
Solving Problems with Finite Test Sets l

Cristian S. Calude

Department of Computer Science, The University of Auckland
Private Bag 92019, Auckland, New Zealand

E-mail: cristian@cs.auckland.ac.nz

Helmut Jurgensen

Department of Computer Science, The University of Western Ontario
London, Ontario, Canada N6A 5B7, and

Institut fur Informatik, Universitat Potsdam
Am Neuen Palais 10, D-14469, Potsdam, Germany

E-mail: helmut@uwo.ca.

Shane Legg

Department of Mathematics, The University of Auckland
Private Bag 92019, Auckland, New Zealand

Abstract. Every finite and every co-finite set of non-negative
integers is decidable. This is true and it is not, depending on
whether the set is given constructively. A similar constraint
is applicable in language theory and many other fields. The
constraint is usually understood and, hence, omitted.

The phenomenon of a set being finite, but possibly undecidable,
is, of course, a consequence of allowing non-constructive argu-
ments in proofs. In this note we discuss a few ramifications of
this fact. We start out with showing that every number the-
oretic statement that can be expressed in first-order logic can
be reduced to a finite set, to be called a test set. Thus, if one
knew the test set, one could determine the truth of the state-
ment. The crucial point is, of course, that we may not be able

IThe research reported in this paper was partially supported by Auckland University,
Research Grant A18jXXXXXj62090j3414050, and by the Natural Sciences and Engi-
neering Council of Canada, Grant OGP0000243.

39 C. Calude et al., Finite Versus Infinite
© Springer-Verlag London Limited 2000

40 c. S. Calude, H. Jurgensen, S. Legg

to know what the finite test set is. Using problems in the class
III of the arithmetic hierarchy as an example, we establish that
the bound on the size of the test set is Turing-complete and
that it is upper-bounded by the busy-beaver function.

This re-enforces the fact that there is a vast difference between
finiteness and constructive finiteness. In the context of the
present re-opened discussion about the notion of computabil-
ity - possibly extending its realm through new computational
models derived from physics - the constraint of constructivity
of the model itself may add another twist.

1 Introduction

In the early days of decidability theory and also of theoretical computer
science it was not uncommon to find statements like every finite and every
co-finite set of non-negative integers is decidable in the research literature
and in text books, and to find "proofs" of this using the argument that
a decision algorithm could use table look-up; moreover, such statements
themselves would be used in proofs of the decidability of other problems
via reduction to finite or co-finite sets.2 Of course every finite or co-finite
set is decidable, but only - as is well-known - if it is given constructively.
Similar constraints are applicable in language theory and many other fields.
The constraint is, of course, usually understood and, hence, omitted. For
example, in the case of the DOL equivalence problem3 it was known for quite
some time that this problem could be reduced to the problem of deciding
whether two regular languages are equal. Unfortunately, this reduction was
not constructive and a constructive one eluded researchers for several years.

The phenomenon of a set being finite, but possibly undecidable, is, of
course, a consequence of allowing non-constructive arguments in proofs. In
this note we discuss a few ramifications of this fact. We start out with
showing that every number theoretic statement that can be expressed in
first-order logic can be reduced to a finite set, to be called a test set. Thus, if
one knew the test set, one could determine the truth of the statement. This

2We refrain from giving references, because pointing to past mistakes is not the aim
of this paper. However, the interested reader is likely to find such statements by just
perusing a few older books.

3Given a finitely generated free monoid X· with set X of generators, elements u, v E
X· and endomorphisms 9 and h, the DOL equivalence problem is to decide whether the
sets {u,g(u),g(g(u)), ... } and {v,h(v),h(h(v)), ... } are equal.

Solving Problems with Finite Test Sets 41

rather simple result models what is sometimes referred to as experimental

mathematics: simply stated, if the statement is true we don't need to do

anything and if it is false we find the smallest counter-example by computer.

We then show how several classical problems fall into this category. The

crucial point is, of course, that we may not be able to know what the finite

test set is. Using problems in the class III of the arithmetic hierarchy

as an example, we establish that the bound on the size of the test set is

Turing-complete and that it is upper-bounded by the busy-beaver function.

This re-enforces the fact that there is a vast difference between finite-

ness and constructive finiteness. In the context of the present re-opened

discussion about the notion of computability possibly extending its realm

through new computational models derived from physics the constraint

of constructivity of the model itself may add another twist.

Let N denote the set of positive integers, let No = N u {O}, and, for

kEN, consider a k-ary predicate P on N, that is, a mapping of N k into

the set B = {O, I} of truth values. Consider the formula

where Ql, Q2, .. ·, Qk E {V,3} are quantifier symbols. In analogy to the

arithmetic classes, we say that J is in the class ITs or I:s if the quantifier

prefix of J starts with V or 3, respectively, and contains s - 1 alternations

of quantifier symbols. When P is computable, then J is in IIs or

respectively.4 It is sufficient to consider only such formulreJ in which no

two consecutive quantifier symbols are the same; in the following we make

this assumption without special mention. With J as above, one has s = k.
As usual in logic, we write P(nl, ... ,nk) instead of P(nl, ... ,nk) = 1

when nl, ... , nk are elements of N. Thus, -,P(nl,"" nk) if and only if

P(nl, . .. , nk) = O. Moreover, since we consider variable symbols only in

the domain N, if J is any formula in first-order logic, we write J is true
instead of J is true in N.

Let fs be one of the classes ITs, I:S) IIs) and We refer to the task of

proving or refuting a first-order logic formula as a problem and especially)

to problems expressed by formulre in f s as f s -problems.
We say that a problem is being solved if the corresponding formula is

proved or disproved to be true, that is, if the truth value of the formula is

determined. A problem is said to be finitely solvable if it can be solved by

examining finitely many cases.5

4See [32) for general background on arithmetic classes.

5 A rigorous definition of this notion is given in Section 3 below.

42 c. S. Calude, H. Jurgensen, S. Legg

For example, consider the predicate

P(n) =

if n is even or n = 1 or n is a prime,

otherwise,

that is, P(n) = 0 if and only if n is an odd number greater than 1 which is

not a prime. Then the problem expressed by the formula \::InP(n) is finitely

solvable;6 indeed, it is sufficient to check all n up to and including 9.

In this paper, we mainly consider ITI-problems and III-problems. For

example, Goldbach's conjecture is a III-problem. It states that every even
n E N is the sum of two primes? To express this in the terminology as

introduced, let PG : N ---t B be such that

PG(n) =
if n is odd or n is the sum of two primes,

otherwise.

Thus, fc = \::In PG(n) is true if and only if Goldbach's conjecture is true.

Similarly, Riemann's hypothesis is a III problem.8 Consider the complex

function

1 00 (_l)n-l

((s) = 1 _ 2l-s . L nS '
n=l

where s = (J + it, (J, t E R, (J > 0, and s i- 1. Riemann conjectured that

all zeroes So = (Jo + i to of (satisfy (Jo = and are simple [30J.

By a result of [14J, Riemann's hypothesis can be expressed in terms of

the function 6R : N ---t R defined by

where

6R(k) = II II 7JR(j),

n<kj-:;n

if j = pr for some prime p and some r EN,

otherwise.

6This example is based on a folklore joke on induction proofs: to prove that all odd
natural numbers greater than 2 are primes one proceeds as follows: 3 is a prime; 5 is a

prime; 7 is a prime; 9 is a measuring error; 11 is prime; 13 is a prime; this is enough

evidence.

7The conjecture was stated in 1742 by Goldbach in a letter to Euler [17]. According

to [22], in 1980 the Goldbach conjecture was known to be true for all n -:; 108; in [35] of

December 1994, it is claimed that no counter-example exists up to 2.1010 . Hardy states

that the Goldbach problem is "probably as difficult as any of the unsolved problems in

mathematics" [19]. See also [26] and [34].

8The problem is first proposed in [30]; see also [31].

Solving Problems with Finite Test Sets

Riemann's hypothesis is equivalent with the assertion that

for all n E N, see [14].9 Hence, let

J1t(n) = {1, if (L:k:s:oR(n) i - n22)2 < 36n3,
0, otherwise.

43

Thus, !R = Vn J1t(n) is true if and only if the Riemann hypothesis is true.
Clearly, J1t is decidable. Therefore, Riemann's hypothesis is a III-problem.

As in the case of the Goldbach conjecture, also for the Riemann hy-
pothesis huge computations have been performed to search for a counter-
example - or to increase the confidence [3], [4], [5], [6]' [25].

Of course, not every mathematical statement is a III-problem. For
instance, the conjecture stating the existence of infinitely many twin primes,
that is, consecutive odd primes such as 857 and 859, is not a III-problem.
With

m > nand m and m + 2 are primes,
otherwise,

this conjecture can be stated as

The formula iT is in the class II2 . Bennett claims that most mathemati-
cal conjectures can be settled indirectly by proving stronger III-problems,
see [2]. For the twin-prime conjecture such a stronger III-problem is ob-
tained as follows. Consider the predicate

PHn) = {I,
0,

if there is m with IOn-1 :S m :S IOn, m and m + 2 primes,
otherwise.

Let = Thus, gives rise to a III-problem and, if is true,
then iT is also true.

In this paper we discuss the fact - surprising (only) at first thought
- that every tt-problem and every ts-problem has a finite test set. Of
course, there cannot be a constructive proof of this statement. Moreover,
already for s = 1 the size of the test sets behaves as badly as the busy
beaver.

9For another proof see [23]' pp. 117-122.

44 C. S. Calude, H. Jiirgensen, S. Legg

2 Notation and Basic Notions

In this section we briefly review some basic notions and introduce some
notation. Let X be a non-trivial alphabet, that is, a non-empty, finite set
with at least 2 elements. Then X* is the set of all words over X. A (formal)
language over X is a subset of X*.

We assume that the reader is familiar with the theory of computable
functions on integers or strings (see [32]' [8]). If U is a universal Turing
machine which maps strings over X to non-negative integers, and 1T is a
program for U then U (1T) denotes the result of applying U to 1T and an
empty input tape. In particular, we write U(1T) = 00 when U does not halt
on 1T.

3 Finite Solvability

For sEN, let rs denote any of It and t s , and let fs denote any of lIs
and I:s .

Definition 3.1 Let

with sEN, where Ql, Q2, . .. , Qs are alternating quantifier symbols.

1. A test set for f is set T NS such that f is true in NS if and only
if it is true in T.

2. The problem of f is finitely solvable if there is a finite test set for f.

Theorem 3.1 Let sEN. Every f E rs is finitely solvable.

Proof. Let
f = Qln l Q2n2 ... Qsns P(nl' n2,···, n s),

with sEN, where Ql, Q2, ... , Qs are alternating quantifier symbols.
We determine a sequence N1, N2, . .. , Ns of finite sets with Ni N i

such that the problem posed by f can be solved by checking all s-tuples
(nl' n2,· .. , ns) ENs.

We define the sets Ni by induction on i. For this purpose, let

Solving Problems with Finite Test Sets 45

where ml, ... ,mi-l EN. In particular, h() = f and fs+l(ml, ... ,ms) =
P(ml, .. . , ms).

For i = 1, if Ql = \/, let

VI = 1 if f = h () is true,

and

VI = min{ml I ml E N,...,h(ml)} otherwise;

if Ql = :3, let

VI = 1 if f = h () is not true,

and

VI = min{ml I ml E N,h(md} otherwise.

Let Nl = {(md I ml EN, ml ::; vI}.

Now, suppose Ni - 1 has been defined and i ::; s. For each (ml,

mi-l) E N i - 1, define vi(ml,.·., mi-l) E No as follows. If Qi = \/, let

and

if Qi = 3, let

and

Let

Ni = {(ml, ... , mi) I (ml, ... , mi-d E Ni- 1, mi E N,

mi ::; v(ml, ... , mi-l)}.

... ,

We now prove,lO by induction on i, that each set Ti = Ni X Ns-i is a

test set for f. Then, in particular, Ns is a finite test set for f.

lOWe decided to include this rather straight-forward proof as it was only by this proof

that we discovered some subtle traps in the construction of the test sets.

46 c. S. Calude, H. Jurgensen, S. Legg

Consider i = 1. Suppose first that QI = V. The set NI is {(I)} and,
clearly, the set TI is a test setll for f. When f is false the set NI consist
of all positive integers up to the first counter-example for the first variable
of P. Hence, again, TI is a test set for f. On the other hand, suppose that
QI = 3. Then NI = {(I)} when f is false. Clearly TI is a test set l2 for f.
When f is true the set NI consists of all positive integers up to the first
witness for the first variable of P. Again TI is a test set for f.

Now consider i > 1 and assume that Ii-I is a test set for f. First
suppose that Qi =V. Consider (ml, ... ,mi-l) E Ni- I· If fi(ml, ... ,mi-I)
is true then lIi(ml, ... , mi-t} = 1. As Ti- I is a test set for f, to test
whether f is true on {(ml, ... , mi-l)} x Ns- i+1 it suffices to test on
{(ml, ... , mill I)} x Ns-i, and (ml, ... , mi-I, 1) E Ni. If fi(ml, ... ,mi-I)
is false, then Ni contains all the i-tuples (ml, ... , mi-I, mi) with mi rang-
ing from 1 to the smallest counter-example. Hence, as Ti-I is a test set for
f so is Ti.

Now suppose that Qi = 3. If fi(ml, ... , mi-I) is false then
lIi(ml, ... , mi-I) = 1. As Ti- I is a test set for j, to test whether j is true on
{(ml, ... ,mi-I)} X Ns-i+1 it suffices to test on {(ml, ... ,mill1)} x Ns-i,
and (ml, ... , mi-I, 1) E Ni. If fi(ml, ... , mi-I) is true then Ni contains
all the i-tuples (ml, ... , mi-I, mi) with mi ranging from 1 to the smallest
witness. Hence, as Ti - I is a test set for f so is Ii. 0

The proof of Theorem 3.1 is non-constructive and this remains so even
when P is decidable. Thus, from this proof we do not learn anything about
the number of cases one needs to check in order to prove or disprove the
truth of f. It is clear from the theories of arithmetic classes and degrees of
unsolvability that, in general, finite test sets cannot be constructed for this
type of problems even when the predicate is computable. We try to shed
some light, from a different perspective, on some of the reasons why this
cannot be done.

The proof of Theorem 3.1 highlights a typical pitfall in proofs in com-
putability theory when the reasoning of classical logic is used. The proof
and the statement proved are computationally meaningless as neither helps
with actually solving the t s -problem. The "construction" of the sets Ni in
the proof disguises the fact that none of these finite sets may be computable.

llIn fact, the empty set would be a test set for J. However, if one uses this idea, that
is sets VI to 0 rather than 1 - and similarly for Vi in general - then the "construction"
seems to break down.

12 Again the empty set could have been used were it not for problems with the subse-
quent steps of the "construction".

Solving Problems with Finite Test Sets 47

See, for example, the formula fe expressing Goldbach's conjecture.

The statement of Theorem 3.1 has some similarity with the Test Set
Theorem in formal language theory. This theorem, originally known as

Ehrenfeucht's conjecture, can be stated as follows: Let X and Y be alpha-
bets, and let L X*. There exists a finite subset F of L, a test set, such
that, for any two morphisms f,g from X* to Y*, f(u) = g(u) for all u E L
whenever f (u) = g(u) for all u E F. This was proved independently in [1]

and [18].13 In [7] and also [11] it is pointed out that the existence of the test

sets is not constructive. 14 In the statement of the Test Set Theorem for lan-

guages, the order of the quantifiers, that is, VL3FVfVg, is very important.

The modified order VLVfVg3F results in a far simpler statement, for which

a proof can be given using the same ideas as in the proof of Theorem 3.1.

In the following, for f E f s, let N(J) = Ns with Ns as in the proof of

Theorem 3.1. In particular, when s = 1, then N(J) is the set {(nl) , nl E
N, nl :s VI}. For this case, we define v(J) = VI.

In this section, we analyze the case of ill-problems in greater detail. Let X

be an arbitrary but fixed alphabet. We use X as the alphabet for programs

of universal Turing machines. We also fix a computable bijective function

(,) : X* x No -t X*. Consider f = Vn P(n) where P is a computable

predicate on N. We assume that P is given as a program for an arbitrary,

but fixed universal Turing machine U. Thus P is given as a word 1fp E X*

such that U((1fp,n)) = P(n) for all n E N. One can, therefore, consider V

as a partial function of X* into No, that is, v(1fp) = v(J) with f as above.

We first determine an upper bound on v(J) for f E ill.
The busy beaver function a : N -t N ([29]; see also [15], [16]' Chap-

ter 39) is defined as follows:

a(n) = max{U(x) , x is a program of length n for U

and U (x) halts on x}.

Let P be a computable unary predicate on N, let f = Vn P(n), hence

f E ill. Consider a program PI for U such that

U(PI) = min{n '-,P(n)},

13Explanations of the proofs are given in [27J and [33J. For further information see [13J.
14Under special assumptions on L like regularity, test sets can be effectively constructed

[20], [21J; see also [13J.

48 C. S. Calude, H. Jurgensen, S. Legg

if I is not true, and such that U runs forever on Pf if I is true. Such a
program always exists because the program, which tries P(l), P(2), .. ,
and halts with the first n such that -,P(n), has the required properties.
Let mf = Ipfl· If I is not true, then U halts on Pf with output v(f).
Hence v(f) u(mf). If I is true, then v(f) = O. This proves the following
statement.

Proposition 4.1 For every I E III, v(f) u(mf).

By Theorem 4.1, to solve the problem of lone only needs to check
the truth value of P(n) for all n not exceeding u(mf). This could be very
useful if u were computable. However, u grows faster than any computable
function. Hence, the bound v(f) u(m f) does not help in the actual
solution of the problem of f. In fact, no computable bound exists! Here is
the argument. For any 7r E X*, define the predicate P7r on N by

Pn(n) = {1, U(7r) d?es not halt within n steps,
0, otherwIse.

Clearly, the predicate is computable. Let In = Vn P7r(n). Then 17r is
true if and only if U (7r) does not halt.

Assume now that there is a program to compute an upper bound of v(f)
for any I E III; this program takes, as input, a program p computing the
predicate pP and computes as output an integer v' (p) such that v(fP)
v'(p), where IP = Vn PP(n). We show that this assumption implies the
existence of an algorithm deciding the halting problem for Turing machines.
Indeed, consider 7r E X*. To decide whether U(7r) halts, first compute a
program Pn computing P7r . Next compute v'(P7r)' As In = IP", one has
v(f7r) v'(P7r)' Hence, to determine whether 17r is true, it is sufficient
to determine whether Pn(n) for all n v'(Pn). If so, then U(7r) halts;
otherwise it doesn't.

Theorem 4.1 The upper bound v is Turing-complete.

Proof. We already showed that an oracle for v or an upper bound on
v allows one to decide the halting problem. The converse follows from
Proposition 4.1. 0

Corollary 4.1 There is no constructive prool showing that every I E III
has a finite test set.

Solving Problems with Finite Test Sets 49

With appropriate modifications, a statement similar to Corollary 4.1

can be proved for EI. In fact, for any sEN and any r s , there is no

constructive proof of the fact that every fEr s has a finite test set.

5 Conclusions

Many true III-problems are undecidable, hence independent with respect to

a given sufficiently rich, sound, and computably axiomatizable theory. The

analysis above can help us in understanding this phenomenon. Knowing

that P is false can be used to get a proof that "P is false": we keep

computing P(n) for large enough n until we get an n such that -,P(n). But

this situation is not symmetric: if we know that P is true we might not be

able to prove that "P is true", and this case is quite frequent [lOJ. Indeed,

even when we "have" the proof, that is, we have successfully checked that

P(n) =1= 0, for all n ::; v((Vn)P(n)), we might not be able to "realize" that

we have achieved the necessary bound.

The correspondence P f-t v((Vn)P(n)) exists and is perfectly legitimate

from a classical point of view, but has no constructive "meaning". To a

large extent the mathematical activity can be regarded as a gigantic, col-

lective effort to compute individual instances of the function v((Vn)P(n)).
This point of view is consistent with Post's description of mathematical

creativity [28J: "Every symbolic logic is incomplete and extendible relative

to the class of propositions constituting Ko. The conclusion is inescapable

that even for such a fixed, well defined body of mathematical propositions,

mathematical thinking is, and must remain, essentially creative." 15 It also

gives support to the "quasi-empirical" view of mathematics, which sustains

that although mathematics and physics are different, it is more a matter

of degree than black and white [12, 9J; see also [24J.

In essence, the seemingly paradoxical situation arises from the fact that,

in classical logic, it may happen that only finite resources are needed for

defining a finite object while finite resources will not suffice to determine

the same object constructively. The finite "character" of a problem may

nevertheless rule out - in a very fundamental way - that its solution can

be obtained by finite means.

15 As usual, Ko means the halting problem in this quote.

50 c. S. Calude, H. Jurgensen, S. Legg

Acknowledgment

We thank Douglas Bridges, Greg Chaitin and Solomon Marcus for stimu-
lating discussions.

References

[1] M. H. Albert, J. Lawrence, A proof of Ehrenfeucht's conjecture, The�

oret. Comput. Sci., 41 (1985), 121-123.

[2] C. H. Bennett, Chaitin's Omega, in Fractal Music, Hypercards, and

More ... (M. Gardner, ed.), W. H. Freeman, New York, 1992,307-319.

[3] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros
of the Riemann zeta function in the critical strip I, Math. Comp., 33
(1979), 1361-1372.

[4] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros
of the Riemann zeta function in the critical strip II, Math. Comp., 39
(1982), 681-688.

[5] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros
of the Riemann zeta function in the critical strip III, Math. Comp.,

41 (1983), 759-767.

[6] R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros
of the Riemann zeta function in the critical strip IV, Math. Comp., 46
(1986), 667-681.

[7] C. Calude, Note on Ehrenfeucht's conjecture and Hilbert's basis theo-
rem, Bull. EATCS, 29 (1986), 18-22.

[8] C. Calude, Theories of Computational Complexities, North-Holland,
Amsterdam, 1988.

[9] C. S. Calude, G. J. Chaitin, Randomness everywhere. Nature, 400, 22
July (1999), 319-320.

[10] C. Calude, H. Jurgensen, M. Zimand, Is independence an exception?
Applied Mathematics and Computation, 66 (1994), 63-76.

[11] C. Calude, D. Vaida, Ehrenfeucht test set theorem and Hilbert ba-
sis theorem: A constructive glimpse, in Mathematical Foundations of

Solving Problems with Finite Test Sets 51

Computer Science, 1989 (A. Kreczmar, G. Mirkowska, eds.), Lecture
Notes in Computer Science 379, Springer-Verlag, Berlin, 1989, 177-
184.

[12] G. J. Chaitin, The Unknowable, Springer-Verlag, Singapore, 1999.

[13] C. Choifrut, J. Karhumaki, Combinatorics on words, in Handbook of
Formal Language Theory (G. Rozenberg, A. Salomaa, eds.), Vol. 1,
Springer-Verlag, Berlin, 1987, 329-438.

[14] M. Davis, Y. V. Matijasevic, J. Robinson, Hilbert's tenth prob-
lem. Diophantine equations: Positive aspects of a negative solution,
in Mathematical Developments Arising from Hilbert Problems (F. E.
Browder, ed.), American Mathematical Society, Providence, RI, 1976,
323-378.

[15] A. K. Dewdney, A computer trap for the busy beaver, the hardest-
working Turing machine, Scientific American, 251(8) (1984), 19-23.

[16] A. K. Dewdney, The New Turing Omnibus, Computer Science Press,
New York, 1993.

[17] 1. E. Dickson, History of the Theory of Numbers, Carnegie Institute,
Washington, 1919, 1920, 1923, 3 volumes.

[18] V. S. Guba, The equivalence of infinite systems of equations in free
groups and semigroups, Mat. Zametki, 40 (1986), 321-324 (in Rus-
sian).

[19] G. H. Hardy, Goldbach's theorem, Mat. Tid. B, 1 (1922), 1-16.
Reprinted in Collected Papers of G. H. Hardy, vol. 1, Oxford Uni-
versity Press, Oxford, 1966, 545-560.

[20] J. Karhumaki, W. Rytter, S. J arominek, Efficient constructions of test
sets for regular and context-free languages, Theoret. Comput. Sci., 116
(1993), 305-316.

[21] J. Karhumaki, W. Plandowski, W. Rytter, Polynomial size test sets
for context-free languages, J. Comput. System Sci., 50 (1995), 11-19.

[22] W. A. Light, T. J. Forres, N. Hammond, S. Roe, A note on the Gold-
bach conjecture, BIT, 20 (1980), 525.

52 C. S. Calude, H. Jurgensen, S. Legg

[23J Y. V. Matijasevic, Hilbert's Tenth Problem, MIT Press, Cambridge,
MA, 1993, 117-122.

[24J S. Marcus, Bridging linguistics and computer science, via mathematics,
in People and Ideas in Theoretical Computer Science (C. S. Calude,
ed.), Springer-Verlag, Singapore, 1998, 163-176.

[25J A. M. Odlyzko, Tables of zeros of the Riemann zeta function,
http://wwv.research.att.com/-amo/zeta_tables/index.html.

[26J C.-T. Pan, Goldbach Conjecture, Science Press, Beijing, 1992.

[27J D. Perrin, On the solution of Ehrenfeucht's conjecture, Bull. EATCS,

27 (1985), 68-70.

[28J E. L. Post, Recursively enumerable sets of positive integers and their
decision problems, Bull. (New Series) Amer. Math. Soc., 50 (1944),
284-316.

[29J T. Rado, On non-computable numbers, Bell System Tech. J., 3 (1962),
977-884.

[30J B. Riemann, Uber die Anzahl der Primzahlen unter einer gegebenen
GroBe, in Gesammelte mathematische Werke und, wissenchaftlicher

NachlaB, Springer-Verlag, Berlin, 1990, 177-185.

[31J H. Riesel, Prime Numbers and Computer Methods for Factorization,

Birkhiiuser, Boston, second ed., 1994.

[32J H. Rogers, Theory of Recursive Functions and Effective Computabil�

ity, McGraw-Hill, New York, 1967.

[33J A. Salomaa, The Ehrenfeucht conjecture: A proof for language theo-
rists, Bull. EATCS, 27 (1985), 71-82.

[34J W. Yuan, ed., Goldbach Conjecture, World Scientific, Singapore, 1984.

[35J Names of large numbers and unsolved problems, http://wwv .
smartpages.com/faqs/sci-math-faq/unsolvedproblems/faq.html,
December 1994.

