
CMS Notes
Volume 45 No. 2, March-April 2013RESEARCH NOTES

The Halting Problem
Cristian S. Calude 
The University of Auckland, New Zealand

 The Entscheidungsproblem, posed in 1928 by D. Hilbert, asks 
for an algorithm that takes as input a statement of a first-order 
logic and outputs 1 or 0 according to whether the statement 

is universally valid (i.e. in every structure satisfying the axioms of 
the logic) or not. By the completeness theorem of first-order logic, 
a statement is universally valid if and only if it can be deduced 
from the axioms of the logic, so solving the Entscheidungsproblem 
means finding an algorithm to decide whether a given statement is 
provable in the first-order logic.

Church [7] and Turing [9] published, independently, different 
negative solutions to the Entscheidungsproblem. In his proof, 
Turing introduced a computing machine, now called “Turing 
machine” (shortly, machine), as a mathematical model for 
the informal notion of algorithm, and showed how it can be 
programmed. He then constructed a universal machine which can 
simulate the execution of any machine; in a sense, the universal 
machine is the blueprint of the modern computer.

Page 247 of Turing’s paper is a proof that a certain problem—
now called (after M. Davis) the halting problem (for Turing 
machines)—cannot be solved by any machine. The halting 
problem asks for a machine Halt that takes as input an arbitrary 
machine M  and an input x, and outputs 1 or 0 according to 
whether M  will come to a halt or not on x. We assume that 
a machine incorporates its input and a halting machine outputs 
a bit-string. As machines can be systematically enumerated 
(say, lexicographically) and Halt itself always halts, Turing’s proof 
follows by diagonalisation. The proof below gives also a “reason” 
for unsolvability. For convenience we assume from now on that 
all programs include their input data. Suppose, by absurdity, the 
existence of a machine Halt. Construct the following machine 
T (N) (T  from “trouble”):

read a positive integer N  in binary; list all machines up 
to N  bits in size; use Halt to remove from the list all 
machines which do not halt; simulate the running of all 
machines on the list; output the largest result computed 
by these machines plus 1.

For every N , the machine T (N) halts. Its size is less than 
log2 N +O(1) bits, which is smaller than N , for large N . 
Accordingly, T (N) generates itself at some stage of its computation, 
and a simple analysis of the output of T (N) leads to a contradiction. 
Unsolvability is a consequence of coding scarcity.

In modern terms, machines are programs writ ten in a 
programming language. In this framework, a universal machine 
is a universal programming language L, i.e. a language such 
that if any other language L′ can program a machine in K bits, 

then L can do it in less than K + cL,L′ bits, where cL,L′ is 
a fixed constant. A universal programming language L can be 
constructed with the following five instructions: = r1, r2, r3
(branching instruction), &r1, r2 (assigning instruction), +r1, r2 
(sum), !r1 (read one bit), % (halt). Registers r1, r2, . . . can 
contain arbitrary large non-negative integers. A program consists 
of a finite list of labeled instructions from the above list, with the 
restriction that the halt instruction appears only once, as the last 
instruction. The input data is a bit-string which follows immediately 
after the halt instruction. The result of the computation, if any, is 
a non-negative integer stored in a fixed output register. A program 
not reading the whole data or attempting to read past the last 
input bit results in an error. 

Systematically enumerate all programs (say, lexicographically) and 
define the real number H  whose N th bit hN  tells us whether 
or not the N th program halts. Clearly, H  is incomputable, i.e. 
the function N !→ hN  is not computable by any program. This 
“coding” of the halting problem is rather wasteful, because N  
instances of the halting problem have only log2 N  bits of 
mathematical information: one only needs to know how many 
of these N  programs halt to be able to determine which ones 
halt. One can obtain a more compact coding using the halting 
probability (or Chaitin’s Ω) which is defined by the formula: 

Ω =
∑

p halts

2−(size of p in bits);

Ω is a probability because, due to the syntax of L, if p halts, then 
no prefix or extension of p halts. There are infinitely many halting 
probabilities, one for each universal programming language.

All Ω numbers share a few remarkable properties. Like H , Ω 
“codes” the halting problem, but in a more efficient way because if 
one “knows” the first N  bits of Ω, then one can solve the halting 
problem for all programs of size smaller than N + 1: 2N+1 − 1 
instances of the halting problem are coded into N  bits. While 
H  is incomputable, there are programs computing infinitely 
many values hN . No program can do a similar computation for 
Ω; in fact, Ω is strongly incomputable, that is, there is a positive 
integer Ω such that any program can compute at most ω values 
of digits of Ω (ω, which depends on the programming language, 
can be any non-negative integer). Any Ω has two apparently 
contradictory properties: computable enumerability, i.e. Ω is the 
limit of a computable sequence of rationals in the unit interval, 
and incompressibility (also called algorithmic randomness), i.e. 
the smallest program for computing the first N  bits of Ω has 
at least N −O(1) bits. The converse result is also true: every 
real satisfying the above two conditions is an Ω number for some 
universal programming language. Finally, Ω is transcendental 
and normal. Two of the above properties can be expressed in 
terms of mathematical provability. Assume ZFC is sound. Strong 
incomputability implies unprovability: ZFC cannot prove more 
than Ω values of the bits of Ω (a quantum random generator can 
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behave in a similar manner, [1]). Incompressibility implies logical 
irreducibility: Any sound extension of ZFC that can prove the 
values of the first N  bits of Ω must have at least N −O(1) bits 
of axioms. See more in [2].

An extensive simulation, whose correctness was mathematically 
proved, solved the halting problem for all programs in L of up to 
80 bits in size and calculated the first 40 bits of Ω = ΩL [3]: 
000100000001000010100111011 1000011111010.

Because the Riemann hypothesis can be written in the form 
∀nP (n), where P  is a computable predicated, programs in 
L can systematically search for a counter-example; such a 
program RH stops if and only if the conjecture is false. Hence, 
if we knew the first 2,745 bits—the length of such an RH—of 
ΩL we would know whether the Riemann hypothesis is true [6]. 
Searching for a counter-example for the conjecture P != NP—
which is of the form ∀n∃mR(n,m), where R is a computable 
predicate—is more difficult; the solution is to use the same 
programs in L, but with a different semantics. A classical 
computation produces a result only in case the computation 
stops; the result is then recorded in a special output register. An 
inductive program P  produces the same results as the classical 
program P , but sometimes a result is obtained when P  runs an 
infinite computation (of course, not all inductive computations 
produce results). In [4] an inductive program PNP of 6,495 
bits was constructed to return 0 if and only if P != NP ; PNP 
is more complex than RH not only because it is longer, but also 
because it’s solution needs a programming language with higher 
computational power. Indeed, there is an inductive program in L 
which solves the halting problem for all classical programs in L. 
However, no inductive program can solve the halting problem for 
all inductive programs.

While deterministically unsolvable, the halting problem can be 
probabilistically solved [5, 8]. Fix a rational ε in (0,1). One can 
effectively construct a program which stops on every program p 
(as input) and outputs either: a) p halts, and in this case the result 
is correct, or b) p does not halt, and in this case the probability 
that the result is wrong is less than ε. 
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