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Abstract
In this paper, we present, for the first time, quantum annealing solutions for densest k-subgraph problems which have many 
applications in computational biology. Our solutions are formulated as solutions for quadratic unconstrained binary opti-
mization (QUBO) and integer programming problems, proved to be equivalent with the densest k-subgraph problems and 
then tested on an D-Wave 2X machine. The QUBO formulations are optimal in terms of the number of logical qubits, but 
require the highest number of physical qubits after embedding. Experimental work reported here suggests that the D-Wave 
2X model cannot handle problems of this difficulty. The next generation of D-wave hardware architecture—the Pegasus 
architecture—is much denser than the current one, so dense QUBOs will be easier to embed. The experimental work also 
suggests that the current built-in post-processing optimization method does not work very well for some problems and the 
default setting (post-processing optimization on) should be avoided (or at least tested before being turned on).

Keywords Densest k-subgraph problem · Quadratic unconstrained binary optimization and integer programming 
problems · Quantum annealing · D-Wave 2X

1 Introduction

Information in computational biology is increasingly rep-
resented with graphs, e.g., protein interactions, metabolic 
pathways, gene regulation, gene annotation, RNA-seq reads, 
etc. This means that many problems in processing biologi-
cal information can be represented and solved using graph 
theory, see, for example, [9, 17, 30]. Also, many graph prob-
lems have been studied in membrane computing [28].

Adiabatic quantum computing (AQC) is a model of quan-
tum computing based on the propensity of physical sys-
tems—classical or quantum—to minimize their free energy, 
specifically the free energy minimization in a quantum sys-
tem. This model is implemented by the D-Wave series of 
quantum machines [6, 11, 26, 27].

A D-Wave quantum machine solves a generic quadratic 
unconstrained binary optimization (QUBO) problem, an NP-
hard mathematical problem consisting in the minimization 
of a quadratic objective function:

where � = [x0, x1,… , xn−1] is a n-vector of binary variables 
and Q is an upper triangular n × n matrix:

In this paper, we propose QUBO efficient formulations for 
problems involving finding various dense subgraphs of a 
given graph which have many applications in computational 
biology [9, 17, 30].

2  Notation

The set of positive reals is denoted by ℝ+ . Let G = (V ,E) 
be a simple undirected graph with vertices V and edges E. 
The number of vertices of a graph G is called the order of G 
and the number of edges is called the size of G. The order 
and size of a graph G are typically denoted by n and m, 
respectively.

z = �
TQ�,

x∗ = min
�

∑

i≤j

xiQ(i,j)xj, where xi ∈ {0, 1}.
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Given a graph of order n, we denote the vertices by 
V = {v0, v1,… , vn−1} . An edge between vertices vi and vj is 
denoted by {vi, vj} and for convenience, we assume without 
loss of generality that i < j . A vertex u in V is adjacent to 
a vertex v in V whenever {u, v} ∈ E . The set of adjacent 
vertices of u, denoted by N(u) , is called the neighbors of 
u. In this paper, we only consider simple graphs which are 
graphs without self-loops (i.e., for all v ∈ V  , {v, v} ∉ E ) or 
parallel edges.

Let G = (V ,E) be a graph and C a subset of V. The sub-
graph induced by C, denoted G(C) = (V(C),E(C)) , is the 
graph having C as vertices and all the edges connecting pairs 
of vertices in C in E (i.e., {vi, vj} ∈ E(C) if {vi, vj} ∈ E and 
{vi, vj} ⊆ C ). The set C is a clique if the induced graph G(C) 
is complete [i.e., G(C) has size (|C| ⋅ (|C| − 1)∕2)].

The density of the graph G is defined by:

Given a constant � ∈ (0, 1] , a subset C of vertices is called a 
�-quasi-clique or, simply, a �-clique, if C induces a subgraph 
with the edge density of at least � . A �-clique C is maximal 
if there is no other �-clique C′ which strictly contains C. A 
�-clique C is maximum if there is no other �-clique C′ with 
higher density. Finding the maximum clique of a graph G is 
an NP-hard problem (the decision version is NP-complete) 
[4].

3  QUBO formulations for the  
(edge‑weighted) densest k‑subgraph 
problems

We first state formally the problem.

Densest k-subgraph problem: 

Instance:  A graph G = (V ,E) , n = |V| , m = |E| , and posi-
tive integer k ≤ n.

Question:  Find a V ′ ⊆ V  with |V �| = k  , such that 
DENS(G(V �)) = max{DENS(G(V ��)) ∣ V �� ⊆ V

and |V ��| = k}.

The densest k-subgraph problem is a well-studied prob-
lem in complexity theory [24] which is related to several 
other important computational problems such as the maxi-
mum clique problem, which asks for the largest completely 
connected subgraph. The densest k-subgraph problem is 
at least at hard as the maximum clique problem and thus 
NP-hard for general graphs (i.e., the output is a k-clique of 
density 1 if it exists). Furthermore, the densest k-subgraph 

DENS(G) =
|E|

|V| ⋅ (|V| − 1)∕2
.

problem remains NP-hard even when the input is restricted 
to bipartite graphs [10] and planar graphs [23].

The edge-weighted densest k-subgraph problem, which 
is a generalization of the densest k-subgraph problem, has 
many applications in computational biology [9, 17, 30]. 
Here, every edge in the graph is assigned a real weight value 
by an edge-weight function W. Without loss of generality, we 
assume that the weights are normalized, so W ∶ E → [−1, 1] . 
The goal is to find a subset of vertices V ′ ⊆ V  that maxi-
mizes not the density of G(V �) , but the sum of edge weights 
instead.

Edge-weighted densest k-subgraph problem: 

Instance:  A graph G = (V ,E) , n = |V| , m = |E| , posi-
tive integer k ≤ n and an edge weight function 
W ∶ E → [−1, 1].

Question:  Find a V ′ ⊆ V  with |V �| = k  , such that ∑
{vi,vj}∈E(V

�) W({vi, vj})= max{
∑

{vi,vj}∈E(V
��) W

({vi, vj}) ∣ V
�� ⊆ V and |V ��| = k}.

Note that the above two problems do not have unique 
solutions.

Now, we present a QUBO formulation for this edge-
weighted problem. Given a graph G = (V ,E) with |V| = n 
vertices, |E| = m edges and a positive integer k ≤ n , the 
QUBO formulation requires n binary variables labeled xi 
for 0 ≤ i < n , one for each vertex vi ∈ V  . The binary vari-
ables are denoted by the binary vector � = [x0, x1,… , xn−1].

The objective function to be minimized is:

Assume that x∗ is an optimal solution with �∗ and 
its corresponding variable assignment and take 
V � = {vi ∣ xi = 1, 0 ≤ i < n − 1} as a solution to the dens-
est k-subgraph problem. We define a ‘decoder’ function 
D(�) ∶ ℤ

n
2
→ 2V  and D(�) = {vi ∣ xi = 1, 0 ≤ i ≤ n − 1} . 

Note |D(x)| = k.
The basic idea is that the term �

�∑n−1

i=0
xi − k

�2

 in (1) 
ensures that exactly k vertices are chosen at the end and 
−
∑

{i,j}∈E W({i, j})xixj maximizes the weight sum of edges 
in the induced subgraph. We get the following:

Theorem 1 Suppose G = (V ,E) is a graph of order n, size 
m, and a normalized edge-weight function W ∶ E → [−1, 1] . 
Assume that x∗ and �∗ are an optimal solution and its cor-
responding variable assignment of objective function 
(1), respectively. If V � = D(�∗) , then G(V �) is the induced 

(1)
F(�) = �

(
n−1∑

i=0

xi − k

)2

−
∑

{i,j}∈E

W({i, j})xixj,

for sufficiently large � ∈ ℝ
+.
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subgraph of k vertices with maximum 
∑

{i,j}∈E(V �) W({i, j}) . 
The total edge-weight sum of G(V �) is exactly −x∗.

Proof Let x∗ and �∗ be the optimal solution and its corre-
sponding variable assignment in (1).

We first show that �
�∑n−1

i=0
xi − k

�2

= 0 . Assume for the 

sake of a contradiction that 
�∑n−1

i=0
xi − k

�2

≠ 0 . Then, we 
must have 

∑n−1

i=0
xi ≠ k . Based on this, we show that one can 

construct a new variable assignment � , such that 
F(�) < F(�∗) , which contradicts the optimality of �∗.

There are two cases to analyze: (1) 
∑n−1

i=0
xi = c > k , and 

(2) 
∑n−1

i=0
xi = c < k.

In the former case, let b = c − k . As there are exactly c 
variables in �∗ with value 1, we select any b of them, say 
x0, x1,… , xb−1 (note that we can always relabel all variables 
as we can permute the vertices of G if necessary). If we set 
all of these variables to 0, then 

∑n−1

i=0
xi − k = 0 which means 

that the value of �
�∑n−1

i=0
xi − k

�2

 will be reduced by �b2 , so 
it will be possible to construct a new variable vector � with 
F(�) < F(�∗) . Now, for each vertex vi where 0 ≤ i < b , the 
vertex vi is connected to at most c − 1 vertices in the induced 
subgraph G(D(�∗)) . Since W({i, j}) ≤ 1 , setting the corre-
sponding variables x0,… , xb−1 to 0 will reduce the value of ∑

{i,j}∈E W({i, j})xixj by at most b(c − 1) . Accordingly, if 
𝛼b2 > b(c − 1) , then the overall value of F(�) will decrease. 
Note that 𝛼b2 > b(c − 1) implies that 𝛼b > c − 1 and since 
c ≤ n and b > 1 , setting � = n is sufficient for this condition. 
By symmetry, we can also construct a new variable vector � 
for the latter case.

Finally, assume that �
�∑n−1

i=0
xi − k

�2

= 0 , and hence, in 
this case, |D(�∗)| = k (i.e., the induced subgraph G(D(�∗)) 
has exactly k vertices). Consequently, −

∑
{i,j}∈E W({i, j})xixj 

maximizes the sum of edge weights in the induced subgraph 
G(D(�∗)) .   ◻

Since the edge-weighted densest k-subgraph problem is 
the generalized version of the unweighted version, formula 
(1) can be used to solve the unweighted problem, as well. 
For fixed k, k ⋅ (k − 1)∕2 is a constant, and hence, maximiz-
ing DENS(G(V �)) is the same as maximizing the number 
of edges in G(V �) . Therefore, if W({i, j}) is a constant func-
tion, then formula (1) solves the densest k-subgraph prob-
lem. Note that a negative edge weight in this case does not 
make much sense in terms of the problem, and therefore, we 
assume the edge-weight function is strictly positive. Conse-
quently, we have:

Corollary 1 Suppose that G = (V ,E) is a graph with order n, 
size m, and a constant edge-weight function W ∶ E → (0, 1] . 
Assume that x∗ and �∗ are an optimal solution and its 

corresponding variable assignment of objective function 
(1), respectively. If V � = D(�∗) , then G(V �) is the induced 
subgraph of k vertices with maximum DENS(G(V �)).

Proof Note that the proof of Theorem  1 only requires 
W({i, j}) ≤ 1 , and hence, the result holds.   ◻

3.1  An example

In this subsection, we give an example of a QUBO con-
structed by our method. Let G = (V ,E) be the graph shown 
in Fig. 1, where V = {0, 1,… , 9} and:

Suppose that W ∶ E → (0, 1] a constant function where 
W(e) = 1 for all e ∈ E and k = 5 . Based on the objective 
function (1), with � set to n = 10 , the complete QUBO is 
given in Table 1. A Python program to compute the QUBO 
can be found in Appendix 2. This QUBO has a unique 
optimal solution �∗ = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] which cor-
responds to the vertex subset S = {2, 3, 7, 8, 9} and it can 
be verified (e.g., by brute-force computation) that G(S) is a 
subgraph of order 5 with maximum density.

4  Integer programming solution for the  
densest k‑subgraph problem

In this section, we present a 0 − 1 integer programming 
(IP) formulation for the densest k-subgraph problem. Vari-
ous different formulations exist for (slight variations) of 
the problem and our solution is quite similar to the mixed 

E ={{0, 6}, {1, 5}, {1, 6}, {1, 7}, {2, 6}, {2, 7}, {2, 8},

{2, 9}, {3, 7}, {3, 8}, {3, 9}, {4, 8}}.

0

1

2

3

4

5

6

7

8

9

Fig. 1  Example of a bipartite graph; this graph was also used as an 
example in [30]
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integer programming formulation given in [2]1. The differ-
ence is that the formulation in [2] assumes all edge weights 
are non-negative (hence, it does not compute the correct 
answer with negative edge weights).

Our formulation requires exactly n + m binary variables: 
one for each vertex in the graph and one for each edge in the 
graph. We define xi for each vi ∈ V and yi,j for each {i, j} ∈ E 
where xi ∈ {0, 1} and yi,j ∈ {0, 1} . If xi = 1 , then we choose 
vi to be in the subset V ′ . For convenience, we denote the 
collection of variables xi by � . The complete formulation 
is as follows:

subject to

Note that the terms W({i, j}) are constants, so the objective 
function (2) satisfies the conditions of a 0 − 1 integer pro-
gramming formulation.

Theorem 2 Suppose that G = (V ,E) is a graph of order 
n, size m, and an edge-weight function W ∶ E → [−1, 1] . 
Assume that x∗ and �∗ are an optimal solution and its 
corresponding variable assignment of objective function 
(2), respectively. If V � = D(�∗) , then G(V �) is the induced 

(2)Maximize
∑

{i,j}∈E

W({i, j}) yi,j,

(3)
∑

0≤i<n

xi = k,

(4)yi,j ≤ xi for each {i, j} ∈ E,

(5)yi,j ≤ xj for each {i, j} ∈ E,

(6)yi,j + 1 − xi − xj ≥ 0 for each {i, j} ∈ E.

subgraph of k vertices with maximum 
∑

{i,j}∈E(V �) W({i, j}) . 
The total edge-weight sum of G(V �) is exactly −x∗.

Proof The constraint (3) ensures that exactly, k vertices are 
chosen in V ′ , so it is sufficient to prove the theorem by show-
ing that yi,j = 1 if and only if xi = 1 and xj = 1 . This is indeed 
the case, because the constraints (4) and (5) ensure the value 
of yi,j cannot be 1 unless both xi and xj have value of 1 and 
the constraints (6) enforce the condition that if both xi and xj 
have value 1, then yi,j must have value 1 as well.

To conclude, for every V ′ ⊆ V  with |V �| = k , for each 
edge {i, j} in E(G(V �)) , the corresponding variable yi,j will 
have a value of 1, and therefore, (2) will maximize the sum 
of edge weights in the induced subgraph.   ◻

5  Specified subset edge‑weighted densest 
k‑subgraph problem

In gene annotation networks [30], the vertices and edges 
of the graphs represent DNA genes and features of some 
(group of) organisms; if the goal is to identify a specific set 
of genes or to find the set of genes related to a specified set 
of features, a general solution of the edge-weighted densest 
k-subgraph problem might not provide the relevant solution. 
These cases can be modeled by the following problem:

Specified subset edge-weighted densest k-subgraph 
problem: 

Instance:  A graph G = (V ,E) , n = |V| , m = |E| , positive 
integer k ≤ n , a subset of vertices S ⊆ V , and an 
edge-weight function W ∶ E → [−1, 1].

Question:  Find a V ′ ⊆ V  with S ⊆ V ′ and |V �| = k , such 
that ∑{vi,vj}∈E(V

�) W({vi, vj}) = max{
∑

{vi,vj}∈E(V
��)

W({vi, vj}) ∣ S ⊆ V ��
,V �� ⊆ V and |V ��| = k}.

Table 1  QUBO matrix for 
graph of Fig. 1

Variables x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
0

− 90 20 20 20 20 20 19 20 20 20
x
1

0 − 90 20 20 20 19 19 19 20 20
x
2

0 0 − 90 20 20 20 19 19 19 19
x
3

0 0 0 − 90 20 20 20 19 19 19
x
4

0 0 0 0 − 90 20 20 20 19 20
x
5

0 0 0 0 0 − 90 20 20 20 20
x
6

0 0 0 0 0 0 − 90 20 20 20
x
7

0 0 0 0 0 0 0 − 90 20 20
x
8

0 0 0 0 0 0 0 0 − 90 20
x
9

0 0 0 0 0 0 0 0 0 − 90

1 This particular formulation is actually a 0 − 1 IP formulation as 
well.
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In this variation of the edge-weighted densest k-sub-
graph problem, the input includes a subset S which the 
output V ′ must contain. The QUBO formulation given 
in Sect. 3 can be modified slightly to solve this problem. 
Assume that S = {v0, v1,… , vc−1} (we can relabel vertices if 
needed). By setting all variables corresponding to S, that is, 
{x0, x1,… , xc−1} , to 1, we can guarantee that S is contained 
in the output subset V ′ . Note that the term k in Formula (1) 
has to be replaced by k − c since we are now only choosing 
k − c vertices from V ⧵ S . The complete objective function 
is:

Note that since we label the vertices in S by the first c inte-
gers, we will not have an edge {i, j} where i ∉ S and j ∈ S 
(recall that we assume that i < j ). Equation (7) does not con-
sider edges between vertices in S, that is, edges {i, j} where 
i, j ∈ S . For a fixed set S, the edges between vertices in S are 
also fixed and so 

∑
{i,j}∈E, i,j∈S W({i, j}) will be constant, so it 

will have no effect on the minimization of F(�).

Theorem 3 Suppose that G = (V ,E) is a graph of order n, 
size m, S a subset of V, where |S| = c < k , a normalized 
edge-weight function W ∶ E → [−1, 1] . Assume that x∗ 
and �∗ are an optimal solution and its corresponding vari-
able assignment of objective function (7), respectively. If 
V � = D(�∗) ∪ S , then G(V �) is the induced subgraph of k 
vertices with maximum 

∑
{i,j}∈E(V �) W({i, j}) . The total edge-

weight sum of G(V �) is −x∗ +
∑

{i,j}∈E, i,j∈S W({i, j}).

Theorem 3 follows directly from Theorem 1 and the con-
struction of Equation (7) and so the proof is omitted.

5.1  The example revisited

Recall the example given in Sect. 3.1; let us consider the 
same graph here and let S = {0, 1, 2, 3} . Once again, the goal 

(7)

F(�) = �

(
n−1∑

i=c

xi − (k − c)

)2

−
∑

{i,j}∈E and i,j∉S

W({i, j})xixj

−
∑

{i,j}∈E and i∈S, j∉S

W({i, j})xj.

is to find a maximum edge-weighted induced subgraph of 
order 5, and the subgraph has to include vertices 0, 1, 2 and 
3. All other parameters are the same as the example given 
in Sect. 3.1. Based on Formula (7), the complete QUBO is 
given in Table 2. Note that S only contains vertices from 
one partition of the bipartite graph and we are only select-
ing one additional vertex, so it is quite obvious that the 
new vertex has to be chosen from the other partition (i.e., 
{5, 6, 7, 8, 9} ). Choosing either vertex 6 or 7 in this case 
would produce the maximal number of edges and it can be 
verified computationally that both �∗

1
= [0, 0, 1, 0, 0, 0] and 

�
∗
2
= [0, 0,− 0, 1,− 0, 0] , which correspond to the selection 

of vertices 6 and 7, respectively, are optimal solutions of the 
QUBO given in Table 2.

6  Experimental work

We conducted several experiments to empirically measure 
the viability of the QUBO formulation of the densest k-sub-
graph problem given in Sect. 3 on a D-Wave 2X quantum 
annealer. We will first provide an overview of how the exper-
iments were set up followed by a presentation and discussion 
of the results. Some of our programs and scripts given in the 
appendix use external packages such as Sage Mathematics 
[31], NetworkX [18] and the D-Wave System API [15]. We 
also assume that all graphs are represented using the stand-
ard adjacency list format (for example, see Sect. 3).

6.1  Experiment setup and test cases

As mentioned in Sect. 3, the densest k-subgraph problem 
remains NP-hard even when the input is restricted to bipar-
tite graphs. Because of the importance of bipartite graphs in 
computational biology (e.g., see [30]), we generated random 
test cases which are all bipartite graphs. There are several 
different ways to generate random graphs: in this paper, we 
used the random model from [3]. In this model, each edge is 
chosen independently with probability p for 0 < p < 1 . This 
means that if G = (V ,E) is a bipartite graph and V = V1 ∪ V2 
is the vertex partition, then for vi ∈ V1 and v2 ∈ V2 , the prob-
ability of {vi, vj} ∈ E is p.

Table 2  QUBO matrix for 
sample graph with fixed 
S = {0, 1, 2, 3}

Variables x
4

x
5

x
6

x
7

x
8

x
9

x
4

− 10 20 20 20 19 20
x
5

0 − 11 20 20 20 20
x
6

0 0 −  13 20 20 20
x
7

0 0 0 − 13 20 20
x
8

0 0 0 0 − 12 20
x
9

0 0 0 0 0 − 12
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The NetworkX software package provides a function to 
generate these test cases, see Script 1. The function takes 
three parameters: the number of vertices in both partitions 
and an edge probability p. Both partitions have the same 
size, so if the order of the graph is n, each partition has 
exactly n/2 vertices (assuming n is even). The edge probabil-
ity p is set to 0.8, since denser instances of the problem are 
harder in general. We also require the graph to be connected 
as otherwise it can be reduced to multiple smaller instances 
of the densest k-subgraph problem.

We randomly generated 20 bipartite graphs of order 30. 
See Sect. 5 for an example drawing of graph 1 and the aux-
iliary data of [8] for further details of all test cases. These 
graphs have about the largest instances that can be solved 
on a D-Wave 2X. We also set k to n∕2 = 15 , because these 
are the hardest cases for the densest k-subgraph problem, 
since 

(
n

k

)
 yields the highest number of different combinations 

when k = n∕2 . Each graph is also associated with a set of 
randomly generated edge weights (in range [0, 1)) using the 
built-in pseudo-random number generator of Python (see 
Script 1). The weights are rounded to 2 decimal place due 
to the limited precision of the D-Wave hardware.

Since the quantum annealers manufactured by D-Wave 
do not support arbitrary qubit interactions, a given QUBO 
instance has to be ‘embedded’ in the hardware structure of 
the quantum device before the device can be used to solve 
it. This embedding process is highly dependent on the hard-
ware structure. The family of D-Wave computers uses the 
Chimera graphs which are M × N blocks of interconnected 
complete bipartite graphs KL,L . The specific model that we 
have used (D-Wave 2X) has M = N = 12 and L = 4 ; more 
details of the hardware structure and the embedding pro-
cess can be found in [1]. In general, the denser the QUBO 
instance is, the more physical qubits are required to embed 
the instance. Previous experimental work such as [1, 7, 16] 
and theoretical results [5] suggest that the embedding of a 
QUBO instance of n variables requires O(n2) physical qubits. 
This is especially true here, since formula (1) requires every 
pair of variables to interact, so the variable interactions form 
a complete graph of order n ( Kn ) which is the hardest case 
possible (from the perspective of embedding). In theory, one 
can embed complete graphs up to order 48 in the D-Wave 
2X model and a polynomial time algorithm to generate such 
embeddings is given in [5]. Moreover, the particular D-Wave 
2X which we worked with has 54 inactive qubits and extra 
faulty couplers in-between active qubits, so the aforemen-
tioned algorithm [5] is not applicable in this case here. Con-
sequently, we have used the heuristic algorithm provided by 
the D-Wave software package [15] to compute the embed-
dings for our test cases. Since all of our test cases have the 
same interaction structure, the same embedding was used for 
all test cases—this also saved considerable classical com-
puter time, since computing different embeddings is time 

consuming. The QUBO instance has to be converted to its 
equivalent Ising form, since the D-Wave model works only 
with problems in Ising formulation; the D-Wave software 
package [15] has functions that support this transformation 
process. For more details, see [22] and [11].

6.2  Parameter settings

After embedding the QUBO instance in the D-Wave hard-
ware, the annealing cycle begins; that is, the quantum 
annealing is used to solve the embedded problem instance. 
The D-Wave 2X system provides many different options and 
settings (see [12]) and it is difficult to determine the opti-
mal settings for a particular problem. For our experiments, 
we used the same parameter settings as described in [20] 
which follow the standard guidelines in the manuals such 
as [11] and [12]. One difference between our settings and 
the ones used in [20] is that we repeated the experiment 
twice: the first time with the post-processing optimization 
option turned on (default) and the second time with the 
option turned off, see Sect. 6.4 for details. The process of 
quantum annealing is probabilistic, and in general, it is not 
possible to calculate the probability of obtaining an opti-
mal solution, so experimental work is used to empirically 
approximate this probability via repetitions, see [1]). Finally, 
we set the annealing cycle to repeat a total of 1000 times 
for each test case which generates 1000 samples (not all 
samples are unique). Since the D-Wave hardware can some-
times be inconsistent (e.g., due to the machine maintenance 
and recalibration cycles), we repeated the entire experiment 
three times and all the results are given in Tables 5 and 6. 
See Sect. 6.4 for more details.

6.3  Classical solvers

We have also implemented several classical algorithms for 
the densest k-subgraph problem to empirically compare the 
performance of the D-Wave 2X. These includes a Sage pro-
gram that solves the IP formulation (2) as well as a straight-
forward randomized algorithm. The Sage program is given 
in Appendices 3 and 4. The Sage program uses the GLPK 
solver which is an exact solver for IP. The IP formulation 
(2) requires O(n2) variables, since there are at most O(n2) 
edges in a graph. The largest instance of the problem solved 
with the script in Appendix 3 was a graph with 40 vertices 
and more than 1000 edges which took more than 30 min, 
which is quite a long time, on a 8-core Intel(R) Core(TM) 
i7-4790K CPU running Fedora 29 Another reason for choos-
ing test cases of order 30 was the difficulty to verify the 
correctness quantum solutions with classical computations.

Appendix 4 describes the simple randomized algorithm. 
At each iteration, we generated a random subset of V of 
size 15 and we computed the total edge-weight sum of the 
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induced subgraph. The final returned value is the vertex sub-
set that yields the highest total edge-weight sum.

6.4  Experiment results and discussion

We also used the Sage solver to verify that all test cases 
had unique optimal solutions. In theory, the probability of 
a test case having more than one optimal solutions is very 
low but not impossible (i.e., for example a test case with at 
least two subgraphs of order 15 with the same edge-weight 
sum). Since having a unique optimal solution would make 
the analysis in Sect. 6.4 a lot simpler, we modified that the 
Sage Program 3 to verify the optimal solution of each test 
case is unique. The GLPK solver itself does not support 
the function of enumerating all optimal solutions and so we 
modified the program. Let G = (V ,E) be a graph and sup-
pose that we have used Script 3 to find (one of) its optimal 
solution; let W ′ and V � = {v0, v1,… , v14} be the optimal 
objective value (edge-weight sum of the induced subgraph) 
and set of vertices of the optimal solution. If we add another 
constraint of the form:

to the IP formula (2), then the GLPK solver is now not 
allowed to select V ′ as the vertex set again. Hence, if we now 
compute the optimal objective value W ′′ and compare with 
W ′ , the optimal solution is unique if and only if W ′′ ≠ W ′ . 
We verified via this approach that all test cases had unique 
optimal solutions.

Table 3 is the optimal solution of the IP formulations 
computed by Sage. Table 4 presents the best results obtained 
with the randomized algorithm (Program 4) after 1000 itera-
tions. We have also measured the quality of the best answer 
from the randomized algorithm by two additional metrics. 
Let G� = (V �,E�) and G�� = (V ��,E��) be the optimal solution 
computed by Sage (i.e., induced subgraph with maximum 
edge-weight sum) and the best answer produced by the ran-
domized algorithm, respectively. The optimal solution ratio 
is calculated as 

∑
e∈E�� W(e)

∑
e∈E� W(e)

 , so it shows how close the weighted 
edge sum produced by the random algorithm is to the actual 
optimal answer. The other metric is the Jaccard similarity 
index, a commonly used measurement in statistics that meas-
ures how close (or similar) two given sets are. In our case, 
the Jaccard index is calculated as |V

�∩V ��|
|V �∪V ��| and so it measures 

how close the set of vertices found by the randomized algo-
rithm is to the actual optimal set.

As can be seen in this table, the randomized algorithm 
consistently computes solutions that are about 85% of an 
optimal value, a rather surprising result considering the sim-
plicity the algorithm. In theory, the expected number of ver-
tices in a random subgraph of k vertices is 

(
k

2

)
2m

n(n−1)
 , where 

∑

vi∈V
�

xvi ≤ k − 1

Table 3  Sage optimal solutions Test cases Maximum 
weight 
sum

1 33.89
2 34.22
3 31.41
4 31.49
5 30.07
6 34.61
7 33.24
8 34.19
9 35.61
10 31.75
11 30.12
12 31.27
13 33.95
14 32.17
15 32.65
16 31.69
17 34.91
18 31.21
19 32.39
20 33.07

Table 4  Randomized algorithm solutions

Test cases Best answer Ratio over optimal 
solution

Jaccard index

1 28.83 0.85 0.43
2 29.76 0.87 0.58
3 27.25 0.87 0.67
4 27.73 0.88 0.5
5 26.2 0.87 0.25
6 30.16 0.87 0.58
7 29.48 0.89 0.5
8 32.02 0.94 0.67
9 29.68 0.83 0.5
10 27.17 0.86 0.5
11 26.72 0.89 0.43
12 27.44 0.88 0.36
13 29.29 0.86 0.58
14 28.2 0.88 0.36
15 27.94 0.86 0.58
16 27.17 0.86 0.67
17 29.76 0.85 0.58
18 26.31 0.84 0.5
19 29.17 0.9 0.5
20 30.02 0.91 0.58
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m and n are the size and order of the graph respectively. Let 
i and j be the ith and jth random vertex choices. Since there 
are two ways to pick an edge {u, v} ∈ E (i.e., i = u and j = v 
or i = v and j = u ), the chance of an edge being chosen is 
2m∕n(n − 1) . Furthermore, since there are 

(
k

2

)
 different com-

binations, the assertion follows. For the test graphs (Pro-
gram 1), the expected number of edges in each graph is 
exactly 15 × 15 × 0.8 = 180 (since there are 15 vertices in 
each partition and edge probability is 0.8). Together with the 
fact that we have used normalized edge weights in range 
(0, 1], the expected edge-weight sum in a random graph is (
15

2

)
180

30⋅29
≈ 21.72 which is already about 60% of the true opti-

mal values. The average Jaccard index value for all the test 
cases is 52% so the best vertex set is somewhat different from 
the optimal set. This is expected as well, since the edge 
weights are uniformly distributed so there should be many 
induced subgraphs with similar edge-weight sum.

Recall that for the D-Wave 2X experiment, we repeat the 
annealing cycle 1000 times for each test case and, therefore, 
generating 1000 samples per test case. In general, there is 
no guarantee that all 1000 samples correspond to valid solu-
tions, so we discarded samples which do not correspond to 
exactly 15 vertices. The valid answer with the highest edge-
weight sum for each test case is given in Tables 5 and 6. We 
have also computed the optimal solution rate and the Jaccard 
similarity value for the best answer, and we repeated the 
entire experiment three times. For example, the test case 
labeled 1.2 in Table 5 is the result on graph 1 (see Sect. 5 
for its structure) of the second repetition of the experiment 
with post-processing optimization turned off.

As can be seen in Tables 5 and 6, the answers obtained 
with quantum annealing are significantly worse than the 
answers generated by the randomized algorithm: the aver-
age optimal solution ratio is 41% and 71% with and without 
post-processing optimization respectively. There is also a 
decrease in the Jaccard similarity value when compared with 
the randomized algorithm; the average is 25% and 37% with 
and without post-processing settings, respectively.

We suspect that the main reason for the poor performance 
of D-Wave is due to the quality of the embedding used. To 
test this hypothesis, we define the average map size of an 
embedding as no. of physical qubits

no. of logical qubits
 (i.e., how many physical 

qubits does each logical qubit corresponds to), a commonly 
used metric in measuring the quality of embeddings. Previ-
ous experimental studies such as [19, 29]2 have shown that 
embeddings with shorter and uniform map size provide a 
better solution quality. The particular embedding that we 
have computed uses 440 physical qubits, so the average map 

Table 5  D-Wave solutions with no post-processing

Test cases Best answer Ratio over optimal 
solution

Jaccard index

1.1 20.55 0.61 0.25
1.2 24.07 0.71 0.5
1.3 28.2 0.83 0.5
2.1 25.37 0.74 0.43
2.2 26.25 0.77 0.5
2.3 23.66 0.69 0.43
3.1 21.59 0.69 0.36
3.2 23.33 0.74 0.36
3.3 23.73 0.76 0.3
4.1 25.51 0.81 0.3
4.2 24.29 0.77 0.25
4.3 24.03 0.76 0.3
5.1 22.05 0.73 0.25
5.2 23.5 0.78 0.25
5.3 22.64 0.75 0.3
6.1 24.46 0.71 0.43
6.2 24.53 0.71 0.43
6.3 22.75 0.66 0.43
7.1 20.43 0.61 0.3
7.2 22.65 0.68 0.36
7.3 24.13 0.73 0.43
8.1 21.59 0.63 0.3
8.2 25.45 0.74 0.43
8.3 25.89 0.76 0.3
9.1 24.25 0.68 0.25
9.2 27.89 0.78 0.5
9.3 28.29 0.79 0.43
10.1 24.29 0.77 0.3
10.2 24.98 0.79 0.43
10.3 22.35 0.7 0.36
11.1 0.0 0.0 0.0
11.2 20.43 0.68 0.5
11.3 23.35 0.78 0.5
12.1 22.61 0.72 0.25
12.2 23.07 0.74 0.43
12.3 23.52 0.75 0.43
13.1 26.39 0.78 0.3
13.2 28.44 0.84 0.43
13.3 27.05 0.8 0.58
14.1 0.0 0.0 0.0
14.2 24.94 0.78 0.58
14.3 26.64 0.83 0.3
15.1 23.27 0.71 0.36
15.2 26.51 0.81 0.43
15.3 26.35 0.81 0.36
16.1 0.0 0.0 0.0
16.2 26.22 0.83 0.5
16.3 24.88 0.79 0.5
17.1 19.95 0.57 0.36

2 These publications refer to the map size as ‘chain length’ which 
could be somewhat misleading since the set of physical qubits do not 
necessarily form a path.
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size is 440
30

≈ 14.7 , a relatively high value. Furthermore, the 
minimum and maximum map sizes are 8 and 21, respec-
tively, which is far from uniform. The study in [29] bench-
marked the effects of large map size (long chains) on a 
D-Wave 2 quantum computer (the predecessor of the 
D-Wave 2X), and experimentally estimated the probability 
of obtaining the correct answer with map size of 14 to be 
less than 60% : in our test cases, we have 30 ‘chains’, and 
hence, the probability of all chains working correctly is less 
than 0.0000221% (if we assume that each chain operates 
independently).

Another observation is the fact that the quality of the 
results is clearly worse when the post-processing optimiza-
tion option is turned on. There is no test case where turn-
ing on the post-processing optimization option actually 
improved the optimal solution rate. Since the samples (with 
optimization on and off) are from two different runs, it is 
possible that the samples from the runs when the optimi-
zation option is turned on were so bad that it was beyond 
“repair” by the classical algorithm (due to an unknown rea-
son): however, his hypothesis is highly unlikely, since the 
same trend exists in every test case. It seems odd that the 
post-processing optimization produces worse results for our 
test cases. Indeed, the post-processing optimization algo-
rithm is just a classical algorithm running after the anneal-
ing cycles to improve the results, so one should expect that 
the final results to be at least as good as the results with the 
option turned off. One possible explanation is that our test 
cases are the hardest cases for this classical algorithm. The 
exact details of the post-processing optimization algorithm 
are not available, but a high-level (rather vague) pseudo-
code of the algorithm is given in [13]. The user manual [13] 
states that the algorithm is based on [25] and [21]. Both 
[13] and [25] assume and rely on the fact that the logical 
interaction graph (i.e., QUBO matrix) is rather sparse, so it 

Table 5  (continued)

Test cases Best answer Ratio over optimal 
solution

Jaccard index

17.2 27.9 0.8 0.5
17.3 27.69 0.79 0.5
18.1 22.59 0.72 0.43
18.2 21.84 0.7 0.43
18.3 22.54 0.72 0.43
19.1 24.62 0.76 0.36
19.2 28.09 0.87 0.43
19.3 27.39 0.85 0.2
20.1 24.63 0.74 0.43
20.2 24.83 0.75 0.36
20.3 24.66 0.75 0.3

Table 6  D-Wave solutions with post-processing

Test cases Best answer Ratio over optimal 
solution

Jaccard index

1.1 0.0 0.0 0.0
1.2 22.55 0.67 0.43
1.3 28.2 0.83 0.5
2.1 0.0 0.0 0.0
2.2 22.19 0.65 0.25
2.3 23.66 0.69 0.43
3.1 0.0 0.0 0.0
3.2 21.36 0.68 0.36
3.3 23.73 0.76 0.3
4.1 0.0 0.0 0.0
4.2 22.51 0.71 0.3
4.3 24.03 0.76 0.3
5.1 0.0 0.0 0.0
5.2 17.97 0.6 0.36
5.3 22.54 0.75 0.36
6.1 0.0 0.0 0.0
6.2 24.53 0.71 0.43
6.3 22.75 0.66 0.43
7.1 0.0 0.0 0.0
7.2 21.65 0.65 0.36
7.3 22.3 0.67 0.43
8.1 0.0 0.0 0.0
8.2 25.45 0.74 0.43
8.3 23.48 0.69 0.3
9.1 0.0 0.0 0.0
9.2 25.38 0.71 0.43
9.3 27.64 0.78 0.36
10.1 0.0 0.0 0.0
10.2 16.36 0.52 0.36
10.3 22.28 0.7 0.36
11.1 0.0 0.0 0.0
11.2 19.75 0.66 0.5
11.3 25.23 0.84 0.58
12.1 0.0 0.0 0.0
12.2 0.0 0.0 0.0
12.3 23.52 0.75 0.43
13.1 0.0 0.0 0.0
13.2 28.44 0.84 0.43
13.3 23.1 0.68 0.36
14.1 0.0 0.0 0.0
14.2 23.95 0.74 0.58
14.3 26.64 0.83 0.3
15.1 0.0 0.0 0.0
15.2 22.79 0.7 0.25
15.3 21.21 0.65 0.3
16.1 0.0 0.0 0.0
16.2 24.54 0.77 0.5
16.3 24.88 0.79 0.5
17.1 0.0 0.0 0.0
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has low tree-width, a condition which is not satisfied by our 
test cases. Based on formula (1), our QUBO are all complete 
graphs and so always have tree-width n − 1 . Our test cases 
seem to be somewhat of the type of an ‘edge case’ to the 
post-processing optimization algorithm which is causing 
this poor performance (or maybe even working incorrectly). 
Finally, we stress that we could not determine the exact rea-
son, since the exact algorithm is not available.

7  Conclusion and related problems

In this paper, we have presented for the first time QUBO and 
IP formulations for the (edge-weighted) densest k-subgraph 
problem as well as a QUBO formulation for the specified 
subset edge-weighted densest k-subgraph problem. Given a 
graph G = (V ,E) of order n, there are 2n possible subgraphs 
and so one needs at least O(lg 2n) = O(n) binary variables to 
represent all possible solutions. Our QUBO formulations are 
optimal in terms of the number of logical qubits required, 
which is not typical for QUBO formulations (for example, 

see [1, 7]). However, the performance of D-Wave is heav-
ily affected by the high map size of logical qubits and our 
constructions require the highest number of physical qubits 
after embedding: it seems that the D-Wave 2X model cannot 
handle problems of this difficulty. D-Wave next generation 
of hardware architecture, known as the Pegasus architecture 
[14], is much denser (the degree of each vertex is more than 
doubled) than the current Chimera graph, so dense QUBOs 
will be easier to embed. This feature should mitigate some 
of the negative effects which we are seeing here with the 
embedding.

We have also shown (via experimental work) that the cur-
rent built-in post-processing optimization method does not 
work very well for some problems and the default setting 
(post-processing optimization on) should be avoided (or at 
least tested before being turned on).

Finally, we note that there is another variation of the dens-
est k-subgraph problem called the distance restricted densest 
k-subgraph problem [30]. The input of the problem has an 
additional distance restriction function D ∶ V × V → ℕ and 
a new constraint that for all pairs of vertices u and v in the 
selected subset S, the distance between u and v in G(V) has 
to be at most D((u, v)). This distance restricted version of 
the problem is obviously NP-hard if an arbitrary function D 
is allowed. It is more difficult to develop practical QUBO or 
IP formulations for this distance restriction version of the 
problem, since the standard methods do not seem to easily 
encode the distance metric constraint. Indeed, the distance 
between u and v can only be determined after the set S is 
fixed and it is not practical to consider all possible paths 
between u and v in G in general. We plan to study this prob-
lem in more detail in the future.
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Table 6  (continued)

Test cases Best answer Ratio over optimal 
solution

Jaccard index

17.2 24.83 0.71 0.5
17.3 23.43 0.67 0.36
18.1 0.0 0.0 0.0
18.2 20.58 0.66 0.36
18.3 21.19 0.68 0.36
19.1 0.0 0.0 0.0
19.2 24.43 0.75 0.2
19.3 27.39 0.85 0.2
20.1 0.0 0.0 0.0
20.2 24.51 0.74 0.43
20.3 23.95 0.72 0.3
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Appendix 1: Python script to generate 
random bipartite graphs

#! usr /bin /env python2

import sys , random
from networkx . a lgor i thms import b i p a r t i t e as b i
import networkx as nx

n = in t ( sys . argv [ 1 ] . s t r i p ( ) )
n 1 = n/2
n 2 = n − n 1

whi le True :
G = bi . random graph ( n 1 , n 2 , 0 . 8 )
i f nx . i s c onne c t ed (G) :

break

p r in t G. order ( )
f o r i in G. nodes ( ) :

f o r j in G. ne ighbors ( i ) :
p r i n t j ,

p r i n t

edge we i gh t d i c t = {}
f o r (u , v ) in G. edges ( ) :

w = round ( random . random ( ) ,2 )
edge we i gh t d i c t [ u , v ] = w
edge we i gh t d i c t [ v , u ] = w

pr in t edge we i gh t d i c t

generate test cases.tex

Appendix 2: Python script to generate 
QUBOs

#!/ usr /bin /env python2
#usage : generate QUBO . py < a l i s t

import sys , math
import networkx as nx

de f read graph ( ) :
n=in t ( sys . s td in . r e ad l i n e ( ) . s t r i p ( ) )
G=nx . empty graph (n , c r e a t e u s i n g=nx . Graph ( ) )
f o r u in range (n) :

ne ighbors=sys . s td in . r e ad l i n e ( ) . s p l i t ( )
f o r v in ne ighbors : G. add edge (u , i n t ( v ) )

re turn G

def generate qubo (G, W, k ) :
n = G. order ( )
a = n
Q = {}
e = {}

f o r i in range (n) :
f o r j in range (n) :

Q[ i , j ] = a

f o r i in range (n) :
Q[ i , i ] −= 2∗a∗k

f o r ( i , j ) in G. edges ( ) :
Q[ i , j ] −= W[ i , j ]

# upper−t r i a n g u l i z a t i o n
f o r i in range (n) :

f o r j in range (n) :
i f i > j :

Q[ j , i ] += Q[ i , j ]
Q[ i , j ] = 0

# output QUBO
fo r i in range (n) :

f o r j in range (n) :
p r i n t Q[ i , j ] ,

p r i n t

G = read graph ( )
n = G. order ( )
W = eva l ( sys . s td in . r e ad l i n e ( ) . s t r i p ( ) )
generate qubo (G, W, n/2)

generate QUBO.tex
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Appendix 3: Sage script to solve the edge‑weighted densest k‑subgraph problem

#!/ usr /bin /env sage
#usage : sage dense subgraph IP . py < a l i s t

import sys , networkx as nx

de f read graph ( ) :
n=in t ( sys . s td in . r e ad l i n e ( ) . s t r i p ( ) )
G=nx . empty graph (n , c r e a t e u s i n g=nx . Graph ( ) )
f o r u in range (n) :

ne ighbors=sys . s td in . r e ad l i n e ( ) . s p l i t ( )
f o r v in ne ighbors : G. add edge (u , i n t ( v ) )

re turn G

G=read graph ( )
n=G. order ( )
k = n/2

p=MixedIntegerLinearProgram ( s o l v e r=”GLPK” , maximization=True )
x=p . new var iab l e ( binary=True )
#p . s e t b i na r y (x )
c = x [ 0 ]
f o r i in range (1 , n) :

c = c + x [ i ]
p . add cons t ra in t ( c == k)
f o r ( i , j ) in G. edges ( ) :

c = x [ i , j ] + 1 − x [ i ] − x [ j ]
p . add cons t ra in t ( c >= 0)
p . add cons t ra in t ( x [ i , j ] <= x [ i ] )
p . add cons t ra in t ( x [ i , j ] <= x [ j ] )

W = eva l ( sys . s td in . r e ad l i n e ( ) . s t r i p ( ) )
#pr in t W
p . s e t o b j e c t i v e (sum(W[ i , j ] ∗ x [ i , j ] f o r ( i , j ) in G. edges ( ) ) )
#p . show ( )
t ry :

sz=p . s o l v e ( )
except sage . numerica l . mip . MIPSolverException as e :

p r i n t e
e l s e :

pass
opt weight = p . g e t o b j e c t i v e v a l u e ( )
va r va lue = p . g e t va l u e s ( x )

p r i n t opt weight
p r i n t var va lue

dense subgraph IP.tex
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Appendix 4: Randomized algorithm to solve the edge‑weighted densest k‑subgraph 
problem

#!/ usr /bin /env python2

import random , sys
import networkx as nx

de f read graph ( ) :
n=in t ( sys . s td in . r e ad l i n e ( ) . s t r i p ( ) )
G=nx . empty graph (n , c r e a t e u s i n g=nx . Graph ( ) )
f o r u in range (n) :

ne ighbors=sys . s td in . r e ad l i n e ( ) . s p l i t ( )
f o r v in ne ighbors : G. add edge (u , i n t ( v ) )

re turn G

G = read graph ( )

number o f repeat = 1000
best weight sum = 0
b e s t v e r t e x s e t = [ ]
n = G. order ( )
W = eva l ( sys . s td in . r e ad l i n e ( ) . s t r i p ( ) )

f o r i in range ( number of repeat ) :
S = random . sample ( range (n) ,n/2)
induced subgraph = G. subgraph (S)
weight sum = 0
f o r ( j , k ) in induced subgraph . edges ( ) :

weight sum += W[ j , k ]
i f weight sum > best weight sum :

best weight sum = weight sum
b e s t v e r t e x s e t = S

pr in t b e s t v e r t e x s e t
p r i n t best weight sum

dense subgraph random.tex
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Appendix 5: Drawing of a sample test graph
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