Safe Equivalences for Security Properties

Mario S. Alvim!, Miguel E. Andrés, Catuscia Palamidessiand Peter van Rossidm

'INRIA and LIX, Ecole Polytechnique Palaiseau, France.
ZInstitute for Computing and Information Sciences, The Kdtnds.

Abstract. In the field of Security, process equivalences have beentoseuhr-
acterize various information-hiding properties (for arste secrecy, anonymity
and non-interference) based on the principle that a prbtBowith a variablex
satisfies such property if and only if, for every pair of s¢gse andsz, P[*! /4]

is equivalent taP[*2/..]. We argue that, in the presence of nondeterminism, the
above principle relies on the assumption that the schedwierks for the ben-
efit of the protocol”, and this is usually not a safe assunmtion-safe equiv-
alences, in this sense, include complete-trace equivaland bisimulation. We
present a formalism in which we can specify admissible saleesl and, corre-
spondingly, safe versions of these equivalences. We phatestfe bisimulation
is still a congruence. Finally, we show that safe equivadenzan be used to es-
tablish information-hiding properties.

1 Introduction

One of the fundamental problems in computer security is th&eption from informa-
tion leaks, namely how to make sure that a system does natlréyeobservations that
can be made during the execution, some information that 8k tei maintain secret.

One way to prevent an attacker to infer the secret from thergbbles is to create
noise namely to make sure that for every execution in which a gaggret produces
a certain observable, there is at least another executishich a different secret pro-
duces the same observable. In practice this is often donasibg vandomization, see
for instance the DCNet [10] and the Crowds|[23] protocols.

In the literature about the foundations of Computer Segunibwever, the quanti-
tative aspects are often abstracted away, and probabbiskiavior is replaced by non-
deterministic behavior. Correspondingly, there have begious approaches in which
information-hiding properties are expressed in terms ofvadences based on nonde-
terminism, especially in a concurrent setting. For instatiz4] definesanonymityas
followd]: A protocol S is anonymous if, for every pair of culpritsandb, S[*/.] and
S[*/.] produce the same observable traces. A similar definitionviengn [1] for se-
crecy, with the difference thag[*/,] andS[*/.] are required to be bisimilar. 11 [13],
an electoral systerf preserves theonfidentiality of the voté for any votersv and
w, the observable behavior 6fis the same if we swap the voteswndw. Namely,
S[%/ 0 |° Jw] ~ S[/o |* /w], Wwhere~ represents bisimilarity.

! The actual definition of [24] is more complicated, but theisjs the same.

These proposals are based on the implicit assumptiorathtte nondeterministic
executions present in the specificationsodvill always be possible under every imple-
mentation ofS. Or at least, that the adversary will believe so. In conauwyehowever,
as argued in[[8], nondeterminism has a rather different ingaif a specificationS
contains some nondeterministic alternatives, typically because we want to abstract
from specific implementations, such as the scheduling pdlicpecification is consid-
ered correct, with respect to some property, if every a#tive satisfies the property.
Correspondingly, an implementation is considered coiifeadt executions are among
those possible in the specification, i.e. if the implemeéateis a refinement of the spec-
ification. There is no expectation that the implementatidhagtually make possible
all the alternatives indicated by the specification.

We argue that the use of nhondeterminism in concurrency sporals to aemonic
view: the scheduler, i.e. the entity that will decide whidtemative to select, may try
to choose the worst alternative. Hence we need to make satréathalternatives are
good”, i.e. satisfy the intended property. In the above oeed approaches to the for-
malization of security properties, on the contrary, theiiptetation of nondeterminism
is angelic the scheduler is expected to actually help the protocobtduse the adver-
sary and thus protect the secret information.

There is another issue, orthogonal to the angelic/demadaimtbmy, but relevant
for the achievement of security properties: the schedsheuld not be able to make
its choices dependent on the secimt else nearly every protocol would be insecure,
i.e. the scheduler would always be able to leak the secrat external observer (for
instance by producing different interleavings of the olsables, depending on the se-
cret). This remark has been made several times already,emedas approaches have
been proposed to cope with the problem of full-informaticheduler (aka almighty,
omniscient, clairvoyant, etc.), see for examplel[6.73),8,

The risk of a naive use of nondeterminism to specify a sgcpriiperty, is not only
that it may rely on an implicit assumption that the schedbktaves angelically, but
also that it is clairvoyant (fully-informed), i.e. that iepks at the secrets (that it is not
supposed to be able to see) to achieve its angelic strategy.

Example 1.Consider the following system, in a CCS-like syntﬁxd:léf (e)(A || Hi |

Hy || Corr), with A Lof c(sec), Hy ef c(s).out{a), Ho ef c(s).out{by, Corr Lof
c(s).out(s). Here|| is the parallel operatot{sec) is a process that sends: on channel
¢, ¢(s).P is a process that receive®n channet and then continues &3, and(c) is the
restriction operator, enforcing synchronizationcoifhe namesec represents a secret.
It is easy to see that we hasd® /.| ~ S [b/sec] Note that, in order to simulate
the third branch irf [/ ...], the process [*/,..| needs to select ts first branch. Vicev-
ersa, in order to simulate the third branchdri®/...|, the process [*/,..] needs to
select its second branch. This means that, in order to aehisimulation, the scheduler

needs to know the secret, and change its choice accordingly.

This example shows a system that intuitively is not secuigeabse the third compo-
nent, Corr, reveals whatever secret it receives. However, accorditiget equivalence-
based notions of security discussed abavés secure But it is secure thanks to a

scheduler that angelically helps the system to protecteébees and it does so by mak-
ing its choices dependent on the secret. We consider thesmptons on the scheduler
excessively strong.

We do not claim, however, that we should rule out the use oébmgondetermin-
ism in security: on the contrary, angelic nondeterminismiz&a powerful specification
concept. We only advocate a cautious use of this notion. titicpéar, it should not be
used in a context in which the scheduler may be in collusidh thie attacker. The goal
of this paper is to define a framework in which we can combinth lbomgelic and de-
monic nondeterminism in a setting in which also probalidisehavior may be present,
and in a context in which the scheduler is restricted (i.¢fuity-informed). We define
“safe” variant of typical equivalence relations (complateces and bisimulation), and
we show how to use them to characterize information-hidnogerties.

1.1 Contribution
The main novelties of our work can be articulated as follows:

e We propose a formalism for concurrent systems which acsdanboth probabilis-
tic and nondeterministic behaviour, and in which the latesf two kinds:global
andlocal. The first represents the possible interleavings produgettid parallel
components, which may be influenced by the attacker. Thensesassociated to
the possible choices internal to each component, which rapgmt on the secrets
or other unknown parameters, not controlled by the attackemrespondingly, we
split the scheduler in two constituents: global and lochk Tatter is actually a tuple
of local schedulers, one for each component of the system.

e We propose a notion afdmissible scheduldor the above systems, in which the
global constituent is not allowed to see the secrets, ank leaal constituent is
not allowed to see any information about the other compan#vie then generalize
the standard definition of strong (probabilistic) inforioat hiding (such as no-
interference and strong anonymity) to the case in which atstdeterminism is
present, under the assumption that the schedulers aresiligis

e We use admissible schedulers to define safe versions of eterjphce equivalence
and bisimilarity especially tuned for security (in this papve often refer to com-
plete traces as simply traces). This means that we accauhgfpossibility that the
global constituent of the scheduler is in collusion with #ttacker, and therefore
does not necessarily help the system to obfuscate the sé&rshow that the latter
is still a congruence, like in the classical case.

e We finally show that our notions of safe trace equivalencelasithilarity imply
strong information hiding in the above sense.

2 Probabilistic Automata

In this section we gather preliminary notions and resultatee to probabilistic au-
tomata[[26,25].

A function u: @ — [0, 1] is adiscrete probability distributioron a setQ if the
support ofu is countable and’ ., 1(q) = 1. The set of all discrete probability distri-
butions onQ is denoted byD(Q).

A probabilistic automatoriis a quadruplé/ = (Q, X, 4, «) whereQ is a countable
set ofstates X a finite set ofactions ¢ theinitial state, and. is atransition functionx :

Q — P(XxD(Q)). HereP(X) is the set of all finite subsets &f. If a(¢) = (theng is
aterminalstate. We writey % 1. for (a, i) € a(q). Moreover, we write;r whenever

q¢ % pandu(r) > 0. A fully probabilistic automatoris a probabilistic automaton
satisfying|a(q)| < 1 for all states. In case(q) # 0 in a fully probabilistic automaton,
we will overload notation and use&(q) to denote the distribution outgoing from A
pathin a probabilistic automaton is a sequence= ¢y = ¢, 23 --- whereq; € Q,

a; € X andqi‘“—“>qi+1. A path can bédinite in which case it ends with a state. A path is
completdf it is either infinite or finite ending in a terminal state v&n a patly, first(o)
denotes its first state, andifis finite thenlast (o) denotes its last state. LBaths, (M)
denote the set of all pathBaths’,(1/) the set of all finite paths, andPaths,(A/) the
set of all complete paths of an automatih starting from the state. We will omit ¢

if ¢ = ¢. Paths are ordered by the prefix relation, which we denotg byhetrace of

a path is the sequence of actionslifc = X* U X* obtained by removing the states,
hence for the above pathwe havelrace(o) = ajas We denote bylraces (M) the
complete traces a4, i.e. Traces(M) et {trace(o) | o € CPaths(M)}. If ¥’ C X,
thentraces: (o) is the projection ofrace(o) on the elements af’.

Let M = (Q, X, ¢, «) be a (fully) probabilistic automatonm, € @ a state, and let
o € Pathsj (M) be a finite path starting ip. Theconegenerated by is the set of
complete pathgo) = {0’ € CPaths,(M) | o < ¢’'}. Given a fully probabilistic
automatonM = (Q, X, §,a) and a state;, we can calculate theprobability value
denoted byP,, (), of any finite pathr starting ing as follows:P,(¢) = 1 andP (¢ =
q') =Py(0)-u(q"), wherelast(o) = p. Let(2, def CPaths, (M) be the sample space,
and letF, be the smallest-algebra generated by the cones. Tigrinduces a unique
probability measuren F, (which we will also denote b¥P,) such thatP,((o)) =
P, (o) for every finite pathr starting ing. Forg = ¢ we write P instead ofP;.

A scheduler for a probabilistic automatdi is a function¢ : Paths* (M) — (X x
D(Q) U {L}) such that for all finite path, if a(last(c)) # 0 then((o) € a(last(o)),
and((c) = L otherwise. Hence, a scheduleselects one of the available transitions in
each state, and determines therefore a fully probabilistiomaton, obtained by prun-
ing from M the alternatives that are not chosen(byA scheduler is history dependent
since it takes into account the path and not only the curtete.slt may be partial, i.e.
it may halt the execution at any tirfle

3 Systems

In this section we describe the kind of systems we are dealitig We start by intro-
ducing a variant of probabilistic automata, that we Galfjged Probabilistic Automata

2 |n this paper, however, we will consider only total schedsléo be more in line with the
standard semantics of CCS.

(TPA). These systems are parallel compositions of protstibiprocesses, callezbm-
ponents Each component is equipped with a unique identifier, cated Whenever
a component (or a pair of components in case of synchrooipathakes a step, the
corresponding transition will be decorated with the assteci tag (or pair of tags).
Similar systems have been already introducedlin [3]. Thexrddfierences are that
here the components may contain nondetermism, and a saorkthel any transition.

3.1 Tagged Probabilistic Automata
We now formalize the notion of TPA.

Definition 1. A Tagged Probabilistic Automatos a tuple(Q, L, X, ¢, «), where@
is a set ofstates L is a set oftags Y is a set ofactions § € @ is theinitial state
a: Q — P(L x X x D(Q)) is atransition function

In the following we writeqg =% 1 for (¢,a, 1) € a(q), and we useenab(q)

to denote the tags of the components that are enabled to ma&asition. Namely,

enab(q) ef {€ € L | there exists a € X, € D(Q) such that ¢ La, u}. In these

systems, we can decompose the scheduler in twglolaal schedulerwhich decides
which component or pair of components makes the move nedtascal scheduler
which solves the internal nondeterminism of the selectedpmment.

We assume that the local scheduler can only select enahlesittons, and that the
global scheduler can only select enabled components. Teamthat the execution
does not stop unless all components are blocked. This igemlith the tradition of pro-
cess algebra and of Markov Decision Processes, but cantritbtthat of Probabilistic
Automata[[26]. However, the results in this paper do not ddpm this assumption.

Definition 2. LetM = (Q, L, X, 4, «) be a Tagged Probabilistic Automaton.

e A global scheduler fod/ is a function¢ : Paths*(M) — (L U {L}) such that for
all finite pathso, if enab(last(o)) # 0 then((o) € enab(last(c)), and((o) = L
otherwise.

e Alocal scheduler foiM is a function¢ : Paths™ (M) — (L x ¥ x D(Q) U{L})
such that, for all finite paths, if a(last(o)) # 0 then{(o) € a(last(o)), and
&(o) = L otherwise.

e A global schedule¢ and a local scheduleg for M are compatibleif, for all finite
pathso, (o) = (¢, a, 1) implies¢(o) = ¢, and&(o) = L implies¢(o) = L.

e A scheduleris a paif¢,) of compatible global and local schedulers.

3.2 Components

We are going to use a simple probabilistic process calcals®|t of probabilistic ver-
sion of CCS[[20),21]) to specify the components.

We assume a set attionsor channel name&’ with elements:, a1, as, - - -, includ-
ing the special symbal denoting asilent step Exceptr, each actior has a co-action
a € X and we assume = a. Components are specified by the following grammar:

¢ =0 | aqg | a+e | Ypia | ale | (g | A
7

5

The construct$), a.q, ¢1 + g2, ¢1|g2 and(a)q represent termination, prefixing, non-
deterministic choice, parallel composition, and the retitm operator, respectively.
>-;pi : ¢ is a probabilistic choice, wherg; represents the probability of theth
branch and must satisty < p; < 1 and),p; = 1. The process calll is a simple
process identifier. For each identifier, we assume a cornepg unique process dec-
laration of the form4 & g. The idea is that, whenevet is executed, it triggers the
execution ofg. Note thatq can containd or another process identifier, which means
that our language allows (mutual) recursion. We will dermtg n(q) thefree channel
namesoccurring ing, i.e. the channel names not bound by a restriction operator.

Components’ semantic§he operational semantics consists of probabilistic items
of the form¢-% . whereq € Q is a processg € X is an action angi € D(Q) is a
distribution on processes. They are specified by the foligwules:

q1 = H
PRF ——— NDT —————
a.q — g Q+q—
a
qr — M
PRB - PAR ———————
diDi Qi — 2 pi 0g, ale—=nle
a5 T) a5
CALL —— if 4%y COM — 2 ™ RST ———— qaz
A= p al a2 = b, (b)g — (b)u

We assume also the symmetric versions of the rules NDT, PARC&M. The symbol
d4 is the delta of Dirac, which assigns probabilitjo ¢ and0 to all other processes. The
symbol", is the summation on distributions. Name}y,, p; - ; is the distributioru
such thayu(z) = >, p; - ui(x). The notatiory | ¢ represents the distributiqul such
thaty'(r) = u(¢') if r = ¢’ | ¢, andy/(r) = 0 otherwise. Similarly(b)u represents the
distributiony” such that'(¢) = u(¢’) if ¢ = (b)¢’, andy’(q) = 0 otherwise.

3.3 Systems

A system has the formA) ¢1 || g2 || --- || ¢n, Where theg;’s are components and
A C X. The restriction oM enforces synchronization on the channel names belonging
to A, in accordance with the CCS spirit.

Systems’ semantic¥he semantics of a system gives rise to a TPA, where the states
are terms representing systems during their evolutionaAsition now is of the form

q La, u wherea € X, u € D(Q), and? € L is either the tag of the component
which makes the move, or a (unordered) pair of tags repneggthie two partners of a
synchronization. We can simply defifieas = I U I? wherel = {1,2,...,n}.

) ai = Ej by - 5qij
Interleaving ag A

@a Mgl gl an == 2,5 Saralas g

6

wherei is the tag indicating that the componenis making the step. Note }hat we
assume that probabilistic choices are finite. This impleg every transitiory o
can be writteny La, » . pi - 04, and justifies the notation used in the interleaving rule.

a a
G =0 45— g
Synchronization —
Aqgll-Nall- gl I g el
(A) &1 @ qj Gn (Aall-llg 1+l |-+ llan

here{i, j} is the tag indicating that the components making the step anelj. Note
that it is an unordered pair. Sometimes we will wiitg instead of(4, j }, for simplicity.

Example 2.Consider the systems of Example 1. Figurks 1(a)and 1(b) ghe@PAs
of S [*/sec] and of S [*/ .| respectively. For simplicity we do not write the restrictio
on channels andout, and the termination symb6l We use >’ to denote a component
that is stuck. The corresponding tags are indicated in thedigsith numbers above the
components. The set of enabled transitions should be dlear the figures. For in-
stance, we havenab(S [*/sec|) = {{1,2},{1,3},{1,4}} andenab(— || out(a) || —

[| =) = {2}. The schedulef defined as

(1,4} ifo=5["/sed,
2 if o =50/ sc 25 (~ || outla) || — || -),

OERE! if o =5/ 25 (— || — || out(®) || -),
4 ifo=5/sec] =5 (— || = || — |lout{a)),
1 otherwise,

is a global scheduler fof [*/scc].

1 2 3 4
e(b) I e(s)-out(a) || c(s)-out(b) || c(s).out(s)

{1.2}):7 {1,4}:7
{1,3):7

R R 1 S | RO | 0 S £ | I | R (2 B I [N I ()

Q;W@)l lg;W@) 14;m<a> 2:@(@1 l:j:m(b) lat:ﬁ(b)

1(a) 1(b)

Fig. 1. Automatas [*/s..] ands [°/c.]

4 Admissible schedulers

In this section we restrict the discerning power of the glabal local schedulers in
order to avoid the problem of the information leakage indLinesecurity by clairvoyant
schedulers. We impose two kinds of restrictions: For thdalscheduler, following
[3], we assume that it can only see, and keep memory of, theredisle actions and
the components that are enabled, but not the secret acfierisr the local scheduler,
we assume that the local nondeterminism of each componsahisd on the basis of
the view of the history local to that component, i.e. the ectipn of the history of the
system on that component. In other words, each componetu hzake decisions based
only on the history of its own execution; it cannot see amygluf the other components.

4.1 Restricting Global Schedulers

We assume that the set of actiohsis divided in two parts, theecret actionsS and
theobservable action®. The secret actions are supposed to be invisible to the lgloba
scheduler. Formally, this can be achieved using a funatifirwith sift(a) equalsr if

a € S and equals: otherwise. Then, we restrict the power of the global scherdoy
forcing it to make the same decisions on paths he cannotpait.a

Definition 3. Given a TPAM, a global schedule¢ for M is admissible if for all paths

~l1:ay la:az

o1 andos we havet(o1) = t(o2) implies¢(o1) = ((o2), where ¢ (q —q =

"5) (enab(@), sift(ar),) (enab(qr), sift(az), o) --(enab(qu). sift (@),).

The idea is that sifts the information of the path that the scheduler can Seee
sift “hides” the secrets, the scheduler cannot take differecisans based on secrets.

4.2 Restricting Local Schedulers

The restriction on the local scheduler is based on the id&athtep of the component
of a system can only be based on the view tlfats of the history, i.e. its own history. In
order to formalize this restriction, it is convenient toroduce the concept afview of

a patho, or projectionof o on ¢, which we will denote byr ;. We define it inductively:

i:b . .o
. api — 0, 1 €= {i, 7} andp = 0¢a) gy figill-- as -l
(0 —=wi=yo, % ife=i

Ol otherwise

In the above definition, the first line represents the casesyfnahronization step
involving the component, where we assume that the premise fas of the form
q LN dq;. The second line represents an interleaving step in whishthe active
component. The third line represents step in which the corapp is idle.

The restriction to the local scheduler can now be expresséallaws:

Definition 4. Given a TPAV and a local scheduleffor M, we say thaf is admissible
if for all pathso ando’, if £(0) = (¢, a, 1), and&(o’) = (¢, d’, p’) we have:

o if {={"=4iandoy; = o}, then{(o) = £(o'),
o if¢=10"={i,j} o1 =0}, andoy; = o}, then{(o) = £(o’).

7

A pair of compatible schedule(s, &) is calledadmissiblef ¢ and¢ are admissible.

5 Safe equivalences

In this section we revise process equivalence notions teertiem safe for security.

5.1 Safe Complete Traces

We define here a safe version of complete-trace semantiesdé€h is that we compare
two processes based not only on their traces, but also onhibiees that the global
scheduler makes at every step. We do this by recording étkplice tags in the traces.

Definition 5.

e Givena TPAM = (Q, L, X, 4, «), the (complete) safe traces df, denoted here
by Tracess, are defined as the probabilities of sequences of tags atalesotorre-
sponding to all possible complete executions, i.e.

Tracess(M) = { f: (L x X)*° — [0,1] |
there exists an admissible scheduléré) s.tvt € (L x X))
f(t) =Purce({o € CPaths(M) | traces(o) =t}) }

whereP ;¢ ¢ is the probability measure id4 under (¢,), and trace,, extracts
from a path the sequence of tags and actionsti®:e,,(¢) = € (on the empty path
tracey, gives the empty string) antlace,, (g La, o) =L:a-tracei, (o).
e We denote byraces(q) the safe traces of the automaton associated to a sygtem
e Two systemsg; andq, are safe-trace equivalent, denotedday~ ¢-, if and only
if Tracess(q1) = Tracess(qz2).

The following example points out the difference betweegrand the standard (com-
plete) trace equivalence.

Example 3.Consider the TPAs of Examglé 2. The two TPAs have the same letenp
traces. In factlraces(S [*/sec]) = {7 - out(a) , 7 - out(b)} = Traces(S [*/sec]). ON
the other hand, we hav@racess(S [*/sec]) = {f1, f2, f3} wheref1({1,2} : 7-2:
out{a)) = f2({1,3} : 7+ 3 : out(b)) = f3({1,4} : 7- 4 : out(a)}) = 1,andf;(t) =0
otherwise (fori € {1,2,3}), while Traces (S [*/sec|) = {f1, f2, fa} with f1, f as
above, and,({1,4} : 7- 4 : out(b)) = 1, f4(t) = 0 otherwise.

5.2 Safe Bisimilarity

In this section we propose a security-safe version of stimsignulation, that we call
safe bisimulationThis is an equivalence relation stricter than safe-trapévalence,
with the advantage of being a congruence. Since in this psgferdulers can always
observe which component is making a step (even a silent, stejoes not seem natural
to consider weak bisimulation.

We start with some notation. Givena TRA = (Q, L, X, ¢, «), and a global sched-
uler ¢, we write ¢ —¢ p if there existsoc € Paths*(M) such that((c) # L,
(C(o),a,1) € a(q), andg = last(c). Note that the restriction tg still allows non-
determinism, i.e. there may ba, 12, such thay i»g (1 andgq ﬁ»g 1o (with either
a1 = ag Oraq }é (IQ).

We now define the notion of safe bisimulation. The idea is,tlia and ¢’ are
bisimilar states, then every move frapshould be mimicked by a move frogh using
the same (admissible) scheduler

Definition 6. Given a TPAM = (Q, L, X, 4, «), we say that a relatiolR C @ x @
is a safe bisimulation if, whenevei R g2, thenenab(q1) = enab(gz), and for all
admissible global schedule¢dor M such that (o) = ((02) whenevelast(o1) = 1
andlast(o2) = go:

e if g ——¢ 1, then there exists, such thaig, —¢ 2 andpy R 12, and
o if go im 12, then there existg; such thaiy Lc p1anduy R o,

where i1 R pi2 means that for all equivalence class&s < Q, we haveu; (X) =
w2 (X), whereR is the smallest equivalence class inducedy

The following result is analogous to the case of standaiichbigtion:
Proposition 1. The union of all the safe bisimulations is still a safe bidetion.

Therefore the largest safe bisimulation exists, and cdaxiwith the union of all
safe bisimulations. We call gafe bisimilarity and we denote it by..

Given two TPAs on the samé and ¥, M; = (Q1,L,X,¢1,1) and My =
(Q2, L, X, 42, a2), we can define bisimulation and bisimilarity across theates, i.e.
as relations ori@Q1 U Q2), in the obvious way, by constructing the TRA with a new
initial stateg and two transitions té;, and tod,,, respectively.

Given two components or systengsg,andq., we will say thatg; andg, are safely
bisimilar, denoted by, ~; ¢2, if the initial states of the corresponding TPAs are safely
bisimilar. Note thaty; ~; ¢o is possible only ifg; and g, have the same number of
active components, where “active”, for a component, mebhasduring the execution
of the system it will make at least one step. Note that in three a# components, or
of systems constituted by one component only, safe bisiiouland safe bisimilarity
coincide with standard bisimulation and bisimilarity (déed by~), respectively. This
is not the case for systems, as shown by the following example

Example 4.Consider again the TPAs of Example 2. As pointed out in th®thitction,
we havesS [*/sec] ~ S [%/sec]. HoweverS [*/sec] 75 S [*/sec]. To show this, let us

10

construct a new TPA (as described before) with initial sfegech thag RIS [/ sec)
andg < S [*/,..]. Now consider the (admissible) global scheddleuch that

¢ if o=,
(L4} ifo=q4"5 5[/,
2 if o =G50 S sec] 25 (— || outla) || — || -),
3 if o =055 e 5 (— || — || out(®) || -),
(i |4 =S S (1 =] - o),
{1,4} ifo=4-"55"/sec
2 if o =05 5" o] 25 (— ||out(a) || — || -),
3 ifo =458 sec) 5 (— || — |lout(d) || -),
4 ifo =455 see) 5 (— 1| = |l — || out(d)),
1 otherwise.

It is easy to see thaf [*/s..] cannot mimic the transitiod : ouf(a) produced by
S [*/sec] Using the same scheduler

It turns out that safe bisimulation is a congruence with eespo all the operators
of our language, as expressed by the following theoremtd@ent2(a) and2(b) are
just the standard compositionality result for probahdisisimulation.)

Theorem 1.

1. ~, is an equivalence relation.
2. Leta € Y and A,B,B’ C X. Letps,...,p, be probability values, and let
4,41,925 - - - qns ¢4, @55 - - -, ¢, DE COMpONENts.

(@ fq1 ~s g2, then a.qi ~sa.q2, G +q~s @+q, (a)a ~s (a)g,
and q1|q~sq]q.

0) fg1 ~s gl an~sq,, then > .pi:qi~s> . pi:q.

© W(B)au Il .-l gn ~s (B, |- | ¢y andfn(q) € BUB', then

(AuB)aqull -l llan ~s (AUB)q .- llall- |l gn

The following property shows that bisimulation is stronffean safe-trace equiva-
lence, like in the standard case.

Proposition 2. If g; ~, g2 theng; ~; ¢2.

Like in the standard case, the vice-versa does not hold, afedtiace equivalence
is not a congruenBe

3 This is because we are considering toenpletetraces.

11

6 Safe Nondeterministic Information Hiding

In this section we define the notion of information hiding anthe most general hy-
pothesis that the nondeterminism is handled partly in a seneay and partly in an
angelic way. We assume that the demonic part is in the realtineoflobal scheduler,
while the angelic part is controlled by the local schedulée maotivation is that in a
protocol the local components can be thought of as programsmg locally in a single
machine, and locally predictable and controllable, wHilke hetwork can be subject to
attacks that make the interactions unpredictable.

We recall that, in a purely probabilistic setting, the altseof leakage, such as no-
interference and strong anonymity, is expressed as fol{sees for instance [5]). Given
a purely probabilistic automatof/, and a sequencé = ajas...a,, let Py ([a])
represent the probability measure of all complete pathl twéicea in M. Let S be
a protocol containing a variable actigacr, and lets be secret actions. Le¥/; be
the automaton corresponding $°/sc.-]. Define Pr(a | s) asPy ([a]). ThenS is
leakage-free if for every observable trace and for every secret; andss, we have
Pr(a|s1) = Pr(al sz2).

In a purely nondeterministic setting, on the other hand atbeence of leakage has
been characterized in the literature by the prop8fty /secr| = S[°2/secr|, Where
is an equivalence relation like trace equivalence, or higition. As we have argued in
the introduction, this definition assumes an angelic imetgtion of nondeterminism.

We want to combine the above notions so to cope with both fittyeand nonde-
terminism. Furthermore, we want to extend it to the case iithvpart of the nondeter-
minism is interpreted demonically. Let us first introducengonotation.

Let S be a system containing a variable actigar. Let s be a secret action. Let
M, be the TPA associated 8]°/s....| and let({, &) be a compatible pair of global and
local schedulers fol. The probability of an observable trageyivens is defined as
Pree(a| s) =P, ce(la).

The global nondeterminism is interpreted demonically, #iedefore we need to en-
sure that the conditional of an observable, given the twoetgcare calculated with re-
spect to the same global scheduler. On the other hand, thkesidlteduler is interpreted
angelically, and therefore we can compare the conditior@babilities generated by
the two secrets as sets under different schedulers. In athrels, we have the freedom
to match conditional probability from the first set with onktloe other set, without
requiring the local scheduler to be the same.

Either angelic or demonic, we want to avoid the clairvoyahesiulers, i.e. a sched-
uler should not be able to use the secret information to mehte goals. For this pur-
pose, we require both the global and the local scheduler &allssible.

Definition 7. A system is leakage-free if, for every secrgtand s,, every admissi-
ble global schedule¢, and every observable traée {Pr¢¢(a | s1) | £ admissible
and compatible witl{} = {Pr¢ ¢(a | s2) | £ admissible and compatible wit}.

The safe equivalences defined in Secfiibn 5 imply the absdrealage:

Theorem 2. Let S be a system with a variable acticacr and assumeé[** /secr] ~
S[%2 / seerr] TOr every pair of secrets; ands,. ThenS is leakage-free.

12

Note that the vice versa is not true, i.e. it is not the casettieleakage-freedom
of S implies S[** /seer] ~s S[*2/seer]- This is because in the definition of safe-trace
equivalence we compare the set of probability functiontefaeined by the schedulers)
on traces, while in the definition of leakage-freedom we carafhe set of probabili-
ties of each trace, which may come from different functidrtés additional degree of
freedom generated by the local scheduler helps the systebiftiscate the secret, and
provides further justification for the adjective “angelfot the local nondeterminism.

From the above theorem and from Proposilibn 2, we also haviotltowing corol-
lary (with the same premises as the previous theorem):

Corollary 1. If S[*'/secr] ~s S[°2/secr] TOr every pair of secrets; andss, thenS is
leakage-free.

7 Related Work

The problem of deriving correct implementations from segrepecifications has re-
ceived a lot of attention already. One of the first works toradd the problem was
[18], which showed that the fact that an implementation ismststent refinement w.r.t.
a specification does not imply that the (information-flonwgwsdty properties are pre-
served. More recently, [2] has proposed a notion of secpeegerving refinement, and
a simulation-based technique for proving that a systemdsréfinement of another.
[11] argues that important classes of security policiefsagcnoninterference and aver-
age response time cannot be expressed by traditional raftmoperties which consist
of sets of traces, and proposes to hgperpropertiegsets of properties) instead. [14]
addresses the problem of supervisory control, i.e, giveritiéal systemG that may
leak confidential information, how to design a controlleso that the syster@|C dos
not leak. An effective algorithm is presented to computentiost permissible controller
such that the system is still opaque w.r.t. a secret.

Concerning angelic and demonic nondeterminism, there aieus works which
investigate their relation and possible combination.[lj it shown that angelic and
demonic nondeterminism are dual._[19] uses multi-relatitmnexpress specifications
involving both angelic and demonic nondeterminism. Theeg\wo kinds of agents, de-
monic and angelic ones, and there is the point of view of tterival system and the one
of the external adversaryl_[22] considers the problem ohirgdi specifications while
preserving ignorance. While the focus is on the reductiotesfionic nondeterminism
of the specification, the hidden values are treated es#gntia angelic way.

The problem of the leakage caused by full-information salesd has also been
investigated in literature._[6] andl[7] work in the framewaf probabilistic automata
and introduce a restriction on the scheduler to the purpbss&ing them suitable to
applications in security protocols. Their approach is Hase dividing the actions of
each component of the system in equivalence clasaskd, The order of execution
of different tasks is decided in advance by a so-catett schedulemwhich is history-
independent and therefore much more restricted than oimmof global scheduler.
[3] proposes a notion of system and admissible schedulgrsherilar to our notion of
system and admissible global scheduler. The main differémthat in that work the
components are deterministic and therefore there is nomofilocal scheduler.

13

The work in [9,8] is similar to ours in spirit, but in a sendeal from a technical
point of view. Instead of defining a restriction on the classahedulers, they provide
a way to specify that a choice is transparent to the schedlihey achieve this by
introducing labels in process terms, used to representthetstates of the execution
tree and the next action or step to be scheduled. They makstates indistinguish-
able to schedulers, and hence the choice between themepidyaaissociating to them
the same label. We believe that every scheduler in our fasmatan be expressed in
theirs, too. In[[8] they also consider the problem of defirdngafe version of bisimu-
lation for expressing security properties. They catléimonic bisimulationThe main
difference with our work is that we consider a combinatioraafjelic and demonic
nondeterminism, and this affects also the definition ofrbidation. Similarly, our def-
inition of leakage-freedom reflects this combination.[Thtfge aspect of angelicity is
not considered, although they may be able to simulate it aithppropriate labeling.

The fact that full-information schedulers are unrealisigs also been observed in
fields other than security. First attempts used restrictbedulers in order to obtain
rules for compositional reasonirig [12]. The justification those restricted schedulers
is the same as for ours, namely, that not all information &lalle to all entities in the
system. However that work considers a synchronous pacalteposition, so the setting
is rather different from ours. Later on, it was shown that glathecking is unfeasible in
its general form for the restricted schedulers in [12] (863 nd, more recently,, [15]).
Despite of undecidability, not all results concerning ssichedulers have been negative
as, for instance, the technique of partial-order reduateEzmbe improved by assuming
that schedulers can only use partial information [17].

8 Conclusion and Future work

We have observed that some definitions of security propdised on process equiva-
lences may be too naive, in that they assume the scheduleratiodgelic, and, worse yet,
to achieve its angelic strategy by peeking at the secrethale presented a formalism
allowing us to specify a demonic constituent of the schedptessibly in collusion with
the attacker, and an angelic one, under the control of thersyd\Ve have also consid-
ered restrictions on the schedulers to limit the power oftiingy can see, and extended
to our nondeterministic framework the (probabilistic)anhation-hiding properties like
non interference and strong anonymity. We then have defisafit™ equivalences. In
particular we have defined the notions of safe trace equical@nd safe bisimilarity,
and we have shown that the latter is still a congruence. lyjiveé have shown that the
safe equivalences can be used to prove information-hidimggpties.

For the future, we plan to extend our framework to quantitatiotions of informa-
tion leakage, possibly based on information theory. We plan to implement model
checking techniques to verify information hiding propestfor our kind of systems. A
natural candidate for the implementation would be PRISMc@ifrse, we would need
to restrict the class of schedulers in PRISM so to meet thassioility criteria.

Acknowledgement. The authors wish to thank the anonymous reviewers for theeir u
ful comments, and Pedro D’Argenio for helpful discussion.

14

References

1.

2.

10.

11.
12.

13.
14.
15.
16.
17.
18.
. C.E. Martin, S. A. Curtis, and |. Rewitzky. Modelling alig and demonic nondeterminism
20.
22. R. Milner. Communicating and mobile systems: thealculus CUP, 1999.
23.
24,
25,

26.

M. Abadi and A. D. Gordon. A calculus for cryptographic fgeols: The spi calculusinf.
and Comp.148(1):1-70, 1999.

R. Alur and S. Zdancewic. Preserving secrecy under regnéninProc. of ICALR number
4052 in LNCS, pages 107-118. Springer-Verlag, 2006.

. M. E. Andrés, C. Palamidessi, P. van Rossum, and A. Se&oloformation hiding in prob-

abilistic concurrent systemsww. CS. r u. nl / M Andr es/ downl oads/ SAUN. pdt

. R.J.R. Back and J. von Wright. Combining angels, demodsracles in program speci-

fications. TCS 100(2):365-383, 1992.

. M. Bhargava and C. Palamidessi. Probabilistic anonymiityProc. of CONCURvolume

3653 of LNCS pages 171-185. Springer, 2005.

. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, Oréis, and R. Segala. Task-

structured probabilistic i/o automata. Rroc. of WODES2006.

. R. Canetti, L. Cheung, D. K. Kaynar, M. Liskov, N. A. Lyndd, Pereira, and R. Segala.

Time-bounded task-PIOAs: A framework for analyzing setgysiotocols. InProc. of DISG
volume 4167 oLNCS pages 238-253. Springer, 2006.

. K. Chatzikokolakis, G. Norman, and D. Parker. Bisimwatfor demonic schedulers. In

Proc. of FOSSACSolume 5504 o£ NCS pages 318-332. Springer, 2009.

. K. Chatzikokolakis and C. Palamidessi. Making randomiagw®invisible to the scheduler.

In Proc. of CONCUR’07volume 4703 oL NCS pages 42-58. Springer, 2007.

D. Chaum. The dining cryptographers problem: Uncoowéti sender and recipient untrace-
ability. Journal of Cryptology1:65—-75, 1988.

M. R. Clarkson and F. B. Schneider. Hyperpropertie<C$#, pages 51-65. IEEE, 2008.
L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositianathods for probabilistic sys-
tems. InProc. of CONCURvolume 2154 of NCS Springer, 2001.

S. Delaune, S. Kremer, and M. Ryan. Verifying privagyetyproperties of electronic voting
protocols.Journal of Computer Securityt 7(4):435-487, 2009.

J. Dubreil, P. Darondeau, and H. Marchand. Supervisamral for opacity.|EEE Transac-
tions on Automatic Contrpb5(5):1089 —1100, 2010.

S. Giro. Undecidability results for distributed prollisbic systems. InProc. of SBMF
volume 5902 oLLNCS pages 220-235. Springer, 2009.

S. Giro and P. R. D’Argenio. Quantitative model checkiegsited: Neither decidable nor
approximable. IFORMATSvolume 4763 oL NCS pages 179-194. Springer, 2007.

S. Giro, P. R. D'Argenio, and L. M. F. Fioriti. Partial @dreduction for probabilistic sys-
tems: A revision for distributed schedulers. Pnoc. of CONCURvolume 5710 olLNCS
pages 338-353. Springer, 2009.

J. Jacob. On the derivation of secure componentS&R pages 242-247. IEEE, 1989.

with multirelations.Science of Computer Programmirép(2):140-158, 2007.
R. Milner. Communication and Concurrenc$eries in Comp. Sci. Prentice Hall, 1989.

C. Morgan. The shadow knows: Refinement and securityguesgial programsScience of
Computer Programming/4(8):629—653, 2009.

M. K. Reiter and A. D. Rubin. Crowds: anonymity for Welrisactions ACM Transactions
on Information and System Security(1):66—-92, 1998.

S. Schneider and A. Sidiropoulos. CSP and anonymitréc. of ESORICSrolume 1146
of LNCS pages 198-218. Springer, 1996.

R. SegalaModeling and Verification of Randomized Distributed Raatd SystemsPhD

thesis, 1995. Tech. Rep. MIT/LCS/TR-676.

R. Segala and N. Lynch. Probabilistic simulations fobabilistic processedlordic Journal

of Computing2(2):250-273, 1995.

15

www.cs.ru.nl/M.Andres/downloads/SAuN.pdf

	Safe Equivalences for Security Properties
	Mário S. Alvim1, Miguel E. Andrés2, Catuscia Palamidessi1, and Peter van Rossum2.

