
Safe Equivalences for Security Properties

Mário S. Alvim1, Miguel E. Andrés2, Catuscia Palamidessi1, and Peter van Rossum2.

1INRIA and LIX, École Polytechnique Palaiseau, France.
2Institute for Computing and Information Sciences, The Netherlands.

Abstract. In the field of Security, process equivalences have been usedto char-
acterize various information-hiding properties (for instance secrecy, anonymity
and non-interference) based on the principle that a protocol P with a variablex
satisfies such property if and only if, for every pair of secretss1 ands2, P [s1/x]
is equivalent toP [s2/x]. We argue that, in the presence of nondeterminism, the
above principle relies on the assumption that the scheduler”works for the benefit
of the protocol”, and this is usually not a safe assumption. Non-safe equivalences,
in this sense, include (partial-) trace equivalence, bisimulation and testing. We
present a formalism in which we can specify admissible schedulers and, corre-
spondingly, safe versions of these equivalences. We then show these variants are
still congruences. Finally, we investigate the relation with the recent notion of
”demonic bisimulation” proposed by Chatzikokolakis, Gethin and Parker.

1 Introduction

Let ã ∈ Σ⋆, we define the set of paths with traceã as [ã]
def
= {σ ∈ CPaths(M) |

trace(σ) = ã}.

Motivation Consider the system

S
def
= (c, out)(A || H1 || H2 || Cor)

where

A
def
= c(sec) H1

def
= c(s).out〈a〉 H2

def
= c(s).out〈b〉 Corr

def
= c(s).out〈s〉

Then we haveS {a/sec} ≡ S
{

b/sec

}
.

Schedulers:

Bad: They can see the secrets and induce a leakage by making different choices based
on the different secrets

Neutral (safe): They do not see the secrets. Same choices for different secrets.
Good: They see the secrets and protect from leakage by making different choices based

on the secrets (this is what the “bad” use of bisimulation is based on)

Demonic Angelic

Restricted
Omniscient

Table 1.

2 Preliminaries

In this section we gather preliminary notions and results related to probabilistic au-
tomata [?,?].

2.1 Probabilistic automata

A functionµ : Q → [0, 1] is adiscrete probability distributionon a setQ if the support
of µ is countable and

∑
q∈Q µ(q) = 1. The set of all discrete probability distributions

onQ is denoted byD(Q).

Mig: The support ofµ does not need to be
countable anymore

Cat: In the non countable case we would
need to use an integral, so let’s leave it this
way

A probabilistic automatonis a quadrupleM = (Q, Σ, q̂, α) where

– Q is a countable set ofstates,
– Σ a finite set ofactions,
– q̂ the initial state, and
– α a transition functionα : Q → P(Σ ×D(Q)).

WhereP(X) is the set of all finite subsets ofX .
If α(q) = ∅ thenq is aterminalstate. We writeq

a
→ µ for (a, µ) ∈ α(q). Moreover,

we write q
a
→r wheneverq

a
→ µ andµ(r) > 0. A fully probabilistic automatonis

a probabilistic automaton satisfying|α(q)| ≤ 1 for all states. In caseα(q) 6= ∅ in a
fully probabilistic automaton, we will overload notation and useα(q) to denote the
distribution outgoing fromq.

Cat: Should we say that these are called
“simple Probabilistic Automata”, althoug we
will often use “Probabilistic Automata” for
simplicity? In the rest of the paper I have
used “simple” to point out the difference
with the QEST paper.

A path in a probabilistic automaton is a sequenceσ = q0
a1→ q1

a2→ · · · where
qi ∈ Q, ai ∈ Σ andqi

ai+1

−→qi+1. A path can befinite in which case it ends with a state.
A path iscompleteif it is either infinite or finite ending in a terminal state. Given a path
σ, first(σ) denotes its first state, and ifσ is finite thenlast(σ) denotes its last state.
Let Pathsq(M) denote the set of all paths,Paths⋆

q(M) the set of all finite paths, and

Mig: Catuscia: Is this what you like for
first, last, etc?

Cat: Yes, thanks

CPathsq(M) the set of all complete paths of an automatonM , starting from the state
q. We will omit q if q = q̂. Paths are ordered by the prefix relation, which we denote
by≤. Thetraceof a path is the sequence of actions inΣ∗ ∪Σ∞ obtained by removing
the states, hence for the above pathσ we havetrace(σ) = a1a2 If Σ′ ⊆ Σ, then
traceΣ′(σ) is the projection oftrace(σ) on the elements ofΣ′. The lengthof a finite
pathσ, denoted by|σ|, is the number of actions in its trace.

Let M = (Q, Σ, q̂, α) be a (fully) probabilistic automaton,q ∈ Q a state, and let
σ ∈ Paths⋆

q(M) be a finite path starting inq. Theconegenerated byσ is the set of
complete paths〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully probabilistic
automatonM = (Q, Σ, q̂, α) and a stateq, we can calculate theprobability value,
denoted byPq(σ), of any finite pathσ starting inq as follows:Pq(q) = 1 andPq(σ

a
→

q′) = Pq(σ) · µ(q′), wherelast(σ)
a
→ µ.

Let Ωq
def
= CPathsq(M) be the sample space, and letFq be the smallestσ-algebra

generated by the cones. ThenPq induces a uniqueprobability measureonFq (which
we will also denote byPq) such thatPq(〈σ〉) = Pq(σ) for every finite pathσ starting
in q. Forq = q̂ we writeP instead ofPq̂.

A scheduler for a probabilistic automatonM is a function

ζ : Paths⋆(M) → (Σ ×D(Q) ∪ ⊥)

satisfyingζ(σ) = (a, µ) implieslast(σ)
a
→ µ, for each finite pathσ.

Hence, a scheduler selects an available transitions in eachstate. It is history dependent
since it takes into account the path (history) and not only the current state. It is partial
since it gives a sub-probability distribution, i.e., it mayhalt the execution at any time.

3 Systems

In this section we describe the kind of systems we are dealingwith. We start by intro-
ducing a variant of probabilistic automata, that we callTagged Probabilistic Automata.
These systems are parallel compositions of probabilistic processes, calledcomponents.
Each component is equipped with a unique identifier, calledtag. Whenever a component

Cat: I have removed the requirement that the
components are purely probabilistic. It’s not
needed here

(or a pair of components in case of synchronization) makes a step, the corresponding
transition will be decorated with the associated tag (or pair of tags).

Similar systems have been already introduced in [?]. The main difference is that
here the components are simple probablistic automata, i.e.they may contain internal
nondetermism, and each transition goes from a node and a label to a distributions over
nodes. In [?] the components are fully probabilistic (except for the input guards, that
may receive different values), and the secrets can appear only in a probabilistic choice.

Cat: Make sure we introduce simple
(labeled) probabilistic automata in the
preliminaries. In this paper, we will use the
word “label” to refer to pairs tag: action or
(tag,tag):action.

Definition 1. A Tagged Probabilistic Automaton(TPA) is a tuple(Q, L, Σ, q̂, α), where

– Q is a set ofstates,
– L is a set oftags,
– Σ is a set ofactions,
– q̂ ∈ Q is theinitial state,
– α : Q → P(L × Σ ×D(Q)) is a transition function.

Cat: I have eliminated the restriction thatα

should be a finite set of transitions

In the following we writeq
l:a
−→ µ for (ℓ, a, µ) ∈ α(q), and we useEnabled(q) to

denote the tags of the components that are enabled to make a transition. Namely,

Enabled(q)
def
= {ℓ ∈ L | there exists a ∈ Σ, µ ∈ D(Q) such that q

l:a
−→ µ}

In these systems, we can decompose the scheduler in two: aglobal scheduler, which
decides which component or pair of components makes the movenext, and alocal
scheduler, which solves the internal nondeterminism of the selected component.

We assume that the local scheduler can select only a transition which is enabled, and
that the global scheduler can only select a component among those which are enabled.
This means that the execution does not stop unless all components are blocked (sus-
pended or terminated). This is in line with the spirit of process algebra, and also with

the tradition of Markov Decision Processes, but contrasts with that of the Probabilistic
Automata of Lynch and Segala [?]. However, the results in this paper do not depend
on this assumption; we could as well allow schedulers which decide to terminate the
execution even though there are transitions enabled in the last state.

Definition 2. LetM = (Q, L, Σ, q̂, α) be a Tagged Probabilistic Automaton.

– A global scheduler forM is a functionζ : Paths⋆(M) → (L ∪ {⊥}) such that for
all finite pathsσ, if Enabled(last(σ)) 6= ∅ thenζ(σ) ∈ Enabled(last(σ)), and
ζ(σ) = ⊥ otherwise.

Cat: Please use italics for “last”, and for all
the other function names.

– A local scheduler forM is a functionξ : Paths⋆(M) → (L × Σ × D(Q) ∪ {⊥})
such that, for all finite pathsσ, if α(last(σ)) 6= ∅ thenξ(σ) ∈ α(last(σ)), and
ξ(σ) = ⊥ otherwise.

– A global schedulerζ and a local schedulerξ for M are compatibleif, for all finite
pathsσ, ξ(σ) = (ℓ, a, µ) impliesζ(σ) = ℓ, andξ(σ) = ⊥ impliesζ(σ) = ⊥.

– A scheduler forM is a pair (ζ, ξ) of compatible global and local schedulers for
M .

We are going to use a simple probabilistic process calculus (a sort of probabilistic
version of CCS [?,?]) to specify the components.

Components’ syntax:We assume a set ofactionsΣ with elementsa, a1, a2, · · · , includ-
ing the special symbolτ denoting asilent step. With the exception ofτ , each actiona
has a unique co-action̄a ∈ Σ and we assumē̄a = a.

A componentq is a process specified by the following grammar:

Components q ::= 0 termination

| a.q prefix

| q1 + q2 nondeterministic choice

|
∑

i pi : qi probabilistic choice

| q1 | q2 parallel composition

| (a)q restriction

| A process call

Thepi, in the blind and secret choices, represents the probability of thei-th branch
and must satisfy0 ≤ pi ≤ 1 and

∑
i pi = 1. The process callA is a simple process

identifier. For each identifier, we assume a corresponding unique process declaration of

the formA
def
= q. The idea is that, wheneverA is executed, it triggers the execution ofq.

Note thatq can containA or another process identifier, which means that our language
allows (mutual) recursion.

Components’ semantics:The operational semantics consists of probabilistic transitions
of the formq

a
→µ whereq ∈ Q is a process,a ∈ Σ is an action andµ ∈ D(Q) is a

distribution on processes. They are specified by the following rules:

PRF
a.q

a
→ δq

NDT
q1

a
→ µ

q1 + q2
a
→ µ

PRB ∑
i pi : qi

τ
→ ◦

∑
i pi · δqi

PAR
q1

a
→ µ

q1 | q2
a
→ µ | q2

CALL
q

a
→ µ

A
a
→ µ

if A
def
= q COM

q1
a
→ δr1

q2
ā
→ δr2

q1 | q2
τ
→ δr1|r2

RST
q

a
→ µ

(b)q
a
→ µ

a, ā 6= b

We assume also the symmetric versions of the rules NDT, PAR and COM. The
symbol δq is the delta of Dirac, which assigns probability1 to q and0 to all other
processes. The symbol◦

∑
i represents summation on distributions. Namely,◦

∑
i pi · µi

is the distributionµ such thatµ(x) =
∑

i pi · µi(x). The notationµ | q represents the
distributionµ′ such thatµ′(r) = µ(q′) if r = q′ | q, andµ′(r) = 0 otherwise.

SystemsA system is composed byn processes (components) in parallel, and restricted
at the top-level on a subset of actionsA ⊆ Σ:

(A) q1 ‖ q2 ‖ · · · ‖ qn.

The restriction onA enforces synchronization on the channel names belonging toA, in
accordance with the CCS spirit.

Systems’ semanticsThe semantics of a system gives rise to a TPA, where the states
are terms representing systems during their evolution. A transition now is of the form

q
ℓ:a
−→ µ wherea ∈ Σ, µ ∈ D(Q), andℓ ∈ L is either the tag of the component

which makes the move, or a (unordered) pair of tags representing the two partners of
a synchronization. We will setL to be the indexes of the componets, i.e.L = I ∪ I2

whereI = {1, 2, . . . , n}.

Interleaving

qi
a
→ ◦

∑
j pj · δqij

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn
i:a
−→ ◦

∑
j pj · δ(A)q1‖···‖qij‖···‖qn

a 6∈ A

wherei is the tag indicating that the componenti is making the step.
Note that we assume that the probabilistic choices in the syntax of the components

are finite. This implies that every transitionq
ℓ:a
−→ µ can be written asq

ℓ:a
−→ ◦

∑
i pi ·δqi

,
thus justifying the notation used in the interleaving rule.

Synchronization

qi
a
→ δq′

i
qj

ā
→ δq′

j

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
i,j:τ
−→ δ(A)q1‖···‖q′

i
‖···‖q′

j
‖···‖qn

here{i, j} is the tag indicating that the components making the step arei andj. We
write i, j instead than{i, j}, for simplicity.

Example 1.We now show the semantic of the example presented in the Introduction.
Figure ?(a) shows the semantic ofS {a/sec}, for simplicity we do not write neither the
restriction on channelsc andout neither the termination symbol0 of each component,
furthermore, we use− to denote a component that is stuck. Similarly the semantic of
S {a/sec} is shown in Figure ?(b).

The set of enable transitions also become clear in the figures, we have, for instance,
Enabled(S

{
b/sec

}
) = {(1, 2), (1, 3), (1, 4)} andEnabled(0 || out〈a〉 || − || −) =

{2}. Finally, the schedulerζ defined as

ζ(σ)
def
=

(1, 4) if σ = S {a/sec} ,

2 if σ = S {a/sec}
1,2:τ
−→ (0 || out〈a〉 || − || −),

3 if σ = S {a/sec}
1,3:τ
−→ (0 || − || out〈b〉 || −),

4 if σ = S {a/sec}
1,4:τ
−→ (0 || − || − || out〈a〉),

⊥ otherwiase,

is a global scheduler forS {a/sec}.

1 2 3 4

c〈a〉 || c(x).out〈a〉 || c(x).out〈b〉 || c(x).out〈x〉

0 || out〈a〉 || − || − 0 || − || out〈b〉 || − 0 || − || − || out〈a〉

0 || 0 || − || − 0 || − || 0 || − 0 || − || − || 0

1, 2:τ
1, 3:τ

1, 4:τ

2:a 3:b 4:a

1(a)S {a/sec}

1 2 3 4

c〈b〉 || c(x).out〈a〉 || c(x).out〈b〉 || c(x).out〈x〉

0 || out〈a〉 || − || − 0 || − || out〈b〉 || − 0 || − || − || out〈b〉

0 || 0 || − || − 0 || − || 0 || − 0 || − || − || 0

1, 2:τ
1, 3:τ

1, 4:τ

2:a 3:b 4:b

1(b)S
˘

b/sec

¯

Mig: I am having some issues with the
numbering of this figure, try to solve it,
otherwise insert the figure number explicitly
in the text

4 Safe equivalences

In this section we revise some of the main equivalence notions used in literature so to
guarantee their safe use in security.

In the following we assume that any probabilistic automatonis unfolded into a tree
(this is a standard construction, see for instance [?]). This way, every finite pathσ
is determined by its last state,last(σ). Consequently, we can view a scheduler as a
function on states, and we writeζ(q) instead thanζ(σ), whereq = last(σ).

4.1 Safe Traces

We define here a safe version of complete-trace semantics. The idea is that we want
to compare two processes on the basis not only of their traces, but also of the choices
that the global scheduler makes at every step. One way of doing this is by recording
explicitly the tags in the traces.

Definition 3.

– Given a TAPM = (Q, L, Σ, q̂, α) the (complete) safe traces ofM , denoted here
by Tracess(M), are defined as the sequence of tags and actions in all possible
complete executions, i.e.

Tracess(M) =

{ℓ1 : a1 · ℓ2 : a2 · . . . · ℓn : an | q̂
ℓ1:a1−→ q1

ℓ2:a2−→ . . .
ℓn:an−→ qn 6−→} finite

∪

{ℓ1 : a1 · ℓ2 : a2 · . . . · ℓn : an · . . . | q̂
ℓ1:a1−→ q1

ℓ2:a2−→ . . .
ℓn:an−→ qn . . .} infinite

– Given a systemq, we will denote byTracess(q) the safe traces of the automaton
associated toq.

– Two systemsq1 andq2 are safe-trace equivalent, denoted byq1 ≃s q2, if and only
if Tracess(q1) = Tracess(q2).

It is clear that safe-trace equivalence is at least as discriminating as the standard
(complete-) trace equivalence, denoted here by≃, which compares only the sequences
of actions. In fact, the latter is obtained from the former byabstracting from the tags.
The following example points out the converse does not hold.

Example 2.Consider the systemS given in the introduction. There we have

Traces(S {a/sec}) = {a, b} = Traces(S
{

b/sec

}
).

On the other hand we have

Tracess(S {a/sec}) = {1, 2 : τ · 2 : a, 1, 3 : τ · 3 : b, 1, 4 : τ · 4 : a}

6=

Tracess(S
{

b/sec

}
) = {1, 2 : τ · 2 : a, 1, 3 : τ · 3 : b, 1, 4 : τ · 4 : b}.

4.2 Safe Bisimilarity

In this section we propose a security-safe version of bisimulation, that we callsafe
bisimulation. This is an equivalence relation stricter than safe-trace equivalence, with
the advantage of being a congruence.

We start with some notation. Given a TPAM = (Q, L, Σ, q̂, α), and a global sched-
uler ζ, we denote byαζ the restriction ofα to ζ, i.e. for everyq ∈ Q,

αζ(q) = {(a, µ) | there existsℓ ∈ L such that(ℓ, a, µ) ∈ α(q) andζ(q) = ℓ}

We will also writeq
a

−→ζ µ for (a, µ) ∈ αζ(q), andMζ for the automaton obtained
by pruningM from all the choices not compatible withζ, i.e.Mζ = (Q, L, Σ, q̂, αζ).
Note thatMζ still contains nondeterminism, since there may beµ1, µ2, with µ1 6= µ2,
such that(a1, µ1), (a2, µ2) ∈ αζ (with eithera1 = a2 or a1 6= a2).

We now define the notion of safe bisimulation. The idea is that, if q and q′ are
bisimilar states, then every move fromq should be mimicked by a move fromq′ using
the same scheduler.

Definition 4. Given a TPAM = (Q, L, Σ, q̂, α), we say that a relationR ⊆ Q × Q is
a safe bisimulation if, wheneverq1Rq2, then, for all global schedulersζ for M :

– if q1
a

−→ζ µ1, then there existsµ2 such thatq2
a

−→ζ µ2, ζ(q1) = ζ(q2), µ1Rµ2,
and

– if q2
a

−→ζ µ2, then there existsµ1 such thatq1
a

−→ζ µ1, ζ(q1) = ζ(q2), µ1Rµ2.

whereµ1Rµ2 means that for all equivalence classesX ∈ Q/R, we haveµ1(X) =
µ2(X).

The following result is immediate:

Proposition 1. The union of all the safe bisimulations forM is still a safe bisimulation
for M .

Therefore the largest safe bisimulation exists, and coincides with the union of all
safe bisimulations. We call itsafe bisimilarity, and we denote it by∼s.

Given two TPA’s on the sameL and Σ, M1 = (Q1, L, Σ, q̂1, α1) and M2 =
(Q2, L, Σ, q̂2, α2), we can define bisimulation and bisimilarity across their states, i.e.
as relations on(Q1 ∪ Q2), in the obvious way, by constructing the TPAM with a new
initial stateq̂ and two transitions toδq̂1

and toδq̂2
, respectively.

Given two components or systems,q1 andq2, we will say thatq1 andq2 are safely
bisimilar, denoted byq1 ∼s q2, if the initial states of the corresponding TPA’s are safely
bisimilar. Note thatq1 ∼s q2 is possible only ifq1 andq2 have the same number of
active components, where “active”, for a component, means that during the execution
of the system it will make at least one step.

Note that in the case of components, or of systems constituted by one component
only, safe bisimulation and safe bisimilarity coincide with standard bisimulation and
bisimilarity, respectively. For systems, safe bisimulation is at least as strong as standard
bisimulation (denoted by∼):

Remark 1.Given two systemsq1 andq2, if q1 ∼s q2 thenq1 ∼ q2.

The converse does not hold in general, as shown by the following example.

Example 3.We consider again the systemS presented in the Introduction. It is easy
to see thatS {a/sec} ∼ S

{
b/sec

}
. In order to show thatS {a/sec} 6∼s S

{
b/sec

}

we take the two automata ofS {a/sec} andS
{

b/sec

}
(see Figure ?), and construct a

new automaton (as described above) with initial stateq̂ such that̂q
ℓ:τ
−→ S {a/sec} and

q̂
ℓ:τ
−→ S

{
b/sec

}
. Now consider the schedulerζ such that

ζ(σ)
def
=

ℓ if σ = q̂,

(1, 4) if σ = q̂
ℓ:τ
−→ S {a/sec} ,

2 if σ = q̂
ℓ:τ
−→ S {a/sec}

1,2:τ
−→ (0 || out〈a〉 || − || −),

3 if σ = q̂
ℓ:τ
−→ S {a/sec}

1,3:τ
−→ (0 || − || out〈b〉 || −),

4 if σ = q̂
ℓ:τ
−→ S {a/sec}

1,4:τ
−→ (0 || − || − || out〈a〉),

(1, 4) if σ = q̂
ℓ:τ
−→ S

{
b/sec

}
,

2 if σ = q̂
ℓ:τ
−→ S

{
b/sec

} 1,2:τ
−→ (0 || out〈a〉 || − || −),

3 if σ = q̂
ℓ:τ
−→ S

{
b/sec

} 1,3:τ
−→ (0 || − || out〈b〉 || −),

4 if σ = q̂
ℓ:τ
−→ S

{
b/sec

} 1,4:τ
−→ (0 || − || − || out〈b〉),

⊥ otherwiase.

It is easy to see that, underζ, S
{

b/sec

}
cannot simulate the transition4:a produced by

S {a/sec}.

It turns out that safe bisimulation is a congruence with respect to all the operators
of our language, as expressed by the following theorem. Notethat the first two items
are just the standard compositionality result for probabilistic bisimulation.

Theorem 1. Let a ∈ Σ andA, B, B′ ⊆ Σ. Letp1, . . . , pn be probability values, and
q, q1, q2, . . . , qn, q′1, q

′
2, . . . , q

′
n be components.

– If q1 ∼s q2, then a.q1 ∼s a.q2, q1 + q ∼s q2 + q, and (a)q1 ∼s (a)q2.

– If q1 ∼s q′1, . . . , qn ∼s q′n , then
∑

i pi : qi ∼s

∑
i pi : q′i.

– If (B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q′n, then

(A ∪ B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn ∼s (A ∪ B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q′n.

The following property shows that bisimulation is strongerthan safe-trace equiva-
lence, like in the standard case.

Proposition 2. For every pair of components or systems,q1 and q2, if q1 ∼s q2 then
q1 ≃s q2.

Like in the standard case, the vice-versa does not hold, and safe-trace equivalence
is not a congruence.

5 Admissible schedulers

In this section we restrict the discerning power of the global and local schedulers in
order to avoid the problem of the information leakage induced in security by clairvoyant
schedulers. We impose two kinds of restrictions: For the global scheduler, following

the framework proposed in [?], we assume that it can only see, and keep memory of,
the observable actions and the components that are enabled.It cannot see the secret
actions and the internal choices of the various components.As for the local scheduler,
we assume that the local nondeterminism of each component issolved on the basis
of the local view of the history (local to that component), i.e. the projection of the
history of the system on that component. In other words, eachcomponent has to make
decisions based only on the history of its own execution; it cannot see anything of the
other components.

5.1 Restricting Global Schedulers

We assume that the set of actionsσ is divided in two parts, thesecret actionsS and
theobservable actionsO. The secret actions are supposed to be invisible to the global
scheduler. Formally, this can be achieved using a functionsift defined as:

sift(a) =

{
τ if a ∈ S
a otherwise

Then, we restrict the power of the global scheduler by forcing it to make the same
decisions on paths he cannot tell apart, as formalized in thenext definition.Mig: Try to link to dolev-yao

Definition 5. Given a TPAM , a global schedulerζ for M is admissible if for all paths
σ1 andσ2 we have

t(σ1) = t(σ2) implies ζ(σ1) = ζ(σ2)

where

t
(
q̂

l1:a1−→ q1
l2:a2−→ · · ·

ln:an−→ qn+1

)
def
= (Enabled(q0), sift(a1), l1)

(Enabled(q1), sift(a2), l2)

...

(Enabled(qn), sift(an), ln)

The idea is thatt sifts the information of the path that the scheduler can see.This
way, sincesift “hides” the secrets to the scheduler, the scheduler cannot take different
decisions based on secret information.

5.2 Restricting Local Schedulers

The restriction on the local scheduler is based on the idea that a step of the componenti
of a system can only be based on the view thati has of the history, i.e. its own history. In
order to formalize this restriction, it is convenient to introduce the concept ofi-view of
a pathσ, or projectionof σ on i, which we will denote byσ↾i. We define it inductively:

(σ
ℓ:a
−→ µ)↾i =

σ↾i
i:b
−→ δqi

if ℓ = {i, j} andµ = δ(A) q1‖...‖qi‖...‖qj‖...‖qn

σ↾i
i:a
−→ µ if ℓ = i

σ↾i otherwise

In the above definition, the first line represents the case of asynchronization step involv-
ing the componenti, where we assume that the premise fori is of the formq′i

b
−→ δqi

.
The second line represents an interleaving step in whichi is the active component. The

Cat: This is a bit of cheating. In the journal
version we need to change the operational
semantics so that we can retrieve the form of
the premise from the conclusion

third line represents step in which the componenti is idle.
The restriction to the local scheduler can now be expressed as follows:

Definition 6. Given a TPAM and a local schedulerξ for M , we say thatξ is admissible
if for all pathsσ andσ′, if ξ(σ) = (ℓ, a, µ), andξ(σ′) = (ℓ′, a′, µ′):

– if ℓ = ℓ′ = i andσ↾i = σ′
↾i, thenξ(σ) = ξ(σ′),

– if ℓ = ℓ′ = {i, j}, σ↾i = σ′
↾i, andσ↾j = σ′

↾j thenξ(σ) = ξ(σ′).

A pair of compatible schedulers(ζ, ξ) for M is calledadmissibleif both ζ andı are
admissible.

6 Safe Nondeterministic Information Hiding

In this section we define the notion of information hiding under the most general hy-
pothesis that the nondeterminism is handled partly in a demonic way and partly in an
angelic way. We assume that the demonic part is in the realm ofthe global scheduler,
while the angelic part is controlled by the local scheduler.The motivation is that in a
protocol the local components can be thought of as programs running locally in a single
machine, and locally predictable and controllable, while the network can be subject to
attacks that make the interactions unpredictable.

We recall that, in a purely probabilistic setting, the absence of leakage is expressed
as follows (see for instance [?]). Given a purely probabilistic automatonM , and a se-
quencẽa = a1a2 . . . an, let PM ([ã]) represent the probability measure of all complete
paths with tracẽa in M . Let P be a protocol containing a variable actionsecr , and
let s be secret actions. LetM(s) be the automaton corresponding toP [s/secr]. Define
Pr(ã | s) asPM(s)([ã]). ThenP is leakage-free if for every observable traceã , and
for every secrets1 ands2, we have:

Pr(ã | s1) = Pr(ã | s2).

In a purely nondeterministic setting, on the other hand, theabsence of leakage has
been characterized in the literature by the following property:

P [s1/secr] ∼= P [s2/secr]

where∼= is an equivalence relation like trace equivalence, or bisimulation. As we have
argued in the introduction, this definition assumes an angelic interpretation of nonde-
terminism.

We want to combine the above notions so to come with the case inwhich we have
both probability and nondeterminism. Furthermore, we wantto extend it to the case
in which part of the nondeterminism is interpreted demonically. Let us first introduce
some notation.

Let S be a system containing a variable actionsecr . Let s be a secret action. Let
M(s) be the TPA associated toS[s/secr] and let(ζ, ξ) be a compatible pair of global
and local schedulers forM(s). The probability of an observable traceã, given s, is
defined as

Pr ζ,ξ(ã | s) = PM(s),ζ,ξ([ã]).

The global nondeterminism is interpret demonically, and therefore we need to en-
sure that the conditional of an observable, given the two secrets, are calculated with
respect to the same global scheduler. However, the scheduler should not be too power-
ful, i.e. we want to rule out the possibility that the scheduler use the secret information
(i.e. be clairvoyant) to accomplish its demonic goals.

Definition 7. A systemS is leakage-free if, for every pair of secretss1 ands2, and
every admissible schedulerζ,

{Prζ,ξ(ã | s1) | ξ compatible withζ} = {Prζ,ξ(ã | s2) | ξ compatible withζ}.

It turns out that the safe equivalences defined in Section?? imply the absence of
leakage:

Theorem 2. LetS be a system with a variable actionsecr and assume thatS[s1/secr] ≃
S[s2/secr] for every pair of secretss1 ands2. ThenS is leakage-free.

From the above theorem and from Propositiion??, we also have the following corol-
lary (with the same premises as the previous theorem):

Corollary 1. If S[s1/secr] ≃ S[s2/secr] for every pair of secretss1 ands2, thenS is
leakage-free.

7 Conclusion

