Safe Equivalences for Security Properties

Mario S. Alvim!, Miguel E. Andrés, Catuscia Palamidessiand Peter van Rossim

INRIA and LIX, Ecole Polytechnique Palaiseau, France.
2Institute for Computing and Information Sciences, The Md#nds.

Abstract. In the field of Security, process equivalences have beentosehr-
acterize various information-hiding properties (for arste secrecy, anonymity
and non-interference) based on the principle that a prbtBowith a variablex
satisfies such property if and only if, for every pair of sésse andsz, P[s1/x]

is equivalent taP[s2/x]. We argue that, in the presence of nondeterminism, the
above principle relies on the assumption that the schetlutenks for the benefit
of the protocol”, and this is usually not a safe assumptian-§afe equivalences,
in this sense, include (partial-) trace equivalence, higation and testing. We
present a formalism in which we can specify admissible saleesl and, corre-
spondingly, safe versions of these equivalences. We them 8tese variants are
still congruences. Finally, we investigate the relationhvthe recent notion of
"demonic bisimulation” proposed by Chatzikokolakis, Getand Parker.

1 Introduction

Leta € X*, we define the set of paths with trageas [a] o {o € CPaths(M) |
trace(o) = a}.

Motivation Consider the system

S X (¢, out)(A || Hy || Ha || Cor )

where

A e(sec) Hy “ e(s).out(a) Hy “ e(s).out(b) Corr ™ c(s).oul(s)

Then we haves {a/sec} =5 {b/sec}-
Schedulers:

Bad: They can see the secrets and induce a leakage by makingediffdroices based
on the different secrets

Neutral (safe): They do not see the secrets. Same choices for differenttsecre

Good: They see the secrets and protect from leakage by makingetitfehoices based
on the secrets (this is what the “bad” use of bisimulatioreisdal on)



Mig: The support ofx does not need to be
countable anymore

Cat: In the non countable case we would
need to use an integral, so let's leave it this
way

Cat: Should we say that these are called
“simple Probabilistic Automata”, althoug we
will often use “Probabilistic Automata” for
simplicity? In the rest of the paper | have
used “simple” to point out the difference
with the QEST paper.

Mig: Catuscia: Is this what you like for
first, last, etc?

Cat: Yes, thanks

| [DemonidAngelic]
Restricted
Omniscient]

Table 1.

2 Preliminaries

In this section we gather preliminary notions and resuliated to probabilistic au-
tomata [?,7].

2.1 Probabilistic automata

A functionp: @ — [0, 1] is adiscrete probability distributioron a set? if the support
of u is countable an(EqEQ u(q) = 1. The set of all discrete probability distributions
onQ is denoted byD(Q).

A probabilistic automatoiis a quadruplé/ = (Q, X, ¢, «) where

— @ is a countable set ditates

— X afinite set ofactions

— g theinitial state, and

— aatransition functionn : Q — P(X x D(Q)).

WhereP(X) is the set of all finite subsets of.

If a(q) = 0 theng is aterminalstate. We writey % 1. for (a, 1) € a(q). Moreover,
we write ¢-%r wheneverg = p andu(r) > 0. A fully probabilistic automatoris
a probabilistic automaton satisfying(q)| < 1 for all states. In case(q) # 0 in a
fully probabilistic automaton, we will overload notationdiusea(q) to denote the
distribution outgoing frong.

A pathin a probabilistic automaton is a sequence= ¢y = ¢; =3 --- where
¢ €Q,a; € X andql-‘”—“»qiﬂ. A path can bdinite in which case it ends with a state.
A path iscompletéf it is either infinite or finite ending in a terminal state.\@h a path
o, first(o) denotes its first state, anddfis finite thenlast(o) denotes its last state.
Let Paths, (M) denote the set of all pathBaths (1) the set of all finite paths, and
CPaths, (M) the set of all complete paths of an automaldn starting from the state
q. We will omit ¢ if ¢ = ¢. Paths are ordered by the prefix relation, which we denote
by <. Thetraceof a path is the sequence of actionstiti U X°° obtained by removing
the states, hence for the above pattve havetrace(o) = ajay.... If X C X, then
traces (o) is the projection oftrace(o) on the elements af’. Thelengthof a finite
patho, denoted byo|, is the number of actions in its trace.

Let M = (Q, X, §, ) be a (fully) probabilistic automaton, € ) a state, and let
o € Pathsj (M) be a finite path starting in. The conegenerated by is the set of
complete pathgo) = {o’ € CPaths,(M) | ¢ < ¢’'}. Given a fully probabilistic
automatonM = (@, X, ¢, «) and a state;, we can calculate theprobability value
denoted byP,, (), of any finite pathr starting ing as follows:P,(¢) = 1 andP,(¢ =
q)=P,(0) - u(q), wherelast(c) = p.



Let (2, o CPaths, (M) be the sample space, and Jef be the smallest-algebra

generated by the cones. ThBy induces a uniquprobability measuren F, (which
we will also denote byP,) such that?,((c)) = P,(o) for every finite pathr starting
in g. Forg = ¢ we writeP instead ofP;.

A scheduler for a probabilistic automatd# is a function

¢: Paths* (M) — (X x D(Q)U L)

satisfying( (o) = (a, 1) implieslast (o) = p, for each finite patl.

Hence, a scheduler selects an available transitions instatg It is history dependent
since it takes into account the path (history) and not ondydirrent state. It is partial
since it gives a sub-probability distribution, i.e., it magit the execution at any time.

3 Systems

In this section we describe the kind of systems we are dealitig We start by intro-
ducing a variant of probabilistic automata, that we atjged Probabilistic Automata
These systems are parallel compositions of probabilisticgsses, callecomponents  cat i have removed the requirement that the
Each componentis equipped with a unique identifier, caigdWhenever a componentieednee " P e et
(or a pair of components in case of synchronization) makdsm the corresponding
transition will be decorated with the associated tag (or pitiags).

Similar systems have been already introduced?in The main difference is that
here the components are simple probablistic automataheg.may contain internal
nondetermism, and each transition goes from a node and tdedelistributions over cat make sure we introduce simple
nodes. In P] the components are fully probabilistic (except for theuhguards, that preimnaes i s paper we wilvse the

word “label” to refer to pairs tag: action or

may receive different values), and the secrets can appéaincenprobabilistic choice.  (agagaction.
Definition 1. ATagged Probabilistic AutomatdiPA) is a tupl€Q, L, X, , «), where

— Q@ is a set ofstates

— L is a set oftags

— X'is a set ofactions

— ¢ € Qs theinitial state

—a: @ — P(L x X x D(Q)) is atransition function

Cat: | have eliminated the restriction that
should be a finite set of transitions

In the following we writeg Le, wfor (L,a, 1) € a(q), and we usénabled(q) to
denote the tags of the components that are enabled to makesétitsn. Namely,

Enabled(q) e {€ € L | there exists a € X, € D(Q) such that q Le, w}

In these systems, we can decompose the scheduler in labal schedulerwhich
decides which component or pair of components makes the mext and docal
scheduleywhich solves the internal nondeterminism of the selectedponent.

We assume that the local scheduler can select only a tramsitiich is enabled, and
that the global scheduler can only select a component aniasg which are enabled.
This means that the execution does not stop unless all coemp®are blocked (sus-
pended or terminated). This is in line with the spirit of pees algebra, and also with



Cat: Please use italics for “last”, and for all
the other function names.

the tradition of Markov Decision Processes, but contradis that of the Probabilistic
Automata of Lynch and Segal&][ However, the results in this paper do not depend
on this assumption; we could as well allow schedulers whietide to terminate the
execution even though there are transitions enabled iratiestate.

Definition 2. LetM = (Q, L, X, §, «) be a Tagged Probabilistic Automaton.

— A global scheduler fodf is a function{: Paths*(M) — (L U {L}) such that for
all finite pathso, if Enabled(last(o)) # 0 then((o) € Enabled(last(c)), and
((o) = L otherwise.

— Alocal scheduler foM/ is a function¢: Paths*(M) — (L x ¥ x D(Q)U{L})
such that, for all finite paths, if a(last(o)) # 0 thené(c) € a(last(o)), and
&(o) = L otherwise.

— A global schedule¢ and a local schedulef for M are compatibleif, for all finite
pathso, £(o) = (¢, a, ) implies¢(o) = ¢, andé(o) = L implies((o) = L.

— A scheduler forM is a pair (¢, &) of compatible global and local schedulers for
M.

We are going to use a simple probabilistic process calcas®(t of probabilistic
version of CCS?,7]) to specify the components.

Components’ syntaXiVe assume a set attionsX’ with elements, a1, ao, - - -, includ-
ing the special symbat denoting asilent step With the exception of, each actiom
has a unique co-actiane X and we assume = a.

A component is a process specified by the following grammar:

Components ¢ ::=0 termination
| a.q prefix
| ¢1 +¢2 nondeterministic choice
| >, pi : ¢; probabilistic choice
| ¢1]q2  parallel composition
| (a)gq restriction
| A process call

Thep;, in the blind and secret choices, represents the probabflihei-th branch
and must satisfp < p; < 1 and)_, p; = 1. The process calll is a simple process

identifier. For each identifier, we assume a correspondiiguemprocess declaration of

the formA % g. The idea is that, whenevdris executed, it triggers the executiongof

Note thaty can containd or another process identifier, which means that our language
allows (mutual) recursion.

Components’ semantic§he operational semantics consists of probabilistic items
of the formq-% . whereq € Q is a processg € ¥ is an action angk € D(Q) is a
distribution on processes. They are specified by the foligwules:



mgﬂ

PRF ——— NDT ————
a.g = oy @ tae—p
a
PRB . PAR — L F
diDit i — P pi- Oy ala =g
s, 2 60, 2 6,
cALL L8 4, com X &
A*)M q1 |q2_>6r1\7"2
a
RST a” a,d#b
(0)g = p

We assume also the symmetric versions of the rules NDT, PARGODM. The
symbol d, is the delta of Dirac, which assigns probabilityto ¢ and0 to all other
processes. The symbpl, represents summation on distributions. Nam®ly, p; - j1;
is the distributiory: such thafu(xz) = >, p; - 1i(x). The notatiory | ¢ represents the
distributiony” such thay' (r) = p(¢’) if r = ¢’ | ¢, andy/(r) = 0 otherwise.

SystemsA system is composed by processes (components) in parallel, and restricted
at the top-level on a subset of actioAsC X

(Aallgall-- 1 gn

The restriction om enforces synchronization on the channel names belongidgito
accordance with the CCS spirit.

Systems’ semantic¥he semantics of a system gives rise to a TPA, where the states
are terms representing systems during their evolutionaAsition now is of the form

q L, uwwherea € ¥, n € D(Q), and? € L is either the tag of the component
which makes the move, or a (unordered) pair of tags repriesgtite two partners of
a synchronization. We will set to be the indexes of the componets, ile= I U I?
wherel ={1,2,...,n}.

Interleaving
qi = Ej pj- 6111‘1
i:a a g A
Aa gl an — 2P Sa)anl-llais -l

wherei is the tag indicating that the componéis making the step.

Note that we assume that the probabilistic choices in theagyof the components
are finite. This implies that every transitiqné:—a> 1t can be written ag Lo, > i 0g;s
thus justifying the notation used in the interleaving rule.



Synchronization

q; i) 5(]; q] l) 5(];
1,J:T
(Aaull- gl Mgl an == dayallgl-Idlam

here{i, j} is the tag indicating that the components making the step arelj. We
write i, j instead thads, j}, for simplicity.

Example 1.We now show the semantic of the example presented in thedunttimn.
Figure ?(a) shows the semantic${“/...}, for simplicity we do not write neither the
restriction on channelsandout neither the termination symbolof each component,
furthermore, we use- to denote a component that is stuck. Similarly the semaifitic o
S {*/sec} Is shown in Figure ?(b).

The set of enable transitions also become clear in the figmeehave, for instance,
Enabled (S {®/sec }) = {(1,2),(1,3),(1,4)} and Enabled( 0 || out{a) || — || =) =
{2}. Finally, the schedulef defined as

(1, 4) ifo=2S8 {a/sec} s

. 1,2:7 —_—
» 2 if o =8{"sec} = (0 out(a) || — || =),
e . 1,3:7 —_—
) =13 ifo=5{" e} L (0] — ||oui(d) || - ),
. 1,4:7 —_—
4 if o =5{"sec} — (0| = || = || out(a) ),
il otherwiase,
is a global scheduler fof {*/scc }-
1 2 4 1 2 3 4

3
2a) || e(w)-outla) || c().out(b) || c(z).out(z) 2(b) || c(z).outla) || c(z).out(b) || c(z).oukiz)

0| out{a) | — || = 0l = Il out(d) || - Off = 1[I = Ilout(@ 0 outfa) || — Il - 0l = Il out(d) || — Ol =1 = [l out(b)

| N bk

ool =1- O = 11ofl - off =1 =10 offol =1 - off = 1ol - ol =1l =10

1@)S {*/uec} 1b) S {*/sec}

Mig: 1 am having some issues with the
numbering of this figure, try to solve it,
otherwise insert the figure number explicitly
in the text

4 Safe equivalences

In this section we revise some of the main equivalence nstitsed in literature so to
guarantee their safe use in security.

In the following we assume that any probabilistic automasamfolded into a tree
(this is a standard construction, see for instarfffe [This way, every finite patlr
is determined by its last statést(o). Consequently, we can view a scheduler as a
function on states, and we writéq) instead tharg (o), whereq = last(o).



4.1 Safe Traces

We define here a safe version of complete-trace semantiesidea is that we want
to compare two processes on the basis not only of their trhceslso of the choices
that the global scheduler makes at every step. One way ofjdbis is by recording
explicitly the tags in the traces.

Definition 3.

— Given a TAPM = (Q, L, X, ¢, «) the (complete) safe traces &f, denoted here
by Traces;(M), are defined as the sequence of tags and actions in all pessibl
complete executions, i.e.

Tracess(M) =
{flzal-fgzag-...%n:an|qul:—a}qlezz—a>2...eLa’fqn -} finite
U

. . . ~Al1:aq la:as lpian c e
{t1:a1-Lls:az- Ay ag - |§— ¢ = ~3q } infinite

— Given a system, we will denote byTracess(q) the safe traces of the automaton
associated t@.

— Two systems; andg- are safe-trace equivalent, denoteddqy~ g2, if and only
if Tracess(q1) = Tracess(qz).

It is clear that safe-trace equivalence is at least as digtating as the standard
(complete-) trace equivalence, denoted here-bywhich compares only the sequences
of actions. In fact, the latter is obtained from the formeragtracting from the tags.
The following example points out the converse does not hold.

Example 2.Consider the systerfi given in the introduction. There we have
Traces(S{*/sec}) = {a,b} = Traces(S {®/sec })-
On the other hand we have
Tracess(S{"/sec}) ={1,2:7-2:a,1,3:7-3:b,1,4:7-4:a}

”;
Tracess(S {*/sec}) ={1,2:7-2:a,1,3:7-3:b,1,4:7-4:b}.

4.2 Safe Bisimilarity

In this section we propose a security-safe version of bikitian, that we callsafe
bisimulation This is an equivalence relation stricter than safe-trapevalence, with
the advantage of being a congruence.

We start with some notation. Givena TRA = (Q, L, X, ¢, «), and a global sched-
uler ¢, we denote byy, the restriction oty to ¢, i.e. for everyg € Q,

ac(q) = {(a, n) | there existg € L suchtha(?, a, 1) € a(q) and((q) = ¢}



We will also writeq —¢ p for (a, ) € ac(q), and M, for the automaton obtained
by pruningM from all the choices not compatible with i.e. M, = (Q, L, X, §, a¢).
Note thatM, still contains nondeterminism, since there maybeys, with p # po,
such tha(a., p1), (a2, p2) € ac (with eithera; = as oraq # as).

We now define the notion of safe bisimulation. The idea is,tlia and¢’ are
bisimilar states, then every move frapshould be mimicked by a move frogh using
the same scheduler

Definition 4. Givena TPAM = (Q, L, X, 4, ), we say that a relatioR C @ x Q is
a safe bisimulation if, wheneverR g2, then, for all global schedulersfor M:

— if g1 —>¢ p1, then there exista, such thatlyy ¢ s, ((q1) = ((g2), 1 Rua,
and

— if g2 —¢ p2, then there exists; such thaty; —*~¢ 11, ((q1) = ¢(g2), 1 Rute.

wherep; Rue means that for all equivalence class&se @Q/R, we haveu; (X) =
pr2(X).

The following result is immediate:

Proposition 1. The union of all the safe bisimulations fdf is still a safe bisimulation
for M.

Therefore the largest safe bisimulation exists, and cdagiwith the union of all
safe bisimulations. We call #afe bisimilarity and we denote it by .

Given two TPAs on the samé& and ¥, M; = (Q1,L,X,¢1,1) and My =
(Q2, L, X, 42, a2), we can define bisimulation and bisimilarity across theates, i.e.
as relations oriQ; U Q-2), in the obvious way, by constructing the TRA with a new
initial stateg and two transitions té;, and todg,, respectively.

Given two components or systengs,andq,, we will say thatg; andgs are safely
bisimilar, denoted by, ~ ¢2, if the initial states of the corresponding TPA's are safely
bisimilar. Note thaty; ~; ¢- is possible only ifg; and g, have the same number of
active components, where “active”, for a component, mehasduring the execution
of the system it will make at least one step.

Note that in the case of components, or of systems congtituteone component
only, safe bisimulation and safe bisimilarity coincide witandard bisimulation and
bisimilarity, respectively. For systems, safe bisimwatis at least as strong as standard
bisimulation (denoted by.):

Remark 1.Given two systemsg, andgo, if ¢1 ~5 g2 theng; ~ ¢s.
The converse does not hold in general, as shown by the faltpaxample.

Example 3.We consider again the systefhpresented in the Introduction. It is easy
to see thatS {*/sec} ~ S{"/sec}. In order to show tha {*/scc} s S{"/sec}
we take the two automata &f{*/...} andS {*/...} (see Figure ?), and construct a

new automaton (as described above) with initial sfeseich thatj RS {*/sec} @and



G s {®/sec }- Now consider the schedulérsuch that

14 ifo=4q,

(L4) ifo=q"58{"swec}

2 if o =45 5{"sec} 23 (0| outla) || — || -),

3 ifo=G"0 8 sec} 23 (0]] — || out(d) || -),
oy [4 o= S e} S (0]] = ] - [ out(a)),

(L,4) ifo=4-"55{"sc},

2 ifo =055} "2 (0| outla) || — || -),

3 if o =45 5{sec} 22 (0] — |[out(d) || - ),

4 ifo=G"0 8" s} E (0| — || — |l out(v) ),

1 otherwiase.

Itis easy to see that, undgrS {®/... } cannot simulate the transitian a produced by

S{"/sec}-

It turns out that safe bisimulation is a congruence with eespo all the operators
of our language, as expressed by the following theorem. Nhatethe first two items
are just the standard compositionality result for probstidl bisimulation.

Theorem 1. Leta € X and A, B, B’ C Y. Letpy,...,p, be probability values, and
4,q1,925 - s qns ¢4, @b, - - -, @), DE COMpPONENts.

—Ifqg ~sq, then aq ~sa.q2, q1+qg~sqg+q and (a)g ~s (a)g.
g~ d s g, then 3 ipigi e 30 pit g
B a1 | N ~s (B |-, then

(AuB)ai |- llall - llgn ~s (AUB) g Il all-- |l -

The following property shows that bisimulation is strongean safe-trace equiva-
lence, like in the standard case.

Proposition 2. For every pair of components or systemsand ¢, if g1 ~5 ¢o then
q1 =s 42

Like in the standard case, the vice-versa does not hold, @fiedtiace equivalence
iS not a congruence.

5 Admissible schedulers

In this section we restrict the discerning power of the glaral local schedulers in
order to avoid the problem of the information leakage indLinesecurity by clairvoyant
schedulers. We impose two kinds of restrictions: For théalscheduler, following



the framework proposed ir?], we assume that it can only see, and keep memory of,
the observable actions and the components that are endtbéathnot see the secret
actions and the internal choices of the various componAstfor the local scheduler,
we assume that the local nondeterminism of each componesoived on the basis
of the local view of the history (local to that componentg. ithe projection of the
history of the system on that component. In other words, eaatponent has to make
decisions based only on the history of its own executiomaftrot see anything of the
other components.

5.1 Restricting Global Schedulers

We assume that the set of actiomgs divided in two parts, theecret actionsS and
theobservable action®. The secret actions are supposed to be invisible to the lgloba
scheduler. Formally, this can be achieved using a functifirdefined as:

) TifaeS
sift(a) = {a otherwise

Then, we restrict the power of the global scheduler by faydirio make the same
Mig: Try to ik to dolev-yao decisions on paths he cannot tell apart, as formalized ingledefinition.

Definition 5. Given a TPAM, a global schedule¢ for M is admissible if for all paths
o1 andoy we have

t(o1) =t(o2) implies ((o1) = ((o2)
where
t ((j iy il iy L ity Qn+1) = (Enabled(qo), sift(a1), 1)
(Enabled(q1), sift(az),l2)

(Enabled(qy), sift(an),ln)

The idea is that sifts the information of the path that the scheduler can Shis.
way, sincesift “hides” the secrets to the scheduler, the scheduler canketdifferent
decisions based on secret information.

5.2 Restricting Local Schedulers

The restriction on the local scheduler is based on the ideathtep of the component
of a system can only be based on the view ilfas of the history, i.e. its own history. In
order to formalize this restriction, it is convenient toroduce the concept afview of

a patho, or projectionof o ons, which we will denote byr;. We define it inductively:

ib . .o
. o1 — 0q, If £ ={i,j} andp = ba) 4.
(= mi=9oy L% fe=i
ol otherwise

Algill---llg; lI---llgn



In the above definition, the first line represents the casesphahronization steg involv-

. . . I 7 Cat: This is a bit of cheating. In the journal
ing the component where we assume that the premiseifis of the formg, —— d,,.  version we need to change the operational
The second line represents an interleaving step in whigthe active component. Theie pemes rom e concison. -
third line represents step in which the componéatidle.

The restriction to the local scheduler can now be expresséallaws:

Definition 6. Given a TPAV and a local scheduleffor M, we say thaf is admissible
if for all pathso ando’, if £(0) = (¢, a, 1), andé(c’) = (¢, a’, 1'):

- if¢={ =iandoy; = o}, then{(o) = £(o’),
—ifé=10"={i,j}, 0 = oy, andoy; = oy, then{ (o) = £(o”).

A pair of compatible schedule(s, &) for M is calledadmissiblef both ¢ and: are
admissible.

6 Safe Nondeterministic Information Hiding

In this section we define the notion of information hiding anthe most general hy-
pothesis that the nondeterminism is handled partly in a adéeneay and partly in an
angelic way. We assume that the demonic part is in the realtimeofilobal scheduler,
while the angelic part is controlled by the local schedulée motivation is that in a
protocol the local components can be thought of as prograntsmg locally in a single
machine, and locally predictable and controllable, while hetwork can be subject to
attacks that make the interactions unpredictable.

We recall that, in a purely probabilistic setting, the aleseof leakage is expressed
as follows (see for instancé€]). Given a purely probabilistic automatdd, and a se-
quencer = ajas . .. an, let Py, ([a]) represent the probability measure of all complete
paths with trace: in M. Let P be a protocol containing a variable actieecr, and
let s be secret actions. L&t/ (s) be the automaton correspondingffs/ secr|. Define
Pr(a | s) asP ) ([a]). ThenP is leakage-free if for every observable tracgeand
for every secret; andss, we have:

Pr(a|s1) = Pr(a| s2).

In a purely nondeterministic setting, on the other hand atbeence of leakage has
been characterized in the literature by the following prope

Pl[s1/secr] & P[s2/secr]

whereZ is an equivalence relation like trace equivalence, or hitition. As we have
argued in the introduction, this definition assumes an angekerpretation of nonde-
terminism.

We want to combine the above notions so to come with the caséirh we have
both probability and nondeterminism. Furthermore, we wargxtend it to the case
in which part of the nondeterminism is interpreted demdhjchet us first introduce
some notation.



Let S be a system containing a variable actigiar. Let s be a secret action. Let
M (s) be the TPA associated %{s/secr] and let(¢, ) be a compatible pair of global
and local schedulers fa¥/(s). The probability of an observable trage givens, is
defined as

Pree(al] s) =Pus)cellal).

The global nondeterminism is interpret demonically, aretefore we need to en-
sure that the conditional of an observable, given the twoetgcare calculated with
respect to the same global scheduler. However, the schrethdald not be too power-
ful, i.e. we want to rule out the possibility that the schedwise the secret information
(i.e. be clairvoyant ) to accomplish its demonic goals.

Definition 7. A systen® is leakage-free if, for every pair of secretsandss, and
every admissible scheduler

{Pr¢e(al si) | € compatible with(} = {Pr¢ ¢(a | s2) | £ compatible with(}.

It turns out that the safe equivalences defined in Se@imply the absence of
leakage:

Theorem 2. LetS be a system with a variable actisacr and assume theft[s; / secr] ~
S[sa/secr] for every pair of secrets; ands,. ThenS is leakage-free.

From the above theorem and from Proposititthwe also have the following corol-
lary (with the same premises as the previous theorem):

Corollary 1. If S[s1/secr] ~ S[s2/secr] for every pair of secrets; and sz, thensS is
leakage-free.

7 Conclusion



