
CMS Notes
Volume 45 No. 2, March-April 2013RESEARCH NOTES

The Halting Problem
Cristian S. Calude
The University of Auckland, New Zealand

 The Entscheidungsproblem, posed in 1928 by D. Hilbert, asks
for an algorithm that takes as input a statement of a first-order
logic and outputs 1 or 0 according to whether the statement

is universally valid (i.e. in every structure satisfying the axioms of
the logic) or not. By the completeness theorem of first-order logic,
a statement is universally valid if and only if it can be deduced
from the axioms of the logic, so solving the Entscheidungsproblem
means finding an algorithm to decide whether a given statement is
provable in the first-order logic.

Church [7] and Turing [9] published, independently, different
negative solutions to the Entscheidungsproblem. In his proof,
Turing introduced a computing machine, now called “Turing
machine” (shortly, machine), as a mathematical model for
the informal notion of algorithm, and showed how it can be
programmed. He then constructed a universal machine which can
simulate the execution of any machine; in a sense, the universal
machine is the blueprint of the modern computer.

Page 247 of Turing’s paper is a proof that a certain problem—
now called (after M. Davis) the halting problem (for Turing
machines)—cannot be solved by any machine. The halting
problem asks for a machine Halt that takes as input an arbitrary
machine M and an input x, and outputs 1 or 0 according to
whether M will come to a halt or not on x. We assume that
a machine incorporates its input and a halting machine outputs
a bit-string. As machines can be systematically enumerated
(say, lexicographically) and Halt itself always halts, Turing’s proof
follows by diagonalisation. The proof below gives also a “reason”
for unsolvability. For convenience we assume from now on that
all programs include their input data. Suppose, by absurdity, the
existence of a machine Halt. Construct the following machine
T (N) (T from “trouble”):

read a positive integer N in binary; list all machines up
to N bits in size; use Halt to remove from the list all
machines which do not halt; simulate the running of all
machines on the list; output the largest result computed
by these machines plus 1.

For every N , the machine T (N) halts. Its size is less than
log2 N +O(1) bits, which is smaller than N , for large N .
Accordingly, T (N) generates itself at some stage of its computation,
and a simple analysis of the output of T (N) leads to a contradiction.
Unsolvability is a consequence of coding scarcity.

In modern terms, machines are programs writ ten in a
programming language. In this framework, a universal machine
is a universal programming language L, i.e. a language such
that if any other language L′ can program a machine in K bits,

then L can do it in less than K + cL,L′ bits, where cL,L′ is
a fixed constant. A universal programming language L can be
constructed with the following five instructions: = r1, r2, r3
(branching instruction), &r1, r2 (assigning instruction), +r1, r2
(sum), !r1 (read one bit), % (halt). Registers r1, r2, . . . can
contain arbitrary large non-negative integers. A program consists
of a finite list of labeled instructions from the above list, with the
restriction that the halt instruction appears only once, as the last
instruction. The input data is a bit-string which follows immediately
after the halt instruction. The result of the computation, if any, is
a non-negative integer stored in a fixed output register. A program
not reading the whole data or attempting to read past the last
input bit results in an error.

Systematically enumerate all programs (say, lexicographically) and
define the real number H whose N th bit hN tells us whether
or not the N th program halts. Clearly, H is incomputable, i.e.
the function N !→ hN is not computable by any program. This
“coding” of the halting problem is rather wasteful, because N
instances of the halting problem have only log2 N bits of
mathematical information: one only needs to know how many
of these N programs halt to be able to determine which ones
halt. One can obtain a more compact coding using the halting
probability (or Chaitin’s Ω) which is defined by the formula:

Ω =
∑

p halts

2−(size of p in bits);

Ω is a probability because, due to the syntax of L, if p halts, then
no prefix or extension of p halts. There are infinitely many halting
probabilities, one for each universal programming language.

All Ω numbers share a few remarkable properties. Like H , Ω
“codes” the halting problem, but in a more efficient way because if
one “knows” the first N bits of Ω, then one can solve the halting
problem for all programs of size smaller than N + 1: 2N+1 − 1
instances of the halting problem are coded into N bits. While
H is incomputable, there are programs computing infinitely
many values hN . No program can do a similar computation for
Ω; in fact, Ω is strongly incomputable, that is, there is a positive
integer Ω such that any program can compute at most ω values
of digits of Ω (ω, which depends on the programming language,
can be any non-negative integer). Any Ω has two apparently
contradictory properties: computable enumerability, i.e. Ω is the
limit of a computable sequence of rationals in the unit interval,
and incompressibility (also called algorithmic randomness), i.e.
the smallest program for computing the first N bits of Ω has
at least N −O(1) bits. The converse result is also true: every
real satisfying the above two conditions is an Ω number for some
universal programming language. Finally, Ω is transcendental
and normal. Two of the above properties can be expressed in
terms of mathematical provability. Assume ZFC is sound. Strong
incomputability implies unprovability: ZFC cannot prove more
than Ω values of the bits of Ω (a quantum random generator can

© Canadian Mathematical Society 2013. All rights reserved.16

Les bourses, ça vous intéresse? Nous aussi!
Cliquez http://smc.math.ca/Bourses/Moscou/

Notes de la SMC
Tome 45, numéro 2, mars-avril 2013RESEARCH NOTES

behave in a similar manner, [1]). Incompressibility implies logical
irreducibility: Any sound extension of ZFC that can prove the
values of the first N bits of Ω must have at least N −O(1) bits
of axioms. See more in [2].

An extensive simulation, whose correctness was mathematically
proved, solved the halting problem for all programs in L of up to
80 bits in size and calculated the first 40 bits of Ω = ΩL [3]:
000100000001000010100111011 1000011111010.

Because the Riemann hypothesis can be written in the form
∀nP (n), where P is a computable predicated, programs in
L can systematically search for a counter-example; such a
program RH stops if and only if the conjecture is false. Hence,
if we knew the first 2,745 bits—the length of such an RH—of
ΩL we would know whether the Riemann hypothesis is true [6].
Searching for a counter-example for the conjecture P != NP—
which is of the form ∀n∃mR(n,m), where R is a computable
predicate—is more difficult; the solution is to use the same
programs in L, but with a different semantics. A classical
computation produces a result only in case the computation
stops; the result is then recorded in a special output register. An
inductive program P produces the same results as the classical
program P , but sometimes a result is obtained when P runs an
infinite computation (of course, not all inductive computations
produce results). In [4] an inductive program PNP of 6,495
bits was constructed to return 0 if and only if P != NP ; PNP
is more complex than RH not only because it is longer, but also
because it’s solution needs a programming language with higher
computational power. Indeed, there is an inductive program in L
which solves the halting problem for all classical programs in L.
However, no inductive program can solve the halting problem for
all inductive programs.

While deterministically unsolvable, the halting problem can be
probabilistically solved [5, 8]. Fix a rational ε in (0,1). One can
effectively construct a program which stops on every program p
(as input) and outputs either: a) p halts, and in this case the result
is correct, or b) p does not halt, and in this case the probability
that the result is wrong is less than ε.

References
[1] A. A. Abbott, C.S. Calude, J. Conder, K. Svozil. Strong

Kochen-Specker theorem and incomputability of quantum
randomness, Physical Review A 86, 6 (2012), DOI: 10.1103/
PhysRevA.00.002100.

[2] C. S. Calude. Information and Randomness: An Algorithmic
Perspective, Springer, Berlin, 2002, 2nd ed.

[3] C. S. Calude, M. J. Dinneen. Exact approximations of omega
numbers, Int. J. Bifurcat. Chaos 17, 6 (2007), 1937–1954.

[4] C. S. Calude, E. Calude, M. S. Queen. Inductive complexity of
P versus NP problem. Extended abstract, Proc. UCNC 2012,
LNCS 7445, Springer, (2012), 2–9.

[5] C. S. Calude, M. A. Stay. Most programs stop quickly or never
halt, Adv. Appl. Math. 40 (2008), 295–308.

[6] E. Calude. The complexity of Riemann’s Hypothesis, Mult-
Valued Log. S. 18, 3-4 (2012), 257–265.

[7] A. Church. An unsolvable problem of elementary number
theory, Am. J. Math. 58 (1936), 345–363.

[8] Yu. Manin. Infinities in quantum field theory and in classical
computing: renormalization program, Proc. CiE 2010, LNCS
6158, Springer, Heidelberg, 2010, 307–316.

[9] A. M. Turing. On computable numbers with an application to
the Entscheidungsproblem, Proc. Lond. Math. Soc. ser. 2, 42
(1936), 230–265; correction: ser. 2, 43 (1937), 544–546.

Use Social Media? So do we!
Aimez la SMC sur Facebook

2013 CMS
MEMBERSHIP
RENEWALS
RENOUVELLEMENTS
2013 À LA SMC
REMINDER: Your membership reminder
notices have been e-mailed. Please renew your
membership as soon as possible. You may also
renew on-line by visiting our website at www.cms.
math.ca/forms/member

RAPPEL : Les avis de renouvellements ont été
envoyés électroniquement. Veuillez s-il-vous-plaît
renouveler votre adhésion le plus tôt possible.
Vous pouvez aussi renouveler au site Web
www.cms.math.ca/forms/member?fr=1

© Société mathématique du Canada 2013. Tous droits réservés. 17

