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In [8] and [9] Moisil has introduced the resemblance relations. Following [9] we associate to 
every resemblance relation an extensive operator which commutes with arbitrary unions of sets. 
We are leading to consider spaces endowed with such closure operators; we shall call these 
spaces total tech spaces (TC-spaces). 

TC-spaces are in one-to-one, onto correspondence with reflexive relations. TC-spaces 
generated by transitive relations are in one-to-one, onto correspondence with the total 
topological spaces of W. Hartnett (which are called total Kuratowski spaces, TK-spaces). 

We study the category of TC-spaces and its full subcategory determined by TK-spaces. Both 
categories are Cartesian closed, but they are not elementary toposes. 

1. Resemblance relations 

Let X be a set and S c X 3. We denote by S(a, b, c) the relation “(a, b, c) E S”. 
Following Moisil [9, p. 151 S is a resemblance relation on X if the following three 
axioms hold: 

(I) For any a, c E X, S(a, a, c). 
(11) For any a, b E X, S(u, b, b). 

(III) For any a, x, y, z E X, if S(u, x, y) and S(u, y, z), then S(u, x, z). 
A resemblance space is a set X together with a resemblance relation S on X. 

The axioms (I)-(III) are derived from the following interpretation of the relation 
S: S(u, b, c) means “u resembles to b at least as it resembles to c”. 

We give three examples of resemblance spaces. 

Example 1 (G.C. Moisil). Let C be an oriented circle. For the points a, 6, c on C 
we have S(u, b, c) if the points a and c are joined only if a and b, respectively, b 
and c, are joined (on the circle). 

Example 2. Let (X, 3) be a topological space. For a, b, c E X we have S(u, b, c) if 
any neighborhood of a which contains c, contains also b. 

Example 3. Let (X, d) be a metric space. Define S(u, b, c) if d(u, 6) < d(u, c). 

Let (X. S) be a resemblance space. For every a E X we define an equivalence 
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relation P, on X, as follows: P&I, c) if S(a, b, c) and S(a, c, 6). The relation P, 
can be interpreted (following [9]) as the indifference rekztioll associated to S and a. 
In the relation S we can fix the first argument, S&, y ) = S(u, x., y). We obtain a 
preorder relation on X, with u as first element; moreover, S, is compatible with 
Pa. . 

Coe;versely, if X is a set together with a family of preorder relations {c,),,~ 
such that any Ccr has a as first element, then the relation 

S(u, 6, c) if b C,C 

is a resemblance relation on X. This correspondence is one-to-one and onto. 
Let a and r be in X. The set Vl, = {x 1 S(u, x, r)} is called the resemlbkzlace 

neighborhood of a (of degree r). 

Lemma 1. Let (X, S) be a resemblance space. The foElowing three conditions are 
equivalent: 

(9 Sk h d, 
(ii) For any Y E X, c E VL implies b E vl,, 

(iii) Vs G Vz. 

proof, Let us suppose that S(u, b, c). If TE X and c E Vl;, then S(u, c, r); it 
follows that S(u, b, r), that is b E 1p,. 

We have CE Vi; hence 6 E V& that is S(u, b, c). Now x E Vz means that 
S(u, x, b) hence S(u, x, c), that is x E V& 

Because b E Vg we obtain b E V’, that is S(u, b, c). 

Corow 1, For any a, b E X, Vt is the smallest resemblunc~ neighborhood of a 
which contains b; Vz is the smallest resemblance neighborhood of a. 

Proof. Let a, b., r be in X. If b E v_,. then S(u, 6, r), therefore Vi EI Vi. Moreover, 
in view of S(u, a, 6) it follows that Vz c Vz. 

We denote by 2x the power set of X. 

L,:IWU~ L. Let (X, S) be a resemblance space. The operator qs : 2x +2x defined by 
cp,(A) ‘--, {x 1 x E X, Vc f7 A # 8) has the following two properties : 

(1) A_c&A), for every AEON, 
(2) for any fur& {.4i)i,, of .qzcbsefs of X, 

If is also known that such un operator is monotone and ~~(8) = 8. 
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2. Total tech spaces 

A Tech space is a couple (X, Q), Q : 2x *2x, where Q 

%lll 

is extensive and 
monotone [3]. Lemma 2 suggests to consider tech spaces endowed with the 
following ‘ftotal property”: The family of open sets is closed under arbi&=ary 
intersections (property credited to Hartnett in [7]). This property is equiv&nt to 
the property (2) in Lemma 2. 

A total tech space (TC-space) is a couple (X, Q), Q :2x --j. 2x, such that the 
following two conditions hold: 

(1) A E Q(A), for any A c X, 
(2) for every family {Ai)i,r of subsets of X, 

Q 
( ) 
II Ai = U Q(Ai)- 
it-l iE1 

Note that any function Q :zx -zx having the property (2) is uniquely deter- 
mined by a function Q : X+ Zx, where Q(X) = Q({x)), for every x E X, and Q(A) = 

lJaEA Q(U), for any A c_ X. Property (1) is equivalent to the condition “x E Q(X), 
for every x E X”. Moreover, we have: 

Theorem 1. There is a one-to-one, onto correspondence b++tween TC-space: and 
reflexive relu tions. 

Proof. To every TC-space (X, Q) we associate the reflexive relation (X, RQ), 
where xR<py iff y E Q(X). Conversely, to the reflexive relation (X, R) we associate 
the TC-space (X, Q&, where Q~(A) = {y 1 xRy, for some x E A}. One can easily 
verify that R<p, = R and QR~ = Q. 

An A -space is a Tech space (X, Q), where Q is finitely additive [3]. So, any 
T&pace is an A-space but the converse fails; any A-space is a Tech space and 
the converse, also, fails. 

Pn the study of A-space one works with the following concepts. A set A E X Is 
closed if Q(A) = A ; the set A is open if X \ A is closed; the set V is a (topological) 
neighborhood of u E X if a& Q(X\ V). We denote by v(u) the set of all neighbor- 
hoods of u. 

We display some of the properties of TC-spaces which are derived from the 
properties of A-spaces [3]. 

Proposition 1. Let (X, Q) be an A-space. The following statements hold: 
(1) X and 4 are both closed and open; 
(2) the family of all open (closed) sets is closed urtder arbitrary unions (intersec- 

tions) ; 
(3) if a E X and V E Y(u), then a E V; 
(4) if VE W’(u) and V C_ W c X, then WE V(U); 

(5) ifuEXund AcX, then ~EQ(A) iff VnAit$ for any V~v(u); 
(6) a set A 5 X is open ifl A E Y(u), for every u E A. 
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In a TC-space if { Vi)iEr is a family of neighborhoods of an element a E X9 then 
SO is ni,, Vi. We denote by W, = nVEv(a) V; thus, W, E v(a). Moreover, 
VESr(a) iff W&V. 

From Proposition l(5), in an A-space q(A) ={a 1 A f7 V#p), for every 
V E v(a)}. In particular, in a TC-space, q(A) = {a 1 Wa n A # 0). 

prt3position 2. Let (X, cp) be a TC-space. The following two statements hold: 
(1) W,={X:(XEX,aErp(x)), 
(2) q(x) = {a 1 a E x, Tc E. !?;,j. 

Proof. The relation x E ‘oly, is equivalent to x E V, for every V E v(a), that is, for 
any neighborhood V of a, V n ix} f 0; the last relation is equivalent to a E q(x). 

Corollary 2. A TC-space is uniquely determined by a family of subsets of X, 
(Wo)a&9 with the property a E W,. The set W, is the smallest neighborhood of the 
element a. 

If q = (PR where R is a reflexive relation, then x E W, iff xRa, for all x, a E X. 
In a TC-space the family of open (closed) sets is closed under arbitrary 

intersection (unions). Hence, the family of open (closed) sets forms a complete 
Brouwerian lattice (i.e. a complete lattice for which b n (U iE1 a,) = U iEI (b f7 ai)); 
in particular, these families form Heyting lattices (where a +B = U 
(X I Q  n  x  c  b)). 

In a TC-space (X, q) we define the following resemblance relation 
SW : SJ a, b, c) if for every V E v(a), c E V implies b E V. Let us note that 
Sq(a, b, c) iff b = c or b E W,. Thus, to any TC-space (X, q) we associate a 
resemblance space (X. Srp), and to any resemblance space (X, S) we associate a 
TC-space (X, cps). We ask whether (X, S) = (X, S& and (X, cp) = (X, q&? 

Theorem 2. Any Tc-space (X, Q) is of the form (X, cpS), where (X, S) is a 
resemblance space. 

+24ve Cr-,m the definition of <ps it follows that the space (X3 <ps) is uniquely 
deter3Gned by the family W, = Vz, a E X. 

Obviously, xRy iff x E Vz iff S(y, x, y). Now, in the space (X, SQ), Vg, = 

in- 1 SQ(~, x, r)} = Wa U {r). In the space (X, Q~,J the smallest neighborhood of a is 
just the smallest resemblance neighborhood of a Wa = Vz. Therefore, <psw = Q. 

Proposition 3. I;bi- any resemblance Felation S, S+ps c S; S(p, = S ifl for all a, b, C, 

the relation S(A, b, c) and b # c imply Sla, b, a). 

If Sips (a, b, c), then for any VE X with a d cps(X\ V) and c E V imply 
b E V. Sut, in view of Proposition l(4) a & Q~(X\ Vz) and therefore S(a, b, c). 
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The equality S = Scp, holds iff for any a, c E X the equalities W, U { c }  = Vi 
hold. Then S = Stp, is equivalent to Vz = Vt U { c }  for all a, c, X, i.e., for all a, b, 
CEX, bdf5; and bfc imply bEVi. 

The condition in Proposition 3 fails in general. For example, let us take X = { 1, 
29 3:,, S =I(19 1, l), (1, 29% (1, 3,3), (1, 1, 9, (1, 1, 3), (2, 2,2), (2, 2, 0, (292, 
3)9 (291, l), (2,3,3), (3,3,3), (393, 09 (39 39% (391, l), (3,Z 2), (L&3)1* 

A topological space (in the sense of Kuratowski) is called total (following W. 
Hartnett, cited by [7]) if the family of closed sets is closed under arbitrary unions. 
Such a space will be called total Kuratowski space (T.-space). A Kuratowski 
topological space is total iff the corresponding closure operator commutes with 
arbitrary unions of sets; thus, any TK-space is a TC-space. ,Moreover, we have: 

Theorem 3. Let R be a reflexive relation on X. Then, (X, (pR) is a 

Proof. If R is transitive, A E X and x E Q~(QJA)), then there exist z E A and 
y E Q&) such that x E Q&Y). It results that zRy and yRx; therefore by transitiv- 
ity, x E Q~ (z), with z E A. The last relation shows that x E QR (A). 

Conversely, let (X, QR) be a TK-space. If xRy and yRz, then z E QR(QR(X)). In 
view of the relation QR (QR (x)) = QR (x) we deduce nRz. 

We note that to every TC-space (X, Q) one can associate a TK-space (X, 8), 
where %(A) = UnBO Q”(A). R$ is just the transitive closure of RQ. 

In [B] one studied TC-space induced by various types of reflexive relations 
(tolerance, antisymmetric and order relations). 

3. Categorical properties of TC-spaces 

Let (X, Q) and (Y, $) b< two TC-spaces. The function f: (X, Q)+( Y, #) is 
called a morphism of TC-spaces if f is a function from X to Y and for any A c: X, 
~(Q(A)) G $(f(A)). The last condition is equivalent to the condition: For every 
X E X, f(Q(x)) s #(f(x)). 

Theorem 4. The category of TC-spaces (TopTC) is isomorphic with the category of 
reflexive relations. 

Proof. Let us denote by RQ and R+ the reflexive relations associated with the 
operators Q and $, respectively. To prove the theorem it suffices to observe that a 
function f : X  + Y  is a morphism of TC-spaces iff for any x, y E X, xR~y implies 
fWWfW 

For details concerning the categories of preorder (order) relations see [5] and 
WI . 

We display the main properties of the category TopTC and of the forgetful 
functor U : TopTC + Set. 
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The family fi :(X, g)+(Xi, vi) of morphisms in TopTC is manic (i.e. for any i, 
fiu - fiti implies u = U) iff the condition: fi (x) = fi (y), for any i, implies x = y. The 
family l(i) is initial (i.e. a function f : (Y, I/J)--, (X, cp) is a morphism in TopTC ifI 
for any i, fif is a morphism in ‘TopTC (see [l])) iff for any A c_ X, 

VtA)= U l l f i - ' (Pi (f i(x)))*  
XGA i  

The family fi : (Xi, qi)+(X, cp) of morphisms in TopTC is epic iff X = U i i(X). 
The family (fi) is terminal iff for any A c X, p(A) = A U U  ifi(qi(fF’(A))). 

The functor U has right (left) faithful adjoints. The category TopTC has 
inductive and projective limits; the furctor U commutes with such limits. 

Let I be a small category and F: I -+TopTC be a functor. The object (X, <p) 
together with the family of morphisms fi : F(i)+(X, cp) [& : (X, <p)+ F(i)] is the 
inductive [projective] limit of F iff the set X together with the family of functions 
(U(A)) is the i n UC ive d t [projective] limit of the functor UF and the family (fi) is 
terminal [initial]. 

The category TopTC is Cartesian closed whenever it is not an elementary 
topos. If %’ = (X, <p) and 9 = (Y, q%) are TC-spaces, then 

5” = (T@W% W, P), 
where for every fETopTC (%, %j, p(f) ={g ETo~TC (Z, 9) 1 for every A c X, 
gk~(A )) c df(A)N. 

The category TopTC has general images and coimages [2], and the functor U 
commutes with them. In TopTC the strong, strict [4], effective and universal 
effective monomorphisms coincide with the initial injective morphisms. 

In TopTC the strong, strict, effective and universal effective epimorphisms 
coincide with the terminal surjective morphisms. Also, in TopTC the isomorph- 
isms coin&; with terminal and bijective morphisms (or, equivalently, with initial 
and bijective morphisms). 

4. Categorical properties of TK-spaces 

Theorem 5. The category of total topological spaces (TopTK) is a full subcategory 
of TopTC; TopTK is isomorphic with the category of preorder relations. 

We display the main properties of the category TopTK, and of the embedding 
functor E : TopTK+TopTC. 

The functor E has a faithful left adjoint, but E does not have a right adjoint. 
In the category TopTK there exist inductive and projective limits. The functor 

E commutes only with projective limits. 
In the category TopTK the manic (epic or initial) families of morphisms has 

similar properties as the corresponding families in TopTC. 
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A family of morphisms fi : (Xi, qQ+ (X, 8) in TopTK is terminal ifF the family 
fi :(X9 v)i)+(X, VI  t IS erminal in TopTC and for any A E X, 8(A) = UncN q”(A). 

The category TopTK is Cartesian closed. TopTIC has general images and 
coimages. The functor I? commutes with general images. The functor E does not 
commute with general coimages, though the functor UE commutes with these 
objects. In TopTK the strong, strict, effective and universal effective monomorph- 
isms coincide with the initial, injective morphisms. In TopTK the strong, strict and 
effective epimorphisms coincide with the terminal (in TopTK) surjective morph- 
isms. There exist effective epimorphisms which are not universal efktive. 
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