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Value-indefinite observables are almost everywhere
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Kochen-Specker theorems assure the breakdown of certain types of noncontextual hidden-variable theories
through the nonexistence of global, holistic frame functions; however, they do not allow us to identify where this
breakdown occurs, nor the extent of it. It was recently shown [Phys. Rev. A 86, 062109 (2012)] that this breakdown
does not occur everywhere; here we show that it is maximal in that it occurs almost everywhere and thus prove that
quantum indeterminacy, often referred to as contextuality or value indefiniteness, is a global property as is often
assumed. In contrast to the Kochen-Specker theorem, we only assume the weaker noncontextuality condition
that any potential value assignments that may exist are locally noncontextual. Under this assumption, we prove
that once a single arbitrary observable is fixed to occur with certainty, almost (i.e., with Lebesgue measure one)
all remaining observables are indeterminate.

DOI: 10.1103/PhysRevA.89.032109 PACS number(s): 03.65.Ta, 03.67.Lx, 05.40.−a, 03.67.Ac

I. INTRODUCTION

The Kochen-Specker theorem [1,2] proves the impossi-
bility of the existence of certain hidden-variable theories for
quantum mechanics by showing the existence of a finite set of
observables O for which the following two assumptions cannot
be simultaneously true for any given individual system: (1) Ev-
ery observable in O has a preassigned definite value and (2) the
outcomes of measurements of observables are noncontextual.

Noncontextuality means that the outcomes of measure-
ments of observables are independent of whatever other
comeasurable observables are measured alongside them. Due
to complementarity, the observables in O cannot all be
simultaneously comeasurable, that is, formally, commuting.

The Kochen-Specker theorem does not explicitly identify
certain particular observables that violate one or both assump-
tions (1) and (2), but only proves their existence. This form
of the theorem was amply sufficient for its intended scope,
primarily to explore the logic of quantum propositions [1]. The
relation between value-indefinite observables, that is, observ-
ables that do not have definite values before measurement, and
quantum randomness in [1,2] requires a more precise form of
the Kochen-Specker theorem in which some value-indefinite
observables can be located (identified). A stronger form of
the Kochen-Specker theorem providing this information was
proved in [3].

In this paper we extend these results to show that indeed all
observables on a quantum system must be value indefinite
except for those corresponding to the contexts compatible
with the state preparation. While it may seem intuitive that
quantum indeterminism is widespread, it does not follow from
existing no-go theorems, so it is important that a theoretical
grounding be given to this intuition. This not only helps provide
an information-theoretic certification of quantum random bits,
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but also develops our understanding of the origin of quantum
indeterminism.

II. LOGICAL INDETERMINACY PRINCIPLE

Pitowsky [4] (and also with Hrushovski in a subsequent
paper [5]) gave a constructive proof of Gleason’s theorem
in terms of orthogonality graphs that motivated the study of
probability distributions on finite sets of rays. In this context he
proved a result called the logic indeterminacy principle, which
has a striking similarity to the Kochen-Specker theorem and
appears as if it could be used to locate value indefiniteness.
However, as we discuss in this section, this is not the case.

For the sake of appreciating Pitowsky’s logical indeter-
minacy principle, some definitions have to be reviewed.
According to [5], a frame function on a set O ⊂ Rn of
quantum states in a dimension n � 3 Hilbert space is a
function p : O → [0,1] such that (i) if {|x1〉 , . . . , |xn〉} is an
orthonormal basis,

∑n
i=1 p(|xi〉) = 1, and for {|x1〉 , . . . , |xk〉}

orthonormal with k � n,
∑k

i=1 p(|xi〉) � 1, and (ii) for all
complex α with |α| = 1 and all x ∈ O, p(|x〉) = p(α |x〉). A
Boolean frame function is a frame function taking only 0,1
values, i.e., for all |x〉 ∈ O, p(|x〉) ∈ {0,1}.

Pitowsky’s logical indeterminacy principle [4] states that
for all states |a〉 , |b〉 ∈ R3 with 0 < |〈a|b〉| < 1, there exists
a finite set of states O with |a〉 , |b〉 ∈ O such that there is no
Boolean frame function p on O unless p(|a〉) = p(|b〉) = 0.
A consequence of this principle is that there is no Boolean
frame function p on O such that p(|a〉) = 1. From the
logical indeterminacy principle we can deduce the Kochen-
Specker theorem by identifying each state with the observable
projecting onto it, as a Boolean frame function simply gives a
noncontextual value-definite yes-no value assignment, so (2)
is satisfied.

As noted by Hrushovski and Pitowsky [5], the logical
indeterminacy principle is stronger than the Kochen-Specker
theorem because the result is true for arbitrary frame functions
that can take any value in the unit interval [0,1], but are
restricted to Boolean values for |a〉 , |b〉. In fact, we may
be tempted to use the logical indeterminacy principle to
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locate a value-indefinite observable. Indeed, if we fix p and
choose |a〉 ∈ R3 such that p(|a〉) = 1, then, by the logical
indeterminacy principle, for every distinct nonorthogonal unit
vector |b〉 ∈ R3 it is impossible to have p(|b〉) = 1 and
p(|b〉) = 0; hence one could be inclined to conclude that the
observable projecting onto |b〉 is value indefinite. However,
such reasoning would be incorrect because if p(|b〉) were 1,
then the logical indeterminacy principle merely concludes that
p does not exist; the same conclusion is obtained if p(|b〉) were
0. Hence, in both cases p does not exist, so it makes no sense
to talk about its values, in particular, about p(|b〉). [Pointedly
stated, from a physical viewpoint, p(|a〉) as well as p(|b〉)
could take on any of the four combinations of definite values,
provided that (1) or (2) is violated for some other observable
in O. Nevertheless, as we shall demonstrate in Sec. V, using
the formalism of [3], all observables in O except |a〉 and those
commuting with |a〉 are indeed provable value indefinite.] This
means that using the logical indeterminacy principle we get
the same global information derived in the Kochen-Specker
theorem, namely, that some observable in O has to be value
indefinite, and no more. The reason for this limitation is the
use of frame functions, which by definition must be defined
everywhere: They can model local value definiteness, but not
local value indefiniteness, which, as in the Kochen-Specker
theorem, emerges only as a global phenomenon.

III. VALUE INDEFINITENESS AND CONTEXTUALITY

To remedy the above deficiency we will use the formalism
proposed in [3] for pure quantum states. Specifically, we define
value (in)definiteness and contextuality in the framework of
quantum logic of Birkhoff and von Neumann [6,7] and Kochen
and Specker [8,9].

Projection operators projecting onto the linear subspace
spanned by a nonzero vector |ψ〉 will be denoted by Pψ =
(|ψ〉〈ψ |)/〈ψ |ψ〉. Let O = {Pψ1 ,Pψ2 , . . . } be a nonempty set
of projection observables in the n-dimensional Hilbert space
Rn. A context C = {P1,P2, . . . ,Pn} is a set of n orthogo-
nal and thus compatible (i.e., simultaneously comeasurable)
projection observables from O. In quantum mechanics this
means that the observables in C are pairwise commuting. In
general, the result of a measurement may depend not just on
the observable measured but also on the context it is measured
in. We represent the fact that the measurement of an observable
o measured in the context C may be predetermined (e.g., by
a hidden-variable theory) by a value assignment function that
assigns the value v(o,C) ∈ {0,1} to this observable if it is pre-
determined. If the result is not predetermined the value v(o,C)
is undefined. Formally this means that v is in general a partial
function. Accordingly, we adopt the convention that v(o,C) =
v(o′,C ′) if and only if v(o,C) and v(o′,C ′) are both defined
and take equal values. In what follows, this value assignment
function will allow us to formalize the necessary notions of
admissibility, value definiteness, and noncontextuality.

To agree with the predictions of quantum mechanics,
which place certain relations between the values assigned
to observables (in any context C), we need to work with a
class of value assignment functions called admissible: They
are value assignment functions v that satisfy the following
two properties: (i) If there exists an observable o in C with

v(o,C) = 1, then v(o′,C) = 0 for all other observables o′ in C

and (ii) if there exists an observable o in C such that for all
other observables o′ in C v(o′,C) = 0, then v(o,C) = 1.

Value definiteness formalizes the notion that the result of a
measurement (in a particular context) may be predetermined.
For a given value assignment function v, an observable o in the
context C is value definite in C if v(o,C) is defined; otherwise
o is value indefinite in C. If o is value definite in all contexts
then we simply say that o is value definite.

Noncontextuality corresponds to the classical notion that
the value obtained via measurement is independent of other
compatible observables measured alongside it. An observable
o is noncontextual if for all contexts C,C ′ we have v(o,C) =
v(o,C ′); otherwise, v is contextual. The set of observables O

is noncontextual if every observable o ∈ O is noncontextual;
otherwise, the set of observables O is contextual. (Here the
term contextual means that the outcome of a measurement
either exists but is context dependent, or it is value indefinite.)

Our definitions of both value definiteness and noncontex-
tually are formulated in a very flexible sense. They allow
us to specify individual value (in)definite observables and
only require observables that are value definite to behave
noncontextually. This technicality is critical in the ability to
localize the Kochen-Specker theorem.

IV. STRONG KOCHEN-SPECKER THEOREM

The incompatibility between the assumptions (1) and (2) is
not maximal in the following sense: For any set of observables
there exists an admissible assignment function under which the
set of observables is value definite and at least one observable
is noncontextual. This shows that not all observables need to
be value indefinite [3] because for every pure quantum state at
least the propositions associated with the state preparation are
certain and thus value definite.

However, there always exist pairs of observables such that,
if one of them is assigned the value 1 by an admissible
assignment function under which O is noncontextual, the other
must be value indefinite. This result is deduced in [3] using the
weaker assumption that not all observables are assumed to be
value definite, formally expressed by the admissibility of v. In
particular, an observable is deduced to be value definite only
when the values of other commuting value-definite observables
require it to be so.

The theorem derived in Ref. [3], henceforth called the
strong Kochen-Specker theorem, can be used to locate a
provable value-indefinite observable that when measured
produces a quantum random bit, which is guaranteed to be
produced by a value-indefinite observable under some physical
assumptions: Let |a〉 , |b〉 ∈ R3 be unit vectors such that√

5
14 � |〈a|b〉| � 3√

14
. Then there exists a set of 24 projection

observables O containing Pa = |a〉 〈a| and Pb = |b〉 〈b| such
that there is no admissible assignment function under which
O is noncontextual, Pa has the value 1, and Pb is value
definite.

V. HOW WIDESPREAD IS VALUE INDEFINITENESS?

Assuming that an observable Pa is predetermined to have
the value 1, then from the strong Kochen-Specker theorem we
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know that we can explicitly identify an observable Pb that is
provable value indefinite relative to the assumptions (mainly
admissibility and noncontextuality). In this section we address
the following question: Which of the remaining observables
Pb can be proven to be value indefinite? We prove here the
following answer: Only observables that commute with Pa

can be value definite.
Specifically, we prove the following more general extended

Kochen-Specker theorem, which increases the scope of the
strong Kochen-Specker theorem to cover the rest of the state
space:

Theorem. Let |a〉 , |b〉 ∈ R3 be neither orthogonal nor
parallel unit vectors, i.e., 0 < |〈a|b〉| < 1. Then there exists
a set of projection observables O containing Pa = |a〉 〈a|
and Pb = |b〉 〈b| such that there is no admissible assignment
function under which O is noncontextual, Pa has the value
1, and Pb is value definite. The set O is finite and can be
effectively constructed.

While this result is similar in form to the original Kochen-
Specker theorem, the subtle differences are critical. As
mentioned previously, the Kochen-Specker theorem is unable
to locate value definiteness. Because if Pa has the value 1,
we cannot conclude that Pb is value indefinite, even if we
can show that any two-valued assignment leads to a complete
contradiction. This is due to the fact that this contradiction
implies only that no global assignment function can exist; the
Kochen-Specker theorem does not show that Pb could not be
value definite, while some other Pc harbors the (necessary)
value indefiniteness.

On the other hand, the sets of observables given in the
proofs of the stronger form of the Kochen-Specker theorem
presented here are carefully constructed such that any attempt
to place the value indefiniteness on a Pc necessarily contradicts
the admissibility of v . For example, it would require a context
containing an observable assigned the value 1 and another
observable being value indefinite. This contradicts both the
admissibility of v and the physical understanding of what it
means for that observable to be assigned the value 1, since
we know measuring that observable will give the value 1,
measuring the other observables must give the value 0, and
hence the other observables are necessarily value definite.
As a result, we are forced to conclude that Pb itself is value
indefinite.

In order to prove the strong Kochen-Specker theorem, in
Ref. [3] a specific proof for the case |〈a|b〉| = 3√

14
was given,

followed by a reduction to this proof for the case |〈a|b〉| < 3√
14

.

Here we prove that this theorem can be extended for all cases by
reducing the remaining case of |〈a|b〉| > 3√

14
to the existing

result. This reduction is more subtle and difficult than the
first one.

For the purpose of illustrating the reduction technique, let
us state the following reduction lemma (derived in Ref. [3]),
which will also turn out to be important for the reduction we
will present later:

Lemma. Given any two unit vectors |a〉 , |b〉 with 0 <

|〈a|b〉| < 1 and an x such that |〈a|b〉| < |x| < 1, there exist
a unit vector |c〉 with 〈a|c〉 = x and a set of observables
O containing Pa = |a〉 〈a|, Pb = |b〉 〈b|, Pc = |c〉 〈c| such
that if Pa and Pb have the value 1, then Pc also has

C2

C3

C1

Pa

Pb

Pα Pβ
Pc

FIG. 1. (Color online) Greechie orthogonality diagram with an
overlaid value assignment that illustrates the reduction in the
reduction lemma. The circles and squares represent observables that
will be given the values 0 and 1, respectively. They are joined by
smooth lines, which represent contexts.

the value 1 under any admissible noncontextual assignment
function on O. Furthermore, if we choose our basis such
that |a〉 ≡ (1,0,0) and |b〉 ≡ (p,q,0), where p = 〈a|b〉 and
q =

√
1 − p2, then |c〉 has the form |c〉 = (x,y, ± z), where

x = 〈a|c〉, y = p(1 − x2)/qx, and z =
√

1 − x2 − y2.
This lemma is illustrated in Fig. 1 and constitutes a simple

forcing of value definiteness: Given Pa and Pb both with the
value 1, there is a Pc that is closer (i.e., at a smaller angle of
our choosing) to Pa that forces Pc to also take the value 1.

This reduction, however, requires necessarily that |x| > |p|
and finding a reduction to force in the other direction (i.e.
towards larger angles between Pa and Pc) is difficult. Here
we present an argument for this case in what henceforth will
be called the iterated reduction lemma: Given any two unit
vectors |a〉 , |b〉 with 3√

14
< 〈a|b〉 < 1, there exist a unit vector

|c〉 with 〈a|c〉 � 3√
14

and a set of observables O containing
Pa = |a〉 〈a|, Pb = |b〉 〈b|, Pc = |c〉 〈c| such that if Pa and
Pb have the value 1, then Pc also has the value 1 under any
admissible noncontextual assignment function on O.

The proof of this lemma is based on the generalization of
a specific reduction for the case of 〈a|b〉 = 1√

2
to 〈a|c〉 = 1√

3
;

that is, it is a forcing argument in the required direction. The
Greechie diagram for this is depicted in Fig. 2. In essence, this
figure consists of three copies of the reduction shown in Fig. 1
glued together, ensuring that the Greechie diagram is indeed
realizable. Specifically, the important relations are 〈a|v1〉 =√

2
3 , 〈a|v2〉 = 2√

5
, 〈b|c〉 =

√
2
3 , and 〈b|v2〉 =

√
2
5 . The angles

between unit vectors in this proof are then scaled, in a way
that we will soon make precise, to fit the required 〈a|b〉 for the
general case. However, since this does not allow us to assert
that an arbitrary |c〉 must have the value 1 in the same way
we could using the reduction lemma, this reduction is then
iterated a finite number of times until a sufficiently small 〈a|c〉
is obtained.
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Pa Pb

Pc

Pv1

Pv2

FIG. 2. (Color online) Greechie orthogonality diagram with an
overlaid value assignment that illustrates the reduction in the iterated
reduction lemma.

Let us now formally prove the iterated reduction lemma.
The constants that will be used for scaling, obtained from the
reduction shown in Fig. 2, are as follows:

α1 =
arccos

√
2
3

arccos 1√
2

, α2 =
arccos 2√

5

arccos
√

2
3

, α3 =
arccos

√
2
3

arccos
√

2
5

.

Given the initial |a〉, |b〉, and the above constants, we thus
make use of the following scaled angles between the relevant
observables:

θa,b = arccos〈a|b〉, θa,v1 = α1θa,b, θa,v2 = α2θa,v1 .

Once |v2〉 is determined via the procedure to follow, we take
the following:

θb,v2 = arccos〈b|v2〉, θb,c = α3θb,v2 .

Without loss of generality, let |a〉 = (1,0,0) and |b〉 =
(p1,q1,0) where p1 = 〈a|b〉 and q1 =

√
1 − p2

1. This fixes
our basis for the rest of the reduction. We want to have |v1〉
such that 〈a|v1〉 = x1 = cos θa,v1 . From the reduction lemma
we know this is possible since x1 > p1 (because α1 < 1)
and we have |v1〉 = (x1,y1,z1), y1 = p1(1 − x2

1 )/q1x1, and

z1 =
√

1 − x2
1 − y2

1 .
We now want |v2〉 such that 〈a|v2〉 = x2 = cos θa,v2 (this

is possible since α2 < 1). In order to use the same general
form (specified in the reduction lemma) as above, we perform
a change of basis to bring |v1〉 into the xy plane, describe
|v2〉 in this basis using the above result, and then perform the
inverse change of basis. Our new basis vectors are given by
|e2〉 = (1,0,0),

|f2〉 = (|v1〉 − x1 |e2〉)/q2 = (0,y1/q2,z1/q2),

where q2 =
√

1 − x2
1 , and |g2〉 = |e2〉 × |f2〉 =

(0,z1/q2,−y1/q2). We thus have the transformation matrix

T2 =
⎛
⎝1 0 0

0 y1/q2 z1/q2

0 z1/q2 −y1/q2

⎞
⎠.

We can now put y2 = x1(1 − x2
2 )/q2x2 and z2 =√

1 − x2
2 − y2

2 so that in our original basis we have

|v2〉 = T1(x2,y2, − z2)t =
(

x2,
y1y2 − z1z2

q2
,
y2z1 + y1z2

q2

)
.

We note at this point that the constant θb,v2 is now determined
and we have

〈b|v2〉 = p1x2 + q1

q2
(y1y2 − z1z2).

For the last iteration of the reduction, we want to find |c〉
such that 〈b|c〉 = x3 = cos θb,c (again this will be possible

since α3 < 1). Let p3 = 〈b|v2〉 and q3 =
√

1 − p2
3. Again

we perform a basis transformation; we have |e3〉 = |b〉 =
(p1,q1,0),

|f3〉 = (|v2〉 − p3 |b〉)/k = (x2 − p3p1,

(y1y2 − z1z2)/q2 − p3q1,(y2z1 + y1z2)/q2)/k,

where k is a constant such that |f3〉 is normalized, and

|g3〉 = |e3〉 × |f3〉 =
(

q1

q2
(y2z1 + y1z2),

−p1

q2
(y2z1 + y1z2),

p1

q2
(y1y2 − z1z2) − q1x2

)/
k.

The transformation matrix is then given by

T3 =

⎛
⎜⎝

p1
x2−p3p1

k

q1(y2z1+y1z2)
q2k

q1
y1y2−z1z2−p3q1q2

q2k

−p1(y2z1+y1z2)
q2k

0 y2z1+y1z2

q2k

p1(y1y2−z1z2)−x2q1q2

q2k

⎞
⎟⎠.

We now put y3 = p3(1 − x2
3 )/q3x3 and z3 =

√
1 − x2

3 − y2
3 so

that in the original basis we have

|c〉 =T3(x3,y3, − z3)t

=
(

x3p1 + y3

k
(x2 − p1p3) − q1z3

kq2
(y2z1 + y1z2),

x3q1+ y3

kq2
(y1y2 − z1z2 − p3q1q2)+z3p1

kq2
(y2z1 + y1z2),

y3

kq2
(y2z1 + y1z2)−z3

k

[
p1

q2
(y1y2 − z1z2) − q1x2

])
.

Note that only the first term is of importance in the above
expression. Specifically, we want to prove that 〈a|c〉 <

〈a|b〉 = p1, where

〈a|c〉 = x3p1 + y3

k
(x2 − p1p3) − q1z3

kq2
(y2z1 + y1z2).

The product 〈a|c〉 is, with appropriate substitutions, a function
of one variable, p1; let us define f (p1) = 〈a|c〉. We thus need
to determine if, for p1 ∈ ( 3√

14
,1), the inequality f (p1) < p1

holds.
We note that f (p1) is well behaved and continuous on this

domain and limp1→1− f (p1) = 1, hence using a combination
of direct analysis and symbolic calculation [10] and plots, we
show that the inequality is indeed true. Further details of the
analysis are given in the Appendix.
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0.95

1.00

p1

FIG. 3. (Color online) Plot of p1 (dashed red line) and f (p1)
(solid blue line) for p1 ∈ (0.8,1) ⊃ ( 3√

14
,1).

Using symbolic calculation [10] for a Taylor-series ex-
pansion around p1 = 1, we find that for small |p1 − 1|,
f (p1) = 1 − m(1 − p1), where m ≈ 1.27 is a constant. Hence
limp1→1− f (p1) = 1 as claimed and for some ε > 0 we have
f (p1) < p1 for p1 ∈ (1 − ε,1). Further, the continuity of f

on this domain can be guaranteed by noting that f (p1) is
simply composed of trigonometric functions with arguments
from (−1,1) \ {0}; since these are all continuous, so is f .
From Fig. 3 and the above results it follows that to prove
the inequality f (p1) < p1 for all p1 ∈ ( 3√

14
,1) we need to

show that for no p1 → 1 [which implies f (p1) → p1] we have
f (p1) > p1. Since we know from the Taylor-series expansion
that f (p1) < p1 in the neighborhood of p1 = 1, if for some
p′

1 ∈ ( 3√
14

,1) we were to have f (p′
1) > p′

1, then for some p′′
1

we must have d
dp1

f (p′′
1 ) < 1, which is false (see Fig. 4).

0.80 0.85 0.90 0.95 1.00
1.0

1.1

1.2

1.3

1.4

1.5

p1

d
f

d
p 1

FIG. 4. (Color online) Plot of df

dp1
for p1 ∈ (0.8,1) ⊃ ( 3√

14
,1).

From Fig. 3 [and also from the fact that the derivative of
f (p1) > 1] it also follows that the difference p1 − f (p1) is
strictly decreasing with p1 on ( 3√

14
,1) ⊂ (0.8,1). Thus, for

large enough (but finite) k, f k(p1) � 3√
14

and the projector
Pck

must be assigned the value 1 by v. This completes the
proof.

The proof of the extended Kochen-Specker theorem follows
rather straightforwardly from the iterated reduction lemma
as follows. If 0 < |〈a|b〉| < 3√

14
, we can appeal simply to

the strong Kochen-Specker theorem, so let 3√
14

< |〈a|b〉| < 1.
Without loss of generality, we can assume that 〈a|b〉 ∈ (0,1),
since Pb = Pαb for α ∈ Rwith |α| = 1, so the set of projection
observables O obtained under this assumption will give the
required result for the general case.

Let us assume, for the sake of contradiction, that such
an admissible assignment function v exists for all sets of
observables O, i.e., v(Pa,Ca) = 1 and v(Pb,Cb) is defined for
all Ca,Cb with Pa ∈ Ca and Pb ∈ Ca . [Since v is required to
be noncontextual, we will omit the context and write v(Pa,·)
for simplicity.] Then, for all such contexts, if v(Pb,·) = 1,
then by the iterated reduction lemma, there exists a |c〉 with
〈a|c〉 � 3√

14
such that v(Pc,·) = 1. However, this contradicts

the strong Kochen-Specker theorem. Hence, if Pb is to be value
definite we must have v(Pb,·) = 0. However, we show that this
also leads to a contradiction as follows.

Let p = 〈a|b〉 and q =
√

1 − p2. We construct an or-
thonormal basis in which |a〉 ≡ (1,0,0) and |b〉 ≡ (p,q,0).
Define |α〉 ≡ (0,1,0), |β〉 ≡ (0,0,1), and |c〉 ≡ (q, − p,0).
Then {|a〉 , |α〉 , |β〉} and {|b〉 , |c〉 , |β〉} are orthonormal bases
for R3, so we can define the contexts C1 = {Pa,Pα,Pβ}
and C2 = {Pb,Pc,Pβ}. Since v(Pa,C1) = 1, we must have
v(Pβ,C1) = v(Pβ,C2) = 0 by the admissibility of v. However,
since, by assumption, v(Pb,C2) = 0, we must have v(Pc,C2) =
1. However, this also contradicts the strong Kochen-Specker
theorem since it is easily seen that

0 < 〈a|c〉 = q =
√

1 − p2 <

√
5

14
<

3√
14

.

Hence, we conclude that Pb must be value indefinite under v.
This then completes the proof of the extended Kochen-Specker
theorem.

We are now able to answer, in a measure-theoretic way,
the question posed in the title of this section: The set of
value-indefinite observables has Lebesgue measure one in R3.
The proof starts by noting that the set of value-indefinite
observables depends on an arbitrarily fixed single vector,
say, |a〉 ∈ R3. Assume that Pa has a definite value (1 or
0). According to the extended Kochen-Specker theorem, no
observable outside the union of the linear subspaces spanned
by either the single vector Pa (dimension 1) or the plane
orthogonal to this vector {Pb|〈Pa|Pb〉 = 0} (dimension 2) is
value definite. This set has Lebesgue measure zero in R3

because any subset of R3 whose dimension is smaller than
3 has Lebesgue measure zero in R3. This completes the proof.

In terms of unit vectors, the set in the above proof
corresponds to the set {(1,0,0),(0,0,0)} ∪ {(0,x,y)|x2 + y2 =
1} on the three-dimensional unit sphere, consisting of (i) a
single point of dimension zero and (ii) a great circle of
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dimension one. Again this set has Lebesgue measure zero
on the unit sphere.

VI. FINAL COMMENTS

One could put our findings in the following perspective. In
response to Bell- as well as Kochen-Specker- and Greenberger-
Horne-Zeilinger-type theorems, the quantum realists—among
them Bell suggesting that [11] “the result of an observation
may reasonably depend . . . on the complete disposition of the
apparatus”—have been inclined to adopt contextual value defi-
niteness in order to save a kind of contextual reality. Contextual
reality claims that all measurable properties exist, regardless
of whether they are actually measured or are counterfactuals,
albeit these properties may be context dependent. In this way
one could still maintain the existence of some real (though
counterfactual context-dependent) physical property.

While one can probably never rule out such a (necessarily
nonlocal) contextual reality, our results explore the full extent
of value indefiniteness. It is this formalized notion of quantum
indeterminism that can be a crucial element of quantum
information theory, particularly cryptography and random
number generation.

One immediate result of the above findings is that, if one
insists on the type of noncontextuality formalized by admissi-
ble assignments, then value definiteness cannot exist outside
of a star-shaped configuration in Greechie-type orthogonality
diagrams. It is important to note that this form of noncontextu-
ality is weak in the sense that it is only required to apply locally
when a definite value is assigned. Thereby, no holistic frame
function on all quantum observables need to be assumed.

Let us be more specific what is meant by the “star(-shaped)”
configuration of a quantum state |ψ〉. We consider a quantum
system prepared in a state corresponding to the proposition that
a particular detector Dψ clicks among, say, three mutual exclu-
sive detectors (corresponding to a three-dimensional Hilbert-
space quantum model). Such a state can be formalized by a
projector Pψ = |ψ〉〈ψ | or, equivalently, by the linear subspace
spanned by the normalized vector |ψ〉 (together maybe with the
other two orthonormal vectors to |ψ〉 and to each other). Now,
if a quantum state |ψ〉 is prepared such that the detector Dψ

clicks, that corresponds to assigning |ψ〉 the value v(Pψ,·) =
1. The |ψ〉’s star is formed by taking some or all vectors
|ϕ〉 whose value assignments are consistent with v(Pψ,·) = 1.
These are value assignments v(Pϕ,·) = 0, with |ϕ〉 orthog-
onal to |ψ〉, that is, 〈ϕ|ψ〉 = 0. Such potential observables
|ϕ〉〈ϕ| are thus value definite. As they correspond to vectors
orthogonal to |ψ〉, they are, diagrammatically (i.e., in terms of
Greechie orthogonality diagrams) speaking, in |ψ〉’s star.

All other conceivable observables corresponding to vectors
outside of |ψ〉’s star remain value indefinite relative to our
assumptions. The configuration can be represented by the
Greechie orthogonality diagram depicted in Fig. 5(a). This
finding is consistent with the Heisenberg uncertainty relations
and quantum complementarity. Note that this still allows the
value-definite existence of a continuum of contexts (meaning
that all observables therein are value definite) interlinked at
|ψ〉, but on a set of Lebesgue measure zero.

One could be inclined to go one step further and conjecture
that there does not exist any value-definite observable outside

C1
C2

C3

C5C6

C7

C4
|ψ

C1
C2

C3

C5

(a) (b)

C6

C7

C4
|ψ

FIG. 5. Greechie orthogonality diagram of a star-shaped config-
uration, representing a common detector observable |ψ〉〈ψ | with
an overlaid two-valued assignment reflecting v(Pψ,·) = 1. (a) All
branches corresponding to contexts are assumed to be equally value
definite. (b) It is assumed that, since the system is prepared in, say,
context C4, depicted by a block colored in thick filled black, only
this context is value definite; all the other (continuity of) contexts are
“phantom contexts” colored in gray.

of a single context [12]. This context is defined by the prepa-
ration of the state: It consists of the observable corresponding
to |ψ〉, as well as of the two other orthogonal projectors
associated with the two idle detectors that do not click if Dψ

clicks. The configuration can be represented by the Greechie
orthogonality diagram depicted in Fig. 5(b). This conjecture is
strictly speculative with respect to quantum mechanics because
with our assumptions it seems that one cannot prove the sole
existence of just one unique context among the continuum of
context forming |ψ〉’s star.
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APPENDIX: FURTHER DETAILS AND CODE OF
ANALYSIS OF f ( p1)

The proof of the iterated reduction lemma relies critically
on the analysis of the function f (p1) = 〈a|c〉 for p1 ∈ ( 3√

14
,1).

Here we give further details of this analysis, which was carried
out using Wolfram MATHEMATICA 9.0.1.0. Specifically, we
have

f (p1) = 〈a|c〉=x3p1+y3

k
(x2 − p1p3)−q1z3

kq2
(y2z1 + y1z2),
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where the constants are defined in terms of p1 as follows:

α1 =
arccos

√
2
3

arccos 1√
2

, α2 =
arccos 2√

5

arccos
√

2
3

, α3 =
arccos

√
2
3

arccos
√

2
5

,

θa,b = arccos p1, θa,v1 = α1θa,b, θa,v2 = α2θa,v1 ,

q1 =
√

1 − p2
1, x1 = cos θa,v1 , y1 = p1

(
1 − x2

1

)
q1x1

,z1 =
√

1 − x2
1 − y2

1 ,

q2 =
√

1 − x2
1 , x2 = cos θa,v2 , y2 = x1

(
1 − x2

2

)
q2x2

, z2 =
√

1 − x2
2 − y2

2 ,

p3 = p1x2 + q1
y1y2 − z1z2

q2
, θb,v2 = arccos p3, θb,c = α3θb,v2 ,

q3 =
√

1 − p2
3, x3 = cos θb,c, y3 = p3

(
1 − x2

3

)
q3x3

, z3 =
√

1 − x2
3 − y2

3 ,

k =
√

(x2 − p3p1)2 +
(

(y1y2 − z1z2)

q2
− p3q1

)2

+
(

y2z1 + y1z2

q2

)2

.

The MATHEMATICA code used for the analysis (available in [13]) uses these constants and the form of f (p1) to give the following
Taylor expansion of f at p1 = 1, showing the behavior of f (p1) as p1 → 1 from below. It also calculates the derivative that is
used to generate Fig. 4,

f (p1) = 1 + (p1 − 1)

π2 arccos2
√

2
5

(
π2

(
arccos2

√
2

5
+ arcosh2

√
2

3

)

+ 8 arccos
2√
5

{
arccos

2√
5

[
2 arccos2

√
2

3

+
√√√√(

π2 + 16 arcosh2

√
2

3

)(
arccos2

√
2

5
+ arcosh2

√
2

3

)⎤
⎦ + 4 arccos

√
2

3

×
√√√√(

arccos2

√
2

5
+ arcosh2

√
2

3

)(
arccos2

√
2

3
+ arcosh2 2√

5

)⎫⎬
⎭

⎞
⎠

+ O[(p1 − 1)2],

which numerically simplifies to

f (p1) = 1 − 1.2658(1 − p1) + O[(p1 − 1)2].
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