
February 20, 2013 8:45 WSPC/INSTRUCTION FILE PNP

Parallel Processing Letters
c© World Scientific Publishing Company

INDUCTIVE COMPLEXITY OF THE P VERSUS NP PROBLEM∗

CRISTIAN S. CALUDE†

Department of Computer Science, University of Auckland, Auckland, and New Zealand
Isaac Newton Institute for Mathematical Sciences, Cambridge, United Kingdom

cristian@cs.auckland.ac.nz

ELENA CALUDE

Institute of Natural and Mathematical Sciences, Massey University at Auckland, New Zealand

e.calude@massey.ac.nz

and

MELISSA S. QUEEN‡

Department of Computer Science, University of Auckland, Auckland, New Zealand

Dartmouth College, New Hampshire, USA
melissa.s.queen.13@dartmouth.edu

Received October 2012

Revised February 2013
Publsihed

Communicated by S. Akl

ABSTRACT

This paper does not propose a solution, not even a new possible attack, to the P versus

NP problem. We are asking the simpler question: How “complex” is the P versus NP

problem? Using the inductive complexity measure—a measure based on computations
run by inductive register machines of various orders—developed in [2], we determine an

upper bound on the inductive complexity of second order of the P versus NP problem.
From this point of view, the P versus NP problem is significantly more complex than
the Riemann hypothesis. To date, the P versus NP problem and the Goostein theorem

(which is unprovable in Peano Arithmetic) are the most complex mathematical state-
ments (theorems, conjectures and problems) studied in this framework [9, 5, 6, 2, 20].
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1. A class of complexity measures

Mathematics is built upon theorems, conjectures and problems both open and re-

solved. Some problems intuitively seem highly complex, and have perhaps eluded

solution for centuries. Others appear to be less complicated. We would like to be able

to quantitatively capture this complexity, and thus be able to compare conjectures

from vastly different fields of mathematics. One possible scale we can use has been

developed in [9, 5, 6, 2, 8] and applied to different problems in [7, 10, 12, 13, 17]. This

method considers the most intuitive way to solve a problem, a brute-force search

for a counter-example to the claim. If the conjecture is false, a counter-example will

eventually be found. But if a conjecture is true, the search will run on forever. If

we could somehow determine ahead of time if the search will run forever, we would

be able to prove the conjecture is true. Unfortunately, this equates to solving the

halting problem, which is known to be undecidable. But not all is lost, since we

are not actually trying to solve all mathematical conjectures, but rather to compare

some of them: indeed, we wish to be able to compare conjectures regardless of their

true/false or proven/unproven status.

For this aim we will use a more powerful model of computation than the Turing

machine, the inductive computation. The search for a counter-example can be coded

into a program, and the program can carefully be encoded into a string of ones

and zeroes. Thus for some mathematical conjectures we can create a string of bits

(along with an explanation of how to unambiguously read off the program) and say

‘if this program halts, the conjecture is false; if it does not halt, the conjecture is

true’. It naturally follows that some conjectures can be ‘encoded’ into bits more

simply than others; these conjectures will be considered of low complexity. More

complicated conjectures may take a large program and a huge number of bits; these

programs are considered to have high complexity. Time complexity plays no role in

this analysis.

Although the results we obtain may shed new light on the statements we analyse,

they are not intended to solve the problems expressed by those statements, nor to

predict how easy/difficult could be to find their solutions.

2. The P versus NP problem

The processing power of computers has grown—and continues to grow—incredibly

quickly, and computer-users have become accustomed to newer and faster computers

continually being released on the market. In such an environment, it might seem like

there is no bound to the size and type of problems that computers can solve—and

even if a program runs slowly on today’s computers, surely in a few years it will

be zipping along on the faster computers of the future. Unfortunately, this is not

the case. The problem lies in the asymptotic behaviour of certain algorithms, i.e.

their behaviour when the problem instance size gets very large. It makes sense that

the larger a problem input size, the longer it takes to solve it, but in some cases

the needed time grows faster than we will ever be able to account for with faster
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computers. The usual solution is to simply find a faster, more efficient algorithm.

But for a large class of problems, many of them of critical practical significance,

no efficient algorithms have been found. This class is called NP (nondeterministic

polynomial), while the class of problems that are known to have efficient algorithms

is called P (deterministic polynomial, or, simply, polynomial).

Furthermore, there exists a set of NP problems, called NP-complete, which if

one could figure out how to solve just one of them in polynomial-time then we could

solve all of them in polynomial-time. In asking the question ‘Does P=NP?’ we are

asking if it is possible to solve all NP problems in polynomial-time, or equivalently,

if it is possible to solve an NP-complete problem in polynomial-time.

As a concrete example, we present the NP-complete problem used in our pro-

gram: the subset-sum problem [16] (subsection 35.5: The subset-sum problem). This

problem starts with a collection of numbers, and a target number—an instance of

the problem—and asks the question: Does some subset of our collection add up to

equal the target? In small instance sizes this is simple. For example, we can easily

check that no subset of (1,2,5) adds up to 4, or that there is a subset of (1,2,5,8)

that adds to 7 (namely, 2 and 5). But as the instance size gets larger, the num-

ber of possible subsets grows exponentially, and it takes exponential time to check

every subset. The brute-force algorithm for solving the subset-sum problem cycles

through all subsets of N numbers and, for every one of them, checks if the subset

sums to the right number. The running-time is of order O(N · 2N ), since there are

2N subsets and, to check each subset, we need to sum at most N elements. A faster

algorithm proposed by Horowitz and Sahni [21] runs in time O(2N/2). If one could

show that there is some algorithm that solves every possible instance of subset-sum

in polynomial-time, then we would show that P=NP.

The P versus NP problem, formulated independently by Cook [14] and

Levin [24], is considered to be one of the most challenging open problems in math-

ematics. The Clay Mathematics Institute will award a prize of $1.000.000 for its

first correct solution, [28]. A constructive proof for P = NP based on an efficient

simulation would have significant practical consequences; a proof for P 6= NP (which

is widely believed to be the case) would lack practical computational benefits, but

would have important theoretical value.

With decades of research dedicated to its resolution, substantial insight was ob-

tained: see more in the official Clay Mathematics Institute presentation of the prob-

lem by Cook [15], the papers by Fortnow [18] and Mulmuley [26], Moore-Mertens

book [25] (Chapter 6, The Deep Question: P vs NP), and Wöginger’s webpage [30].

The use of parallel computers instead of sequential computers does not help

because if a problem requires exponential time to be solved on a sequential com-

puter, every parallel computer with finite number of processors solving it runs also

in exponential time since the speed-up can be only by a constant factor (e.g. the

number of processors). The above result is not “absolute”, i.e. it depends on the ge-

ometry of the space where the computation is run. More precisely, the above result

is true in case the real time-space is Euclidean, and the reason is that the volume
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of a sphere of radius r is a polynomial in r, O(r3). If the real time-space is hyper-

bolic, the volume of the sphere grows exponentially with r, and this growth can be

exploited to dramatically speed-up parallel computations, hence the possibility to

solve NP–hard problems in polynomial time. For more details see [23].

Is the polynomial-time algorithm the “correct” mathematical model for feasible

computation? An affirmative answer is provided by Cobham’s thesis which states

that “P” means easy while “the complement of P” means hard. Is Cobham’s thesis as

“credible” as the Church-Turing thesis, which deals with computability in principle,

i.e. by disregarding resources? According to Davis [22] (p. 568–569) the answer is

negativea. In fact, we believe that the concept of feasible computation like the

concept of randomness are paradoxical (blind spots in the terminology of [3]): they

cannot be grasped in finite words. More precisely, we conjecture that there is no good

mathematical model for feasible computation. From this perspective, the P versus

NP problem is less a computer science problem than a mathematical one.

3. Goal

By measuring the complexity of the P versus NP problem we hope to shine a little

more light on the problem; certainly, this is not an attempt to solve it. To do

this, we have developed an inductive register machine program that searches for a

counter-example to the claim that “P 6= NP”. This counter-example would be a

program that runs in polynomial-time for all instances of the subset-sum problem,

our choice of NP-complete problem. The register machine program has a prefix-free

binary encoding, and the length of this string determines an upper bound of the

complexity class of the P versus NP problem.

4. Method

The register machine language we use is a refinement, constructed in [6], of the

language in [9]; see also [17]. The register machine language is simple and minimal

(each instruction is essential; no instruction can be reduced to a combination of the

other instructions). It consists of the following instructions:

= R1,R2,R3 If the content of R1 and R2 are equal, then the execution con-

tinues at the R3rd instruction of the program. If the contents of R1 and R2 are not

equal, then execution continues with the next instruction in sequence.

& R1,R2 The content of register R1 is replaced by R2.

aIn the discussions following J. Hartmanis’ invited lecture Turing Machine Inspired Computer Sci-
ence Results, CiE2012, 22 June 2012, http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/
Content/abstracts/juris.html, M. Davis asked the question he posed the speaker about 30 years

ago: “How would you feel if P=NP with a polynomial of degree 100?” Hartmanis’ original answer

was: “God cannot be so cruel!”.

http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Content/abstracts/juris.html
http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Content/abstracts/juris.html
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+ R1,R2 The content of register R1 is replaced by the sum of the contents of

R1 and R2.

! R1 One bit is read into the register R1, so the content of R1 becomes either 0

or 1. Any attempt to read past the last data-bit results in a run-time error.

% This is the last instruction for each register machine program before the input

data. It halts the execution in two possible states: either successfully halts or it

halts with an under-read error.

A register machine program is a finite list of these instructions. It is allowed

access to an arbitrary number of registers, and each register can hold an arbitrar-

ily large positive integer. The prefix free binary encoding of these instructions is

discussed in detail in [5, 6], and briefly below.

Each instruction has its own binary op-code, registers names are encoded as the

string code1 = {0|x|1x, x ∈ {0, 1}∗} and literals are encoded code2 = {1|x|0x, x ∈
{0, 1}∗}. Some instructions can take registers or literals, but this encoding gives an

unambiguous distinction between the two options. The encodings are summarised

below:

(1) & R1,R2 is coded in two different ways depending on R2: 01code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.

(2) + R1,R2 is coded in two different ways depending on

R2: 111code1(R1)codei(R2), where i = 1 if R2 is a register and i = 2 if R2

is an integer.

(3) = R1,R2,R3 is coded in four different ways depending on the data types of R2

and R3: 00code1(R1)codei(R2)codej(R3), where i = 1 if R2 is a register and

i = 2 if R2 is an integer, j = 1 if R3 is a register and j = 2 if R3 is an integer.

(4) !R1 is coded by 110code1(R1).

(5) % is coded by 100.

Programs often need to execute the same operations many different times, and it

is convenient to create routines for these operations. Routines that our program uses

include MUL (multiply), POW (power/exponentiation), CMP (compare), SUBT

(subtraction) and DIV2 (halves a number).

As a concrete example, the subtraction routine is given in Table 4. The routine

SUBT uses registers a through e, computes a− b, stores the answer in d, then

returns to the line number stored in c. It assumes that a ≥ b.

The register names, a = 010, b = 00100, c = 00101, d = 00111, and e = 011,

were chosen to minimise the overall number of bits used. In total, this routine is

represented by the 70 bit string:

0100111100010110011110001100100101011010001011000011110110101001011010
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Label Instruction Comments Binary representation

SUBT1 & d, 0 01 00111 100

LS1 & e, d 01 011 00111

+ e, b 100 011 00100

= e, a, c // d+b=a 101 011 010 00101

+ d, 1 100 00111 101

= a, a, LS1 // loop 101 010 010 11010

Table 1. SUBT

5. Register machine language implementation of arrays

We use the coding for the array data structure library developed by Dinneen [17]

which represents arrays (lists) in a single register variable. An integer element ai
within an array A is represented as a sequence of ai bits 0; the bit 1 is used as a

(leading) separator or deliminator of the array elements. If there are no 1’s (e.g. the

register has value 0) then we have an array of size 0. For example, the array [1,4,0]

is encoded 10100001 or 11000010, depending on chosen endianness (the encoding is

from left to right or vice-versa).

A number of array operations are used frequently, and these have been packaged

into subroutines. In our particular program we make use of SIZE (returns the size

of the array), APPEND (appends one element), ELM (returns the element at a

particular index) and RPL (replaces the element at a particular index).

6. From standard computation to inductive computation

The main program for the P versus NP problem consists of two nested loops. The

outer loop tests every program-polynomial tuple. For each program and polyno-

mial, the inner loop checks if the program can solve all instances of the subset-sum

problem in polynomial steps or less. In the usual model of computation these nested

loops have a serious pitfall: The program may run forever for two different reasons.

It may run forever because it never finds a program that works (there are infinitely

many programs), in which case P does not equal NP. The second reason it may run

forever is because it has found a program that works, and since there are an infinite

number of instances of the subset-sum problem, it loops forever testing all of them.

To resolve this issue, we chose to use a slightly modified version of computation:

the inductive computation [1]. Under this model, a program is allowed to run forever

but still be considered to give an answer if, after a finite number of steps, the output

stabilises. To make our program suitable for an inductive register machine program,

we must modify each loop in the following way: If the loop is successfully running,

write a 1 into the output register, otherwise when the loop halts write a 0 into the

output register (and stop looping). We thus ensure that the output register will not

oscillate, and under the inductive computation model it will always return a result.

Namely, the output will be 1 if the loop runs forever, and 0 if at some point it will
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halt.

Finite standard Turing and inductive computations produce the same results;

however, the inductive computation is more powerful than standard computation

as in the former case some infinite computations can produce outputs.

In what follows we will use the above register machine language as a universal

prefix-free inductive machine U ind (see more in [2]). This type of computation gives

rise to an inductive complexity measure.

7. An inductive register program for P versus NP

It is easy to note that P 6= NP if and only if every polynomial-time program (i.e. a

pair consisting of a program and a polynomial controlling the time of the execution

of the program) cannot solve at least one instance of the subset-sum problem. Hence

the P versus NP problem can be represented by a Π2–sentence, i.e. a sentence of the

form ∀n∃iR(n, i), where R is a computable predicate.b Starting from a representa-

tion ∀n∃iR(n, i) (where R is a computable predicate) of the P versus NP problem,

we construct the inductive register machine program of first order T ind,1
R defined by

T ind,1
R (n) =

{
1, if ∃iR(n, i),

0, otherwise .

Next we construct the inductive register machine M ind,2
R defined by

M ind,2
R =

{
0, if ∀n∃iR(n, i),

1, otherwise .

Clearly,

M ind,2
R =

{
0, if ∀n (T ind,1

R (n) = 1),

1, otherwise ,

hence we say that M ind,2
R is an inductive register machine of second order.

Note that the predicate T ind,1
R (n) = 1 is well-defined because the inductive regis-

ter machine of first order T ind,1
R always produces an output. However, the inductive

register machine M ind,2
R is of the second order because it uses an inductive register

machine of the first order T ind,1
R . This shows that the inductive register machine of

second order M ind,2
R solves the P versus NP problem.

MAIN, the main algorithm for M ind,2
R that solves the P versus NP problem,

is presented in the algorithm below. As we have already mentioned, the program

consists of two nested loops; the outer loop goes through all possible program and

polynomial pairs, and the inner loop runs the program with every possible instance

of the subset-sum problem, letting it execute at most polynomial steps for each

instance.

bBy now the reader has understood that the word “problem” has different meanings in Cook’s
theory and in our complexity analysis.
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Our algorithm requires the testing of the correctness of every possible

polynomial-time program for each instance of the subset-sum problem. Is it possible

to achieve this testing given that the correctness problem is undecidable? The an-

swer is affirmative because we are dealing with time-controlled computations, each

running in a finite amount of time; the correctness test may take in some cases

exponential time to complete.

It is important to note that the correctness of the polynomial-time program is

established when it runs accurately on all possible instances of subset-sum problem.

It is not enough for the program to run correctly in only some cases. Indeed, since

we loop through all possibly instances, we will eventually come across the cases in

which an invalid program fails. In particular, programs that randomly “guess”, or

that always give the same answer eventually fail.

The program-polynomial tuples are generated by incrementing through the nat-

ural numbers, treating each number as an array and asking if that array has three

elements. Non-complying numbers are ignored; otherwise, we consider the first and

second elements to be C and J respectively, which define the polynomialc C∗(xJ+1),

and the third element to be the program P. To enumerate all instances of subset-sum

problem, we similarly go through the natural numbers and interpret them as arrays

with at least 2 elements. For each array we ask the question: Does some subset of

its first (N − 1) elements sum to the N th element, where N is the size of the array?

MAIN: result is 1 if P 6=NP, 0 if P=NP

// Z is the output register, while the loop is running it is set to 1

Z← 1

for all tuples (C,J,P) do

// Now we run the simulation (also on an inductive Turing machine)

run SIM

// check the result register (Y)

if Y = 1 then

// found a polynomial-time algorithm, P=NP

Z← 0

HALT

else

// that program didn’t work, try the next one

continue

end if

end for

cObviously, in this way we cover all possible run-time polynomials.
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When simulating the program P we give it access to an unlimited number of

registers which are stored in an array R. The unique coding of a register name is

used to represent the index of that register in the array R, and the array dynamically

grows to include all possible simulated registers. After running the program P we

assume that its answer to the subset sum instance is in the register encoded as 010,

which corresponds to R[2]d. One can easily check if the proposed answer is correct.

As an example, consider the 672nd loop of the outer (main) program. In binary,

this corresponds to the number 101010, which, interpreted as an array is [1, 1, 1],

meaning C = 1, J = 1 and P = 1. In binary, the program is simply 1.

SIM: result is 1 if program P succeeds in polynomial-time, 0 if not

// Y is the output register, while the loop is running it is set to 1

Y← 1

for all instances S of subset-sum do

Simulate program P with input S for at most (C ∗ (|S|J + 1)) steps.

if P executed without error and calculated the correct answer then

continue to next instance

else

// This program doesn’t work, stop looping

Y← 0

return

end if

end for

The outer program then executes the simulation on another inductive Turing

machine. The first instance of subset-sum that it will test is 11, the two element

array [0, 0]. It asks: Is there a subset of elements in [0] that add up to 0? Clearly, the

answer is positive. In preparation for simulation, the input for program P is made

prefix free: 11 becomes 11011, so the program is expected to read five bits (which

are read right to left) before halting. The simulation begins, but the parser quickly

realises that 1 is not a valid program, and will branch to an error statement. In this

statement, the inductive Turing machines writes 0 to its output register (named Y

in the pseudocode) and halts. The main loop (the outer inductive Turing machine)

queries the output register, reads the zero and continues on to the next loop.

In the simulation process every syntactical error is detected. The simulated pro-

gram may fail because of compile or run time errors, e.g. invalid use of a reg-

ister/literal encoding, the halt instruction appears in the middle of a program,

dThere is no register named 00 or 01, so R[2] is the first possible register that the simulated program

could use. Of course, it may not ever use this register, in which case R[2] would always be 0, the
default initial value.
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branching out of bounds, not reading all input bits. The program is also disquali-

fied if, after the prescribed polynomial number of steps, it has not naturally halted.

8. An upper bound for the inductive complexity of P versus NP

To every mathematical sentence of the form ρ = ∀n∃iR(n, i), where R(n, i) is a com-

putable predicate—called Π2–sentence, we associate the inductive register machine

of second order M ind,2
R as above.

Note that there are many programs for the universal prefix-free inductive ma-

chine U ind which implement M ind,2
R . For each of them we have:

∀n∃iR(n, i) is true if and only if U ind(M ind,2
R ) = 0.

The inductive complexity measure of second order is defined by:

Cind,2
U (ρ) = min{|M ind,2

R | : ρ = ∀n∃iR(n, i)},

and, correspondingly, the inductive complexity class of second order is:e

Cind,2
U,n = {ρ : ρ = ∀n∃iR(n, i), Cind,2

U (ρ) ≤ 210 · n}.

The complexity measure, as stated, is unfortunately incomputable (see [4]),

so we resort to measuring upper bounds of the complexity. This is still a useful

measurement and allows us to rank and compare Π2–sentences [5].

The inductive register program for the P versus NP problem consists of 362

instructions. More details about the program, including flowcharts for the main

program, principal routines, simulation, run and commands for the instructions

&, +, =, !, as well as a fully commented version of the program are presented in

Appendices A and B in [11]. The syntactical correctness of the program was checked

using a tool developed in [19].

eThe threshold 210n is to some extent arbitrary; its main goal is only to provide a scale to

compare/rank mathematical statements in a uniform way. An argument in favour of our choice is
the following. If instead of U we use a different universal prefix-free Turing machine U ′ then one

can compute a constant c (depending upon U and U ′) such that for every ρ one has |Cind,2
U (ρ)−

Cind,2
U′ (ρ)| ≤ c. Experimental calculation shows that for minimal machines the constant c is smaller

than 210.
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1 = a a 265

2 & d 1

3 & e 0

4 = e b c

5 + e 1

6 & f 1

7 & dp d

8 = f a 4

9 + d dp

10 + f 1

11 = a a 8

12 & d 0

13 = a b c

14 & e 0

15 & d 1

16 = a e c

17 & d 2

18 = b e c

19 + e

20 & d 0

21 & e d

22 + e b

23 = e a c

24 + d 1

25 = a a 21

26 & ad a

27 & a 0

28 & c 0

29 & e a

30 + e e

31 = e ad b

32 & c 1

33 + e 1

34 = e ad b

35 + a 1

36 = a a 28

37 & as a

38 & bs b

39 & cs 0

40 & b 42

41 = a a 26

42 + cs c

43 = a 0 45

44 = a a 21

45 & a as

46 & b bs

47 & c cs

48 = a a b

49 & ap 0

50 + a a

51 + a 1

52 = ap b 56

53 + a a

54 + ap 1

55 = a a 52

56 = a a c

57 & ae a

58 & be b

59 & ce c

60 & b 62

61 = a a 37

62 & a c

63 & b I

64 & c 66

65 = a a 20

66 & ie d

67 & d 0

68 = ie d 73

69 & b 71

70 = a a 26

71 + d c

72 = a a 68

73 & d 0

74 & b 76

75 = a a 26

76 = c 1 79

77 + d 1

78 = a a 74

79 & a ae

80 & b be

81 = a a ce

82 & ar a

83 & br b

84 & cr c

85 & ir I

86 & b 88

87 = a a 37

88 & nr c

89 & I 0

90 & fr 0

91 = I nr 107

92 = I ir 103

93 & a ar

94 & c 96

95 = a a 57

96 & b d

97 & a fr

98 & c 100

99 = a a 49

100 & fr a

101 + I 1

102 = a a 91

103 & b br

104 & a fr

105 & c 100

106 = a a 49

107 & a fr

108 & b br

109 & c cr

110 & I ir

111 = a a c

112 & bg b

113 & ISLIT 0

114 & b 116

115 = a a 26

116 & b bg

117 + a a

118 = c 0 138

119 & ISLIT 1

120 + a 1
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121 & brl b

122 & LIT 0

123 = a 0 321

124 & irl 0

125 & b 127

126 = a a 26

127 + irl 1

128 = c 0 130

129 = a a 125

130 & jrl 0

131 + jrl 1

132 + LIT LIT

133 = c 0 135

134 + LIT 1

135 = irl jrl brl

136 & b 131

137 = a a 26

138 & brr b

139 & REG 0

140 = a 0 321

141 & irr 0

142 & b 144

143 = a a 26

144 = c 1 321

145 + irr 1

146 = c 1 149

147 & b 145

148 = a a 26

149 & jrr 0

150 + jrr 1

151 + REG REG

152 = c 0 154

153 + REG 1

154 = irr jrr 157

155 & b 150

156 = a a 26

157 & arr a

158 & a R

159 & b 160

160 = a a 37

161 & a c

162 & b REG

163 & c 165

164 = a a 12

165 = d 1 168

166 & a arr

167 = a a brr

168 + R R

169 + R 1

170 = a a 158

171 & bp b

172 = T XT 321

173 & a P

174 & ip 1

175 = a 0 240

176 = ip NEXT 179

177 & e 0

178 = a a 181

179 & e 1

180 + T 1

181 + ip 1

182 & b 52

183 = a a 26

184 = c 0 56

185 & b 187

186 = a a 26

187 = c 0 321

188 & b 190

189 = a a 26

190 = c 0 204

191 = e 1 196

192 & b 194

193 = a a 138

194 & b 175

195 = a a 112

196 & rn 198

197 = a a 242

198 + LIT2 LIT1

199 & I REG1

200 & a R

201 & b LIT2

202 & c 171

203 = a a 82

204 = e 1 207

205 & b 175

206 = a a 138

207 + NEXT 1

208 & b 210

209 = a a 138

210 = IN 0 321

211 & a IN

212 & b 214

213 = a a 26

214 & b c

215 & a R

216 & I REG

217 & c 171

218 = a a 82

219 & b 221

220 = a a 26

221 = c 0 226

222 = e 1 224

223 = a a 191

224 & rn 199

225 = a a 242

226 = e 1 232

227 & b 229

228 = a a 138

229 & b 231

230 = a a 112

231 = a a 194

232 & rn 234

233 = a a 242

234 = LIT1 LIT2 236

235 = a a 171

236 & rn 238

237 = a a 253

238 & NEXT LIT2

239 = a a 171

240 = ip NEXT bp
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241 = a a 321

242 + NEXT 1

243 & b 245

244 = a a 138

245 & REG1 REG

246 & I REG1

247 & ax a

248 & a R

249 & c 251

250 = a a 57

251 & LIT1 d

252 & a ax

253 & b 255

254 = a a 112

255 & ax a

256 = ISLIT 1 262

257 & I REG

258 & a R

259 & c 261

260 = a a 57

261 & LIT d

262 & LIT2 LIT

263 & a ax

264 = a a rn

265 & PP 0

266 & Z 0

267 + PP 1

268 & a PP

269 & b 271

270 = a a 37

271 = c 3 273

272 = a a 267

273 & I 1

274 & c 276

275 = a a 57

276 & C d

277 & I 2

278 & c 280

279 = a a 57

280 & J d

281 & I 3

282 & c 284

283 = a a 57

284 & P d

285 = a a 289

286 = Y 0 267

287 & Z 1

288 = a a 362

289 & S 0

290 & Y 1

291 + S 1

292 & a S

293 & b 295

294 = a a 37

295 & N c

296 = N 1 291

297 & a N

298 & b J

299 & c 301

300 = a a 2

301 + d 1

302 & e 0

303 & XT 0

304 = e C 308

305 + XT d

306 + e 1

307 = a a 304

308 & IN S

309 + IN IN

310 & i 0

311 = i N 316

312 + i 1

313 + IN IN

314 + IN 1

315 = a a 311

316 & T 0

317 & R 3

318 & NEXT 1

319 & b 323

320 = a a 171

321 & Y

322 = a a 286

323 = IN 0 325

324 = a a 321

325 & a 2

326 & b N

327 & c 329

328 = a a 2

329 & da d

330 & e 0

331 & f 0

332 + e 1

333 = e da 356

334 & a e

335 & I 0

336 & s 0

337 = a 0 332

338 + I 1

339 & b 341

340 = a a 26

341 = c 0 337

342 & aa a

343 & a S

344 & c 346

345 = a a 57

346 + s d

347 & a aa

348 = a a 337

349 & a S

350 & I N

351 & c 353

352 = a a 57

353 = s d 355

354 = a a 332

355 & f 1

356 & I 2

357 & a R

358 & c 291

359 = a a 57

360 = d f 291

361 = a a 321

362 %
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The first ten instructions in the program for the P versus NP problem are pre-

sented in machine code followed by the length of the corresponding binary encoding

(accruing to the scheme presented in Section 4.).

Instruction number=1

= 00

a 010

a 010

265 11111111000001011

The number of bits 25

Instruction number=2

& 01

d 00110

1 101

The number of bits 10

Instruction number=3

& 01

e 00101

0 100

The number of bits 10

Instruction number=4

= 00

e 00101

b 011

c 00100

The number of bits 15

Instruction number=5

+ 111

e 00101

1 101

The number of bits 11

Instruction number=6

& 01

f 0001011

1 101

The number of bits 12

Instruction number=7

& 01

dp 00000101100

d 00110

The number of bits 18

Instruction number=8

= 00

f 0001011

a 010

4 11010

The number of bits 17

Instruction number=9

+ 111

d 00110

dp 00000101100

The number of bits 19

Instruction number=10

+ 111

f 0001011

1 101

The number of bits 13

which leads to the first 150 bits of the code for the P versus NP program:

00010010111111110000010110100110101010010110000001

01011001001110010110101000101110101000001011000011

00000010110101101011100110000001011001110001011101

After optimising the coding according to the frequency of registers, the code of
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the inductive register machine program consists of 6,495 bits,f putting the P versus

NP problem into the inductive complexity class of second order 7. The full binary

encoding of the program is in Appendix E of [11].

The Riemann hypothesis, another problem on the list of the Clay Mathematics

Institute millennium open problems [29] and arguably the most important open

problem in mathematics, is in the inductive complexity class of first order 3, a sig-

nificantly lower complexity class. Goodstein theorem—which is unprovable in Peano

Arithmetic—is also in the inductive complexity class of second order 7. The Collatz

conjecture and the twin-prime conjecture fall into the first inductive complexity

class of second order, cf.[2]; all other problems studied till now fall into inductive

complexity classes of first order smaller than 4, cf. [7, 10, 12, 13, 17].

There are probably further modifications that can be made to shorten the pro-

gram, possibly by improving the simulation potential polynomial-time programs

and/or by using a different NP–complete problem. Our analysis has used the rep-

resentation of the P versus NP problem as a Π2–sentence; it is an open question

whether the P versus NP problem is a Π1–sentence, i.e. of the form ∀nP (n), where

P is a unary predicated.

We reiterate that with the inductive complexity we compare problems from one

point of view only, and the upper-bounds obtained, reflecting the current knowledge

of those problems, are time-dependent. In this context it would be interesting to

find lower bounds of the inductive complexity for the mathematical problems for

which upper bounds have been estimated.
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