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Abstract We survey the relations between four classes of real numbers: Liouville
numbers, computable reals, Borel absolutely-normal numbers and Martin-Löf ran-
dom reals. Expansions of reals play an important role in our analysis. The paper refers
to the original material and does not repeat proofs. A characterisation of Liouville
numbers in terms of their expansions will be proved and a connection between the
asymptotic complexity of the expansion of a real and its irrationality exponent will be
used to show that Martin-Löf random reals have irrationality exponent 2. Finally we
discuss the following open problem: are there computable, Borel absolutely-normal,
non-Liouville numbers?

Keywords Liouville, computable, normal, and random numbers · Kolmogorov
complexity · Irrationality exponent

1 Introduction

The origin of this paper was a question posed by J. Borwein to the first author in 25
September 2013 regarding the relations between Liouville numbers and “random”
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reals. Here we consider the following two mathematical definitions of “random”
reals: Borel absolutely-normal numbers – the number-theoretic random ones – and
Martin-Löf random reals, arguably the most important class of algorithmic random
numbers. To get a complete answer we survey the currently known relations between
the above classes of random reals, Liouville numbers and computable reals. Many
results presented here are known. However, they are scattered through the litera-
ture of various areas: we will not present proofs for them. A new characterisation
of Liouville numbers in terms of their expansions will be proved (Theorem 2.2)
and a connection between the asymptotic complexity of the expansion of a real and
its irrationality exponent will be used to show that Martin-Löf random reals have
irrationality exponent 2 (Corollary 3.4).

1.1 Notation

In this section we introduce the notation used throughout the paper. By IN =
{0, 1, 2, . . .} we denote the set of natural numbers. Its elements will be usually
denoted by letters i, . . . , n. The set Ab = {0, 1, . . . , b − 1}, where b ≥ 2 is a positive
integer, is called the b–base; the elements of Ab are called b–digits. By A∗

b we denote
the set of all finite strings (words) with ε denoting the empty string; Aω

b is the set of
all (infinite) sequences over Ab. Sequences (infinite strings) are usually denoted by
x, y; the prefix of length n of the sequence x is denoted by x � n. The length of a finite
or infinite string η over Ab is denoted by |η|; the nth element of η is denoted by η(n).

For w ∈ A∗
b and β ∈ A∗

b ∪Aω
b let w ·β be their concatenation. This concatenation

product extends in an obvious way to subsets L ⊆ A∗
b and B ⊆ A∗

b ∪ Aω
b . If w ∈ A∗

b

and i ≥ 0 is an integer, then wi is the concatenation ww · · · w (i times) and wω is the
infinite concatenation ww · · · w · · · . The · operator can be omitted when the meaning
is clear, as in wβ.

By w � u and w � y we denote that w is a prefix of u and y, respectively, and
a prefix-free set L ⊂ A∗

b is a set with the property that for all strings p, q ∈ A∗
b, if

p, pq ∈ L then q = ε.

1.2 Preliminary Definitions

In this section we define the four classes of real numbers studied in the paper.
A real number α is called a Liouville number [27] if it is irrational and for every

positive integer k, there exist integers pk and qk with qk > 1 such that
∣
∣
∣
∣
α − pk

qk

∣
∣
∣
∣
<

1

qk
k

.

The irrationality exponent of a real number α is a measure of how “closely” α can
be approximated by rationals [7]:

inf

{

μ ≥ 0 :
∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

qμ
has finitely many solutions for all p, q ∈ Z, q 	= 0

}

.

Thus, Liouville numbers are reals having infinite (inf ∅ = ∞) irrationality exponents.



Theory Comput Syst

After having defined the class of Liouville numbers L , we now introduce the
following three classes of numbers: the Borel absolutely-normal numbers B, the
Martin-Löf random numbers M and the computable numbers C .

A b-ary expansion (b ∈ IN, b ≥ 2) of the real α ∈ [0, 1] is an infinite sequence
x = x1x2 · · · with xi ∈ Ab, such that α = ∑

i≥1 xi · b−i . Here we will use also the
notation α = 0.x1x2 · · · . It is well-known that the b-ary expansion of α ∈ [0, 1] is
unique unless α is a rational of the form α = p/bi , where i > 0 and 0 < p < bi , in
which case

α = p − 1

bi
+ �k>i

b − 1

bk
.

A real number α ∈ [0, 1] is referred to as a (Borel) normal number in base b if
it has a b-ary expansion x ∈ Aω

b which is uniformly distributed, i.e. each b–digit
has the same natural density b−1, every string of two b–digits has the same natural
density b−2, and, in general, every string of k digits has the same density b−k . More
precisely, for all w ∈ A∗

b we have:

lim
n→∞

|{i : 1 ≤ i ≤ n ∧ x � i ∈ A∗
b · w}|

n
= b−|w|.

If the base is clear we will simply say that the number is normal. Normality was
introduced by Borel [6] as a model of randomness, sometimes referred to “number-
theoretical randomness”. Obviously, numbers normal in some base b are irrational.

Champernowne’s number 0.0123456789101112 . . . is normal in base 10 and com-
putable [2, 14]. A (Borel) absolutely-normal number is a real which is normal in
every base. Efficient algorithms to compute Borel absolutely-normal numbers have
been developed in [4].

For the definition of Martin-Löf random numbers we adopt a characterisation of
randomness based on description complexity (see [9, 17]).

Recall that the plain (Kolmogorov) complexity of a string x ∈ A∗
b w.r.t. a partially

computable function ϕ : A∗
b → A∗

b is Cϕ(x) = inf{|p| : ϕ(p) = x}. It is well-known
that there is a universal partially computable function Ub : A∗

b → A∗
b such that

CUb
(x) ≤ Cϕ(x)+cϕ holds for all strings x ∈ A∗

b. Here the constant cϕ depends only
on Ub and ϕ but not on the particular string x ∈ A∗

b. We will denote the complexity
CUb

simply by Cb, or C if the alphabet is clear from the context. Furthermore, in the
case when one considers only computable partial functions with prefix-free domain,
there are also universal ones among them and the corresponding complexity, called
prefix-free complexity, is denoted by K; like C, the prefix-free complexity K depends
only up to a constant on the given choice of the underlying universal machine.

Martin-Löf [30] introduced the notion of random sequence in terms of tests. Here
we adopt the following complexity-theoretic characterisation. An infinite sequence
x ∈ Aω

b is Martin-Löf random if there is a constant c such that K(x � n) ≥ n − c,
for all n ≥ 1. A real α ∈ [0, 1] is Martin-Löf random if there is a base b such that its
b-ary expansion is Martin-Löf random.

Unlike the case of Borel normality this property is base-independent, that is, if
x ∈ Aω

b is Martin-Löf random and 0.x = 0.y for y ∈ Aω
b′ , then y is also Martin-Löf

random (cf. [11, 21, 37]).
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A real α ∈ [0, 1] is called computable if it has a b-ary expansion which is com-
putable, that is, there is a computable function fα such that fα(n) = xn, for all n ≥ 1.
This condition is equivalent to the requirement that there is a computable sequence

of rationals
(

pn

qn

)

n∈IN
such that |α − pn

qn
| ≤ 1

2n
, for all n ∈ IN. This shows that the

b-ary expansions of α are computable, for all bases b.

2 Expansions of Liouville Numbers

2.1 Expansion Characterisation of Liouville Numbers

In the previous section we defined three of the four classes of numbers under consid-
eration by properties of their expansions. Here we show that also Liouville numbers
have a similar characterisation.

We start with a technical result.

Lemma 2.1 Let α ∈ [0, 1] and assume that its b-ary expansion starts with v · w	

where v,w ∈ A∗
b, |w| > 0,and 	 ∈ IN. Then there exist two non-negative integers

p, q such that
∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
< q

− |v|+	·|w|
|v|+|w| . (1)

Proof Consider the rational number p
q

whose b-ary expansion is v · wω, that is

p

q
= pv(b

|w| − 1) + pw

b|v|(b|w| − 1)
, (2)

where pv and pw are the natural numbers whose b-ary expansions are v and w,
respectively. Then the denominator q satisfies q ≤ b|v|(b|w| − 1).

Since the b-ary expansion of α starts with v · w	 we have
∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
≤ b−(|v|+	·|w|). (3)

Using the inequalities

b|v|+	·|w| = (

b|v| · b|w|) |v|+	·|w|
|v|+|w| >

(

b|v| · (b|w| − 1)
) |v|+	·|w|

|v|+|w| ≥ q
|v|+	·|w|
|v|+|w| .

we obtain (1) from (3).

Theorem 2.2 Let α ∈ [0, 1] be an irrational. Then, α is a Liouville number if and
only if for every integer k > 1 there exists a base b = bα,k ≥ 2 and two words
v,w ∈ A∗

b, |v| ≤ |w|, |w| > 0,such that the b-ary expansion x = x1x2 · · · of α

satisfies x = v · wk · x′ for some x′ ∈ Aω
b .
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Proof Let k be a positive integer and choose b and v,w ∈ A∗
b to satisfy the assump-

tions of the theorem. Then, in view of |v| ≤ |w|, Lemma 2.1 with 	 = k implies the
inequality

∣
∣α − p

q

∣
∣ ≤ q−k/2,

for suitable positive integers p, q (see (2)). Since k is arbitrary and α is irrational,
then α is a Liouville number.

Now, let α be a Liouville number. Since α is irrational, there exists an integer
k0 > 1 such that 2−k0 < α < 1 − 2−k0 . Let k ≥ k0 such that |α − p

q
| < q−k and set

b = q. Then 1 ≤ p < q and (p − 1), p ∈ Aq . If α >
p
q

then the q-ary expansion x

of α starts with p0k ∈ A∗
q , and if α <

p
q

then x starts with (p−1)(q −1)k ∈ A∗
q .

Examining the last part of the previous proof we obtain the following property of
expansions of Liouville numbers.

Corollary 2.3 If α ∈ [0, 1] is a Liouville number, then for every integer k > 1 there
exist a base b = bα,k ≥ 2 such that the b-ary expansion x = x1x2 · · · of α starts with
x10k or x1(b − 1)k .

2.2 Maillet’s Construction of Liouville Numbers

Based on patterns of their expansions we describe a simple ‘construction’ of Liouville
numbers which will be used in the sequel. This construction was sketched, without
proof by Maillet in [28] (see also [35, Kapitel 1]).

Using finitely or infinitely many strings wi ∈ A∗
b we can construct b-ary expan-

sions of real numbers. Let f : IN → IN \ {0}; by 
∞
j=0w

f (j)
j we denote the

concatenation of w0 (f (0) times), w1 (f (1) times),w2 (f (2) times). . .

Lemma 2.4 Let (wi)i∈IN be a family of non-empty strings wi ∈ A∗
b, f : IN →

IN\{0}, and ni = ∑i
j=0 f (j)·|wj |. If lim infi→∞ ni−1+|wi |

ni
= 0, then x = 
∞

j=0w
f (j)
j

is the b-ary expansion of a rational or a Liouville number.

Proof Let vi = 
i−1
j=0w

f (j)
j and observe that ni−1 = ∣

∣
i−1
j=0w

f (j)
j

∣
∣ = |vi |. Next,

choose two positive integers i, k such that (ni−1 + |wi |) · k < ni and consider the
b-ary expansion yi = 
i−1

j=0w
f (j)
j · wω

i = vi · wω
i . Then x and yi both start with


i
j=0w

f (j)
j = vi · w

f (i)
i .

Using Lemma 2.1 we get two positive integers pi, qi such that
∣
∣
∣
∣
0.x − pi

qi

∣
∣
∣
∣
≤ q

− ni−1+f (i)·|wi |
ni−1+|wi |

i = q
− ni

ni−1+|wi |
i ≤ q−k

i .

Remark Maillet [28] requested that the repetition factors f (i) (Ki in the terminology
of [35, p. 411] and km in [28]) increase rapidly (‘Si km croı̂t assez vite avec m’ [28]).
In Lemma 2.4 the function f does not have to be increasing. For example, the above
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construction with w2i = 0, w2i+1 = 1, f (2i) = i! and f (2i + 1) = 1 yields, for
every base b, a Liouville number with the expansion 
∞

j=00j !1.

2.3 A construction of Liouville Numbers Normal in a Given Base

A simple construction of Liouville numbers normal in a given base b via their b-ary
expansions was given in [32]. The construction uses de Bruijn strings.

A de Bruijn word of order r is a b-ary string w of length br + r − 1 over the
alphabet Ab such that any string of length r occurs as a substring of w (exactly
once). It is well-known that de Bruijn words of any order r and every alphabet size
b exist and have an explicit construction [16, 38] or [20, Ch. 9]. For example, 00110
and 0001011100 are binary de Bruijn words of orders 2 and 3, respectively, and
0010221120 and 0011021220 are ternary de Bruijn words of order 2.

Note that de Bruijn words are derived in a circular way, hence their prefix of
length r − 1 coincides with the suffix of length r − 1. Denote by B(b, r) the prefix
of length br of a de Bruijn word of order r over Ab. To be precise we assume that
B(b, r) is the lexicographically first br -length prefix among all b-ary de Bruijn words
of order r . Thus B(b, r) starts with 0r1 and ends on a symbol different from 0, and,
consequently, B(b, r) is not a prefix of B(b, r + 1).

From the examples of binary de Bruijn words of orders 2 and 3 previously pre-
sented the strings B(2, 2) = 0011 and B(2, 3) = 00010111 are derived. Thus the
string B(b, r) ·B ′(b, r), where B ′(b, r) is the length r − 1 prefix of B(b, r), contains
every b-ary string of length r exactly once as a substring.

Theorem 2.5 ([32]) Let f : IN → IN be an increasing function such that f (i) ≥ ii ,
for all i ≥ 1. Let B(b, r) the prefix of length br of a de Bruijn word of order r . Then
every sequence of the form

xf = 
∞
i=1B(b, i)f (i) = B(b, 1)f (1)B(b, 2)f (2) · · · B(b, i)f (i) · · · (4)

is normal in base b.

Moreover, certain numbers of the form of (4) are Liouville numbers.

Theorem 2.6 ([32]) If the family
(

B(b, i)
)

i∈IN and f satisfy the hypothesis of Lemma
2.4, then the real αf = 0.xf is a Liouville number.

Remark Since the set of strings {B(b, i) : i ∈ IN, i ≥ 1} is, by construction, prefix-
free, it is easy to see that the number αf = 0.xf is computable if and only if the
function f is computable.

3 Relations Between L , C , N and M

In this section we explore the relations between the classes L , C , N and M .
First, how large are the classes L , C , B, M from the points of view of measure

and category (in Baire sense, cf. [33])? While C is countable, all the other classes
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have the cardinality of the continuum. The class L is a dense Gδ-set (hence co-
meagre), measure zero set [7, 33]; it has Hausdorff dimension zero [22]. The classes
B and M are constructive measure one [30], but constructively meagre in the Can-
tor space [10, 33] (a constructive meagre set is a meagre set covered by a computably
enumerable union of computably enumerable nowhere dense subsets; a constructive
meagre set is “smaller” than a meagre set). The latter property depends on the topol-
ogy chosen: in [12] it is shown that M is co-meagre for a suitably chosen metric
topology refining the topology of the Cantor space.

3.1 Complexity-Theoretic Properties

In this section we present results from [37] which provide some sufficient criteria for
numbers being Borel absolutely-normal or non-Liouville using tools of Algorithmic
Information Theory. To this end we use the asymptotic complexities lim inf

n→∞ Cb(x �
n)/n and lim sup

n→∞
Cb(x � n)/n of their b-ary expansions. Our criteria, however, imply

that the numbers fulfilling them are highly incomputable.
These asymptotic complexities are base-invariant (cf. [37]), that is,

lim inf
n→∞ Cb(x � n)/n = lim inf

n→∞ Cb′(y � n)/n,

(and likewise for lim sup ) whenever 0.x = 0.y for x ∈ Ab and y ∈ Ab′ .
In view of the inequalities C(w) ≤ K(w)+c ≤ C(w)+2 · log |w|+c′ for suitable

constants c, c′ (cf. [9, 17]) in what follows we could replace the plain complexity C

by the prefix-free complexity K .
From the definitions of Martin-Löf random and computable reals we obtain the

following well-known facts (see [9, 17]).

Fact 3.1 (a) Let x be the b-ary expansion of a Martin-Löf random number. Then
lim inf
n→∞ C(x � n)/n = 1 . (b) If x is the b-ary expansion of a computable number then

lim sup
n→∞

C(x � n)/n = 0 .

Using a result of Kolmogorov [26] and the base-invariance of the asymptotic com-
plexity, Fact 3.1 (a) can, to a certain extent, be reversed yielding a sufficient condition
for absolute normality.

Lemma 3.2 ([37, Corollary 9]) Let x be the b-ary expansion of a real α ∈ [0, 1]. If
lim inf
n→∞ C(x � n)/n = 1, then α is Borel absolutely-normal.

Generalising the proof of Lemma 10 of [37] we can establish a close connection
between the irrationality exponent of a real α ∈ [0, 1] and the asymptotic complexity
of its b-ary expansions.

Lemma 3.3 Let α ∈ [0, 1] be an irrational number with irrationality exponent μ ≥ 2
and let x be its b-ary expansion. Then lim inf

n→∞ C(x � n)/n ≤ 2/μ.
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Proof We fix a rational number m < μ. Then there are infinitely many positive
integers p, q such that |α− p

q
| < q−m, so for every pair (p, q), the real α is an interior

point of the interval
(

p
q

− 1
qm ,

p
q

+ 1
qm

)

. Proceeding as in the proof of Lemma 10 in

[37], we note that this interval can be covered by at most two intervals of the form
[

a
bk , a+1

bk

)

, where k = �logb(q
m/2)� (see [37, Fact 4]). The b-ary expansions of the

reals in these intervals start with the words w0(p, q) and w1(p, q) in Ak
b, respectively,

and these words can be effectively computed from p and q and the fixed rational
number m.

Next we encode the numbers p and q via a prefix-free encoding code : IN → A∗
b

satisfying |code(	)| ≤ logb 	 + 2 logb logb 	 + c for a suitable constant c ∈ IN (see
e.g. [9, Example 2.5]) and let πp,q(i) = i · code(p)code(q), i ∈ Ab. Since p ≤ q

we have |πp,q(i)| ≤ 2 · (logb q + 2 logb logb q + c).
Further we define, for every fixed rational m, the mapping ψm : A∗

b → A∗
b by

ψm(πp,q(i)) =
{

w0(p, q), for i = 0,
w1(p, q), otherwise.

Then |ψm(πp,q(i))| = �logb(q
m/2)� ≥ m·logb q−3. Hence, there exist infinitely

many prefixes wi(p, q) of the b-ary expansion x of α such that

Kψ(wi(p, q))

|wi(p, q)| ≤ 2 · (logb q + 2 logb logb q + c)

m · logb q − 3
≤ 2/m.

As m can be chosen arbitrarily close to μ, the statement of the lemma follows.

From Fact 3.1 (a) we deduce:

Corollary 3.4 Every Martin-Löf random real has irrationality exponent 2.

Complementing Corollary 3.4, in [3] it was proved that the set of irrationality
exponents of computable reals coincides with the set of upper limits of computable
sequences of rationals greater than or equal to 2.

Lemma 10 and Corollary 11 in [37] are now corollaries of Lemma 3.2.

Corollary 3.5 ([37, Lemma 10]) Every b-ary expansion x of a Liouville number has
lim inf
n→∞ C(x � n)/n = 0.

Corollary 3.6 ([37, Corollary 11]) The sets of Liouville numbers and Martin-Löf
random numbers are disjoint.

Is the bound 2/μ in Lemma 3.3 the best upper bound for reals having irrational-
ity exponent μ? The following considerations based on results by Jarnı́k [22] and
Ryabko [34] show that the bound 2/μ cannot be in general improved. To this aim
we use the Hausdorff dimension for subsets of [0, 1] and Aω

b . It is well-known that
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dim M = dim{x : x is a b-ary expansion of α ∈ M} and dim is monotone with
respect to set inclusion, see [18, 19].

Theorem 3.7 ([22]) Let μ ≥ 2. Then

dim{α : α ∈ [0, 1] has irrationality exponent μ} = 2/μ .

Theorem 3.8 ([34, 36]) Let γ > 1. Then

dim{x : lim inf
n→∞ C(x � n)/n ≤ γ } = γ .

According to Ryabko’s Theorem 3.8, for every ε > 0 the set {x : lim inf
n→∞ C(x �

n)/n ≤ 2/μ − ε} has Hausdorff dimension 2/μ − ε < 2/μ. Thus, this set can-
not contain the set Fμ = {x : 0.x has irrationality exponent equal to μ} which has
dim Fμ = 2/μ by Jarnı́k’s Theorem 3.7. Consequently, there is a sequence y ∈ Fμ

such that lim inf
n→∞ C(y � n)/n > 2/μ − ε.

3.2 Empty Intersections

Here we summarise known relations between our four classes of real numbers.
Except for the one in (7) which is Corollary 3.6 these relations are folklore; however,
one can deduce them also from the results in the previous section.

Fact 3.9

M ⊂ B, (5)

M ∩ C = ∅, (6)

M ∩ L = ∅. (7)

If we consider all possible Boolean combinations between the four classes of num-
bers L , B, M and C we obtain that out of 16 possible combinations the following
seven sets are empty:1

L̄ ∩ C̄ ∩ B̄ ∩ M , L̄ ∩ C ∩ B̄ ∩ M , L ∩ C̄ ∩ B̄ ∩ M , L ∩ C ∩ B̄ ∩ M (all
because M ⊆ B), L̄ ∩C ∩B ∩M , L ∩C ∩B ∩M (both because C ∩M = ∅),
and L ∩ C̄ ∩ B ∩ M (because M ∩ L = ∅).

3.3 Non-Empty Intersections

Next we show that eight of the nine remaining intersections are non-empty, but they
are all “small” in measure or/and category. For the remaining intersection L̄ ∩ C ∩
B∩M̄ we give an indication that it might be non-empty: [15, Theorem 1] shows that
there are computable non-Liouville numbers which have a binary expansion which
is normal.

1We denote by S̄ the complement of the set S.
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The first three non-emptiness results follow from [8]. Liouville numbers normal
to a fixed base b, b ≥ 2, can be constructed in a simpler way (see Section 2.3 above).

3.3.1 L ∩ C̄ ∩ B ∩ M̄

In [8, Theorem 2] it is proved that the set L ∩ B is uncountable, thus it contains
incomputable reals.

3.3.2 L ∩ C ∩ B ∩ M̄

Based on the proof of Theorem 2 in [8] a construction of a computable Borel
absolutely-normal Liouville number was given in [5].

3.3.3 L ∩ C̄ ∩ B̄ ∩ M̄

Incomputable Liouville numbers not normal to a certain base have been constructed
in [23, Proposition 7]. The required example can be obtained from Lemma 2.4 with
w2i = 0, w2i+1 = ai ∈ Ab, f (2i + 1) = 1 and f (2i) = i! − (i − 1)! − 1, where
the sequence (ai)i∈IN is incomputable. This yields incomputable Liouville numbers
∑∞

i=1 ai · b−i! with the expansion 
∞
j=00f (2j)aj which are not normal in base b.

A stronger existence result is Theorem 1 of [8] which shows that there are
uncountably many Liouville numbers not normal to any base.

3.3.4 L ∩ C ∩ B̄ ∩ M̄

Liouville’s ‘classical’ number
∑∞

i=1 b−i! is computable, and not normal in base b.
A more interesting example was given by Martin [29] who constructed a Liouville

number not normal in any base.

3.3.5 L̄ ∩ C̄ ∩ B̄ ∩ M̄

Let α = 0.x1x2 . . . xn . . . , xi ∈ Ab be Martin-Löf random (given by a b-ary expan-
sion) and let β = 0.y, where y = x100x200 . . . xn00 . . . . Then β is not normal in
base b because its b-ary expansion contains at least 2/3 more 0’s than other digits.
Further, β is not computable, as otherwise, α would be computable. Finally, since
lim infn→∞ C(y � n)/n = 1/3 (actually β is 1/3–Martin-Löf random in the sense of
[13]), Lemma 3.5 shows that β is not a Liouville number.

3.3.6 L̄ ∩ C̄ ∩ B ∩ M

Here L̄ ∩ C̄ ∩ B ∩ M = M 	= ∅ follows from Fact 3.9.
An interesting example of a real in this class is Chaitin’s Omega number

� = ∑

n≥1 2−K(bin(n)) (see [9, 17]), where bin(n) is the nth binary string in
quasi-lexicographical order.
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3.3.7 L̄ ∩ C ∩ B̄ ∩ M̄

Every rational number is computable but neither Liouville nor normal.
The computable irrational number αb = ∑

i∈IN b−2i
is non-Liouville (see [25]). It

is readily seen that αb is not normal in base b.

3.3.8 L̄ ∩ C̄ ∩ B ∩ M̄

Let α = 0.x1x2 . . . xn . . . be a Martin-Löf random real (given by a b-ary expansion)
and let y(2i ) = 0 and y(j) = xj , otherwise. Then lim infn→∞ C(y � n)/n = 1 (see
[31, Example 4.1]) and, in view of Lemmas 3.2 and 3.5, the real β = 0.y is a Borel
absolutely-normal non-Liouville number.

To show that β = 0.y is not Martin-Löf random we use the following property (cf.
[9, Corollary 6.4.2] or [17, Theorem 7.2.23]):

Fact 3.10 For the b-ary expansion α = 0.x1x2 . . . xn . . . of a Martin-Löf random
real the set {j : xj = 0} cannot contain an infinite computable subset M ⊆ IN, in
particular not the set {2i : i ∈ IN}.

As a referee pointed out, the stronger result that for every μ ∈ [2, ∞] there exist
Borel absolutely-normal numbers having irrationality exponent μ follows from non-
elementary measure-theoretic arguments, see [24] and [8].

3.3.9 L̄ ∩ C ∩ B ∩ M̄

It is an open problem whether there exist computable, Borel absolutely-normal, non-
Liouville numbers. There exist computable, non-Liouville numbers, normal to base
2, but not Borel absolutely-normal. Any Stoneham number F(1/2) = ∑∞

i=1 2−ki ·k−i

(where k ∈ IN is odd, k ≥ 3) is computable, normal in base 2 (but not in base 6, see
[15]), and, by [15, Theorem 1], has irrationality exponent μ(F(1/2)) = k, thus, it is
not Liouville.

The set L ∩ C̄ ∩ B̄ ∩ M̄ is co-meagre and has measure zero and the set L̄ ∩
C̄ ∩ B ∩ M = M has constructive measure one and is meagre. The remaining
non-empty sets are meagre and have constructive measure zero.

4 Concluding Remark

We surveyed relations between four classes of real numbers: Liouville numbers,
computable reals, Borel absolutely-normal numbers and Martin-Löf random reals.
The results showed that several properties of real numbers are incompatible. For
the remaining possibilities – up to one case – we found real numbers having these
properties. We note that the existence results come from quite different realms of
mathematics and theoretical computer science.
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The existence of computable, Borel absolutely-normal, non-Liouville numbers
was discussed in Section 3.3.9.
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