology), resulting in the following packaging of rules:

V = p 〈. . . y/x, . . . , e•/α•, . . .〉 C[p/q]→∗ c
〈V ♦ | µ̃q.C〉 → c{. . . , y/x, . . . , e/α, . . .}

where c{σ} is the usual, implicit substitution, and where c (see the next proposition) is
the normal form of C[p/q] with respect to the following set of rules:

C[(p1, p2)/(q1, q2), σ]→ C[p1/q1, p2/q2, σ] C[β•/α•, σ]→ C[β/α, σ]
[C1

q1,q2 C2][inl(p1)/[q1, q2], σ]→ C1[p1/q1, σ] (idem inr)

Logically, this means that we now consider each formula as made of blocks of synthetic
connectives.

Example 3. – Patterns for P = X ⊗ (Y ⊕ ¬+Q). Focusing on the right yields two
possible proof searches:

Γ ` x′{Vx′} : X ; ∆ Γ ` y′{Vy′} : Y ; ∆

Γ ` (x′, inl(y′)){Vx′ ,Vy′} : X ⊗ (Y ⊕ ¬+Q) ; ∆

Γ ` x′{Vx′} : X ; ∆ Γ ` α′•{Vα′•} : ¬+Q ; ∆

Γ ` (x′, inr(α′
•
)){Vx′ ,Vα′•} : X ⊗ (Y ⊕ ¬+Q) ; ∆

– Counterpattern for P = X ⊗ (Y ⊕ ¬+Q). The counterpattern describes the tree
structure of P :

c1 : (Γ , x : X , y : Y ` ∆) c2 : (Γ , x : X , α• : ¬+Q ` ∆)

[c1 y,α
•
c2] : (Γ , (x, [y, α

•]) : X ⊗ (Y ⊕ ¬+Q) ` ∆)

We observe that the leaves of the decomposition are in one-to-one correspondence
with the patterns p for the (irreversible) decomposition of P on the right:

[c1 y,α
•
c2][p1/q] = c1{x′/x, y′/y} [c1 y,α

•
c2][p2/q] = c2{x′/x, α′/α}

where q = (x, [y, α•]) , p1 = (x′, inl(yk′)) , p2 = (x′, inr(α′•)).

Fig. 4. The syntax and reduction semantics of Lsynth

c ::= 〈v | e〉 v ::= V ♦ |µα.c
V ::= p 〈Vi/i | i ∈ p〉 V ::= x | e• p ::= x |α• | (p, p) | inl(p) | inr(p)
e ::= α | µ̃q.{p 7→ cp | q⊥ p} q ::= x |α• | (q, q) | [q, q]

(µ̃+) 〈(p 〈. . . , y/x, . . . , e•/α• . . .〉)♦ | µ̃q.{p 7→ cp | q⊥ p}〉
→ cp {. . . , y/x, . . . , e/α, . . .〉}

(µ) 〈µα.c | e〉 → c{e/α}

Typing rules: the old ones for α, x, e•, c, plus the following ones:

. . . Γ ` Vi : Pi ; ∆ ((i : Pi) ∈ Γ (p, P)) . . .

Γ ` p 〈Vi/i | i ∈ p〉 : P ; ∆

. . . cp : (Γ , Γ (p, P) ` ∆) (q⊥ p) . . .

Γ | µ̃q.{p 7→ cp | q⊥ p} ` ∆
where Γ (p, P) must be successfully defined as follows:

Γ (x,X) = (x : X) Γ (α•,¬+P) = (α• : ¬+P)
Γ ((p1, p2), P1 ⊗ P2) = Γ (p1, P1) , Γ (p2, P2) Γ (inl(p1), P1 ⊕ P2) = Γ (p1, P1) (idem inr)

This correspondence is general. We define two predicates c ∈ C and q⊥ p (“q is or-
thogonal to p”) as follows:

c ∈ c
c ∈ C1

c ∈ [C1
q1,q2 C2]

c ∈ C2

c ∈ [C1
q1,q2 C2]

x⊥x α•⊥α•
q1⊥ p1 q2⊥ p2
(q1, q2)⊥ (p1, p2)

q1⊥ p1
[q1, q2]⊥ inl(p1)

q2⊥ p2
[q1, q2]⊥ inr(p2)

We can now state the correspondence result.

Proposition 4. Let C : (Ξ , q : P ` ∆) (as in the assumption of the typing rule for
µ̃q.C), and let p be such that q is orthogonal to p. Then the normal form c of C[p/q] is
a simple command, and the mapping p 7→ c (q, C fixed) from {p | q⊥ p} to {c | c ∈ C}
is one-to-one and onto.

Thanks to this correspondence, we can quotient over the “bureaucracy” of com-
mands, and we arrive at the calculus described in Figure 4, together with its typing
rules, which we call synthetic system L, or Lsynth. The µ̃ construct of Lsynth is closely
related to Zeilberger’s higher-order abstract approach to focalisation in [27]: indeed we
can view {p 7→ c | q⊥ p} as a function from patterns to commands. We actually prefer
to see here a finite record whoses fields are the p’s orthogonal to q. There are only two
reduction rules in Lsynth. the µ-rule now expressed with implicit substitution and the µ̃+-
rule, which combines two familiar operations: select a field p (like in object-oriented

programming), and substitute (like in functional programming). The next proposition
relates Lsynth to Lfoc.

Proposition 5. The typing system of Lsynth is complete with respect to LKQ.

PROOF. The completeness of Lsynth with respect to the intermediate system above is an
easy consequence of Proposition 4. In order to prove the completeness of the interme-
diate system, we define the following rewriting relation between sets of sequents:

(Γ, x : ¬+P ` ∆),S (Γ ` α : P,∆),S
(Γ, x : P1 ⊗ P2 ` ∆),S (Γ, x1 : P1, x2 : P2 ` ∆),S
(Γ, x : P1 ⊕ P2 ` ∆),S (Γ, x1 : P1 ` ∆), (Γ, x2 : P2 ` ∆),S

(where α, x1, x2 are fresh). One proves the following properties together:
1) if c : (x1 : P1, . . . , xm : Pm ` ∆), then there exist q1, . . . , qm and C such that
C : (q1 : P1, . . . , qm : Pm `S ∆),
2) if Ξ | e : P ` ∆, then there exists e′ such that Ξ | e′ : P `S ∆ (and similarly for
expressions v),
where `S (resp. `) refers to the intermediate system (resp. to Lfoc). The proof of 1) goes
as follows. Using Lemma 1 and induction, we get simple commands ci proving all the
sequents in the normal form of (x1 : P1, . . . , xm : Pm ` ∆) w.r.t. the above rewriting
rules. One can then assemble the ci’s to form a command C as in the statement. ut

Putting together Propositions 1 and 5, we have proved that Lsynth is complete with
respect to LK for provability.

Remark 4. In the multiplicative case (no C, inl(V), inr(V), [q1, q2]), there is a unique
p such that q⊥ p, namely q, and the syntax boils down to:

V ::= x | e• V ::= p 〈Vi/i | i ∈ p〉 v ::= x | µ̃q.{c} c = 〈V ♦ |α〉

Compare with Böhm trees: M ::=

e︷ ︸︸ ︷
λx. P︸︷︷︸

c

P ::= y

V︷︸︸︷
M1 . . .

V︷︸︸︷
Mn︸ ︷︷ ︸

V

.

7 Conclusion

We believe that Curien-Herbelin’s syntactic kit, which we could call system L for short,
provides us with a robust infrastructure for proof-theoretical investigations, and for ap-
plications in formal studies in operational semantics. Thus, the work presented here
is faithful to the spirit of Herbelin’s Habilitation Thesis [11], where he advocated an
incremental approach to connectives, starting from a pure control kernel.

The good fit between abstract machines and our syntax Lfoc makes it a good candi-
date for being used as an intermediate language appropriate to reason about the correct-
ness of abstract machines (see also [18]). In this spirit, in order to account for languages
with mixed call-by-value / call-by-name features, one may give a truly bilateral presen-
tation of Lfoc that freely mixes positive and negative formulas like in Girard’s LC[7].6

Such a system is presented in the long version of [19].
We wish to thank R. Harper, H. Herbelin, and O. Laurent for helpful discussions.

6 See also [20] for an early analysis of the computational meaning of LC from a programming
language perspective.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy, Explicit Substitutions, Journal of Func-
tional Programming 1(4) (1992).

2. J.-M. Andreoli, Logic programming with focusing proofs in linear logic, Journal of Logic
and Computation 2(3) , 297-347 (1992).

3. P.-L. Curien and H. Herbelin, The duality of computation, Proc. Int. Conf. on Functional
Programming 2000.

4. V. Danos, J.-B. Joinet, H. Schellinx, A new deconstructive logic: linear logic, Journal of
Symbolic Logic 62(3) (1997).

5. O. Danvy, Back to direct style, Science of Computer Programming, 22(3),183-195 (1994).
6. J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge University Press (1989).
7. J.-Y. Girard, A new constructive logic: classical logic, Mathematical Structures in Computer

Science 1, 255-296 (1991).
8. J.-Y. Girard, Locus solum: from the rules of logic to the logic of rules, Mathematical Struc-

tures in Computer Science 11(3), 301-506 (2001).
9. T. Griffin, A formulae-as-types notion of control, Proc. Principles of Programming Lan-

guages 1990.
10. H. Herbelin, Séquents qu’on calcule, Thèse de Doctorat, Université Paris 7, available from

http://pauillac.inria.fr/˜herbelin (1995).
11. H. Herbelin, C’est maintenant qu’on calcule, au cœur de la dualité, Mémoire d’habilitation,

available from cited url (2005).
12. J.-L. Krivine, Lambda-calcul, types et modèles, Masson (1991).
13. J.-L. Krivine, A call-by-name lambda-calculus machine, Higher Order and Symbolic Com-

putation 20, 199-207 (2007).
14. Y. Lafont, B. Reus, and T. Streicher, Continuation Semantics or Expressing Implication by

Negation, Technical Report (1993).
15. P. Landin, The mechanical evaluation of expressions, Computer Journal 6, 308-320 (1964).
16. O. Laurent, Etude de la polarisation en logique, Thèse de Doctorat, Univ. Aix-Marseille II

(2002).
17. O. Laurent, M. Quatrini, and L. Tortora de Falco, Polarised and focalised linear and classical

proofs, Ann. of Pure and Appl. Logic, 134, no 2-3,217–264 (2005).
18. P.B. Levy, Call-by-push-value. A functional/imperative synthesis, Semantic Structures in

Computation, Springer (2004).
19. G. Munch-Maccagnoni, Focalisation and classical realisability, Proc. CSL 2009 LNCS

5771, 409–423, Springer (long version available from http://perso.ens-lyon.fr/
guillaume.munch/articles).

20. C. Murthy, A computational analysis of Girard’s translation and LC, Proc. LICS 1992.
21. T. Nipkow, Orthogonal higher-order rewriting systems are confluent, Proc. TLCA, LNCS

664 , (1993).
22. L. Ong and C. Stewart, A Curry-Howard foundation for functional computation with control,

Proc. POPL 97.
23. M. Parigot, λµ-calculus: An algorithmic interpretation of classical natural deduction, in Proc.

LPAR, St. Petersburg, LNCS 624 (1992).
24. G. Plotkin, Call-by-name, call-by-value and the lambda-calculus, TCS 1, 125-159 (1975).
25. M. Quatrini, L. Tortora de Falco, Polarisation des preuves classiques et renversement,

C.R.A.S..323(I),113-116 (1996).
26. Ph. Wadler, Call-by-value is dual to call-by-name, Proc. ICFP (2003).
27. N. Zeilberger, On the unity of duality, Ann. of Pure and Appl. Logic 153(1), 66-96 (2008).

