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The Kochen-Specker theorem proves the inability to assign, simultaneously, noncon-
textual definite values to all (of a finite set of) quantum mechanical observables in a
consistent manner. If one assumes that any definite values behave noncontextually,
one can nonetheless only conclude that some observables (in this set) are value
indefinite. In this paper, we prove a variant of the Kochen-Specker theorem showing
that, under the same assumption of noncontextuality, if a single one-dimensional
projection observable is assigned the definite value 1, then no one-dimensional
projection observable that is incompatible (i.e., non-commuting) with this one can
be assigned consistently a definite value. Unlike standard proofs of the Kochen-
Specker theorem, in order to localise and show the extent of value indefiniteness,
this result requires a constructive method of reduction between Kochen-Specker
sets. If a system is prepared in a pure state |ψ⟩, then it is reasonable to assume
that any value assignment (i.e., hidden variable model) for this system assigns
the value 1 to the observable projecting onto the one-dimensional linear subspace
spanned by |ψ⟩, and the value 0 to those projecting onto linear subspaces orthogonal
to it. Our result can be interpreted, under this assumption, as showing that the
outcome of a measurement of any other incompatible one-dimensional projection
observable cannot be determined in advance, thus formalising a notion of quantum
randomness. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931658]

I. THE KOCHEN-SPECKER THEOREM AND VALUE INDEFINITENESS

Bell’s theorem1 and the Kochen-Specker theorem2 are perhaps two of the results which have
been most influential in developing the modern understanding of quantum mechanics as an irreduc-
ibly non-classical theory.3,4 Moreover, these two no-go theorems are seen as the strongest argument
for quantum mechanics being a fundamentally indeterministic theory, rather than one ruled by a
deeper determinism below the level of the quantum mechanical description of reality.

Bell’s theorem, which shows that quantum mechanics predicts statistical correlations between
separated particles greater than what would be possible in any local, realistic, classical theory, was
the focus of attention for several decades due to its relatively clear ability to be tested experimen-
tally.5 The Kochen-Specker theorem was proved very shortly afterwards, but was largely ignored
due to a perceived lack of testability, and perhaps also its formalisation in terms of partial algebras,
until it attracted renewed attention with the more recent advances in quantum information theory
and foundations. In contrast to the bounds on probability distributions given by Bell’s theorem, the
Kochen-Specker theorem shows that the Hilbert-space structure of quantum mechanics makes it
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impossible to assign “classical” definite values to all quantum observables in a consistent manner.
Since such a definite value is precisely a (deterministic) hidden variable specifying, in advance, the
result of a measurement of an observable, this means that the outcomes of all quantum measure-
ments on a system cannot be simultaneously predetermined. More recent developments have signifi-
cantly reduced the size and difficulty of proofs of the Kochen-Specker theorem6 and converted such
proofs into testable inequalities.7

However, in showing the impossibility of a classical deterministic “two-valued” measure
(i.e., value assignment), the Kochen-Specker theorem leaves open several possible conclusions.
The Kochen-Specker theorem, more specifically, finds a contradiction between the following three
assumptions, which will be formalised more rigorously a little later:

(i) all observables are assigned a definite value (i.e., are “value definite”);
(ii) this definite value should be noncontextual — that is, assigned as a function of the observ-

able alone, and not depending on other compatible observables;
(iii) the definite values for a set of compatible observables must be consistent with the theoretical

quantum predictions for the relations between them.

Condition (iii) is largely uncontroversial and hence one must generally conclude that either (or even
both) (i) and (ii) must be given up. Several alternative interpretations of quantum mechanics are
contextual (e.g., Ref. 8), and hence discard (ii). Perhaps the more popular interpretation, however, is
that the inability to simultaneously assign noncontextual definite values, representing predetermined
measurement outcomes, to all observables means that measurement outcomes are not determined
in advance at all: that quantum mechanics represents a value indefinite reality. This interpretation is
often referred to simply as “contextuality” in the literature; however we reserve this term strictly for
the contextual behaviour of definite values.

If we choose to require (ii) to hold, at least for any observables that are assigned definite values,
then there remains an oft-overlooked gap between the formal result of the Kochen-Specker theorem
and the general interpretation of it. Indeed, the negation of (i) is that not all observables are assigned
definite values: it does not prove that no observable can be assigned a definite value and hence,
given that definite values represent predetermined measurement outcomes, does not show that all
measurements must result in the ex nihilo creation of an outcome, nor does it allow one to know
which observables in any set are value indefinite. We can, of course, postulate that if some observ-
ables are value indefinite, then this should, by symmetry or uniformity considerations, be the case
for all observables (or at least those for which the Born rule assigns a probability strictly between
0 and 1 to some outcomes). However, it is key to realise that this is not in any sense a formal
consequence of the Kochen-Specker theorem and constitutes an additional, undesired, assumption.

In this paper, we address precisely this issue. As is common in modern treatments of the
Kochen-Specker theorem,6,9,10 we focus on one-dimensional (rank-1) projection observables, and
we denote the observable projecting onto the linear subspace spanned by a vector |ψ⟩ as Pψ =

|ψ⟩⟨ψ|
|⟨ψ|ψ⟩| .

By using a modified, weakened set of assumptions, we prove that if one such projection observable
Pψ is assigned the value 1, then no other such projection observable Pφ can be consistently assigned
a definite value unless Pψ and Pφ commute. In interpreting this result physically, we note that if
a system is prepared in the state |ψ⟩, then the outcome of a measurement of the observable Pψ is
known to be 1 with certainty, and thus any value assignment representing the outcomes of possible
measurements on the system should assign the value 1 to Pψ. If Pφ does not commute with Pψ, it
is, therefore, value indefinite under such a value assignment and hence cannot have a consistently
predetermined measurement outcome.

This self-contained, analytic proof extends and generalises the results of Refs. 11 and 12.
Throughout the paper, we will assume (ii) to hold, as is common in interpretations of the

Kochen-Specker theorem, and our strengthened results and interpretation of the Kochen-Specker
theorem thus rely on this condition. We do not attempt to justify this assumption here, as this is
an interpretational choice and the subject of much debate (see Ref. 13 [Chap. 4] for an overview),
which is beyond the scope of this paper.
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A. Definitions

As usual we denote by C the set of complex numbers and use the standard quantum mechanical
bra-ket notion, that is, we denote (unit) vectors in the Hilbert space Cn by |·⟩. As mentioned above,
we will focus on one-dimensional projection observables and denote by Pψ the operator projecting
onto the linear subspace spanned by |ψ⟩, that is, Pψ =

|ψ⟩⟨ψ|
|⟨ψ|ψ⟩| .

In the following, we formalise hidden variables and the notion of value definiteness in a clear
and unambiguous fashion. This framework is based on that we developed in Ref. 11, and similar to
standard approaches to the Kochen-Specker theorem;9 we have made several simplifications since
we do not wish to explore contextual definite values or hidden variable theories in any detail here.

We fix a positive integer n ≥ 2. Let O ⊆ {Pψ | |ψ⟩ ∈ Cn} be a nonempty set of one-dimensional
projection observables on the Hilbert space Cn.14

Definition 1. A set C ⊂ O is a context of O if C has n elements (i.e., |C | = n) and for all
Pψ,Pφ ∈ C with Pψ , Pφ, ⟨ψ|φ⟩ = 0.

Since distinct one-dimensional projection observables commute if and only if they project
onto mutually orthogonal linear subspaces, a context C of O is thus a maximal set of compatible
one-dimensional projection observables on Cn. Because there is a direct correspondence (up to a
phase-shift) between unit vectors and one-dimensional projection observables, a context is uniquely
defined by an orthonormal basis of Cn.

Recall that a partial function is one which may be undefined for some values. If it is defined
everywhere, then it is total.

Definition 2. A value assignment function (on O) is a partial two-valued function v : O →
{0,1}, assigning values to some (possibly all) observables in O.

We note that we could, as in Ref. 11, allow v to be a function of both the observable P and
the context C containing P, allowing values to be assigned contextually. It would perhaps be more
correct to call v , as defined above in Definition 2, a noncontextual value assignment function;
however, since we are interested only in the noncontextual case, we avoid this for compactness.

Definition 3. An observable P ∈ O is value definite (under v) if v(P) is defined; otherwise, it is
value indefinite (under v). Similarly, we call O value definite (under v) if every observable P ∈ O is
value definite.

B. The Kochen-Specker theorem

With this terminology, we can state the Kochen-Specker theorem formally. We present it in
the following form deliberately in order to draw the comparison to our earlier informal description,
and to clarify the following discussion, even though the second condition is redundant because we
require, by definition, that a value assignment function be noncontextual.

Theorem 1 (Kochen-Specker, Ref. 2). Let n ≥ 3. Then there exists a (finite) set of one-
dimensional projection observables O on the Hilbert space Cn such that there is no value assign-
ment function v satisfying the following three conditions:

(i) O is value definite under v , that is, v is a total function.
(ii) The value v(P) of an observable P ∈ O depends only on P and not the context containing P.

(iii) For every context C of O, the following condition holds:


P∈C v(P) = 1 (this condition
means that v is a Boolean frame function with weight 115).

The third condition expresses the fact that only one projection observable in a context can
be assigned the value 1. As we mentioned earlier, this is largely uncontroversial: one can simul-
taneously measure the observables in a context and quantum mechanics predicts precisely that
exactly one of these measurements should give the result “1,” thus any corresponding definite values
assigned to these observables should obey this same condition. Hence, if we assume (ii) to be
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true — at least for observables that are value definite for which the statement makes clear sense —
then the Kochen-Specker theorem requires us to conclude the negation of (i): that O cannot be value
definite, and hence at least one observable must be value indefinite.

Note that the third condition is not independent of the first: it is not clear how the sum
P∈C v(P) should be evaluated if v(P) is undefined. This is one of the key issues we will clarify in

attempting to localise value indefiniteness.

II. A PATH TO LOCALISING VALUE INDEFINITENESS

While the Kochen-Specker theorem certainly succeeds, as was the original intention, in show-
ing that quantum mechanics must obey an entirely non-classical event structure, it does not, as we
have pointed out, show that all observables must be value indefinite and their outcomes intrinsically
indeterministic. As a consequence of the global nature of the hypothesis of the theorem — that all
observables are value definite — one can only draw a global conclusion: that not all observables are
value definite. That is, the theorem, even under the assumption of noncontextuality, cannot “locate”
value indefiniteness to any particular observable. This is an important point not only for the foun-
dational understanding of quantum mechanics but also in practical applications: quantum random
number generators and cryptographic schemes rely on the indeterminism of quantum mechanics
providing “irreducible randomness.”16 To certify such claims, it is important to be able to localise
value indefiniteness to ensure it applies to the observables measured in such applications.

We proceed by providing more nuanced and less demanding, localised versions of the Kochen-
Specker assumptions and use these to localise value indefiniteness (always under the assumption of
noncontextuality for value definite observables).

A. Localising the hypotheses

Our approach is a conservative one: rather than assuming complete value definiteness of the
entire set of observables considered, we require observables to be value definite only when their
indefiniteness would allow the possibility of measurements violating the quantum predictions (if an
observable is value indefinite, this must surely imply that both outcomes are possibilities) specified
in condition (iii) of the Kochen-Specker theorem (see the more detailed discussion and example
below).

In order for this approach to work, we need, as a premise, at least one observable to be value
definite. We then show that the assumption that any other observable is value definite leads to a
contradiction.

Fortunately, there is a justification for this premise: if a system is prepared in an arbitrary
state |ψ⟩ ∈ Cn, then measurement of the observable Pψ should yield the outcome 1. Thus, it seems
reasonable to require that, if Pψ ∈ O, then v(Pψ) = 1. We call this the eigenstate assumption,11

which is similar to, although weaker than, the “eigenstate-eigenvalue link” discussed in Ref. 17.
Furthermore, since the critical feature of a set O of projection observables is the orthogonality
relations between these observables rather than the specific form of these observables, we can
hence choose our basis at will. It is thus not unreasonable to consider that some one-dimensional
projection observable in O has the value 1, and to fix the basis used to express O to that of the state
|ψ⟩ to make this observable coincide with Pψ.

Let us finally discuss how assumption (iii) can be generalised for partial value assignment
functions v , that is, the case where some observables in O may be value indefinite.

Definition 4 (Admissibility). Let O be a set of one-dimensional projection observables on Cn

and let v : O → {0,1} be a value assignment function. Then, v is admissible if the following two
conditions hold for every context C of O:

(a) if there exists a P ∈ C with v(P) = 1, then v(P′) = 0 for all P′ ∈ C \ {P};
(b) if there exists a P ∈ C with v(P′) = 0 for all P′ ∈ C \ {P}, then v(P) = 1.
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FIG. 1. Greechie orthogonality diagram of a proof of the Kochen-Specker theorem.6 The value of v of each observable
(node) P is represented as follows: v(P)= 1 — black square; v(P)= 0 — filled circle; v(P) undefined (value indefinite) —
hollow circle. (a) The contradiction arising when v(Pa)= v(Pb)= 1: v cannot be admissible, since this would require that
v(Pc)= 0 and v(Pc)= 1 simultaneously, as shown by the cross in the diagram. (b) A possible admissible value assignment
when v(Pa)= 1 and v(Pb)= 0.

Admissibility requires that the quantum predictions of (iii) are never violated, while allowing
the value indefiniteness of an observable P if both outcomes (0 and 1) of a measurement of P would
be compatible with the definite values of other observables sharing a context with P. For example,
if v(P) = 1, then a measurement of all the observables in a context C containing P must yield the
outcome 1 for P, and hence to avoid contradiction the outcome 0 for the other observables in the
context. On the other hand, if v(P) = 0, even though measurement of P must yield the outcome 0,
any of the other observables in C could yield the value 1 or 0 (as long as only one yields 1); hence,
we should not conclude the value definiteness of these other observables.

1. An illustrated example

Let us illustrate the difference between our weakened assumptions, and, in particular, admissi-
bility, with the hypotheses of the Kochen-Specker theorem.

Consider the Greechie orthogonality diagram shown in Fig. 1, in which vertices depict observ-
ables and smooth lines or curves represent contexts. This well known diagram represents the
“orthogonality” relations between the observables used in a well known proof of the Kochen-
Specker theorem due to Cabello et al.,6 containing only 18 one-dimensional projection observables
on C4.

The Kochen-Specker theorem implies that there is no way to assign every observable in this di-
agram a value such that the admissibility requirements hold: exactly one observable in each context
should have the value 1.

Let us suppose for the sake of example that v(Pa) = v(Pb) = 1 and that v is admissible. Then,
by working from Pa and Pb and applying the admissibility rule (a), one deduces that all observables
in a context with Pa or Pb must take the value 0. One then notices that there are contexts containing
3 observables with the value 0, so we can deduce from (b) that the fourth must have the value
1. If we follow this line of reasoning, we can continue to assign values to observables with the
admissibility requirements, as depicted in Fig. 1(a), where a black square represents the value 1, and
a black circle the value 0. As we can see, by considering the contexts C1 and C2 we can infer that
Pc must take both the values 1 and 0, respectively: both possibilities contradict the admissibility of
v , as does the final possibility — that Pc is value indefinite. Note that, in Fig. 1(a), the contradiction
obtained at Pc marked by the cross is a consequence of a specific succession of applications of the
admissibility rules (a) and (b) in Definition 4. By applying these rules in a different order, one can
obtain the contradiction also at Pd, Pe, or Pf .
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The most important aspect of this reasoning in this context is that it is deterministic: we proceed
only by deducing the value definiteness of observables via (a) and (b).

Now let us assume that v(Pa) = 1 and v(Pb) = 0, as depicted in Fig. 1(b). We again apply (a) to
observables commuting with Pa; however, we then see that neither (a) nor (b) can be used again to
deduce the value of another observable. Normally, in proving that this diagram permits no consis-
tent assignment of definite values, one would then proceed by assuming that one of the unfilled
observables, such as Pc, must have either v(Pc) = 1 or v(Pc) = 0, and trying both possibilities. One
can do this when proving the Kochen-Specker theorem since one assumes (i): that every observable
must have a definite value. However, in order to localise value indefiniteness, we do not make this
assumption. Hence, the value assignment in Fig. 1(b), with the observables represented by unfilled
circles being value indefinite (e.g., v(Pc) undefined), represents an admissible value assignment.

Thus, under the assumption that v(Pa) = 1, Fig. 1 does not suffice to prove that v(Pb) must be
value indefinite, and hence cannot be used to localise value indefiniteness. It is not difficult to see
that we reach the same conclusion irrespective of our choice of observables as Pa and Pb.

In this paper, in proving the main theorem, we give a set of observables for which this is
the case. That is, there are observables Pa and Pb such that if v(Pa) = 1 then both v(Pb) = 0 and
v(Pb) = 1 lead, via admissibility, to contradictions.

III. THE LOCALISED VARIANT OF THE KOCHEN-SPECKER THEOREM

Let us now state the strengthened theorem which is the focus of this paper. As we mentioned,
this generalises the results of Refs. 11 and 12 and uses a different proof technique allowing for a
more symmetrised analytic approach. The result in Ref. 12, on the other hand, relies on computa-
tional results and the interpretation of graphs.

Theorem 2. Let n ≥ 3 and |ψ⟩ , |φ⟩ ∈ Cn be unit vectors such that 0 < |⟨ψ|φ⟩| < 1. We can
effectively find a finite set of one-dimensional projection observables O containing Pψ and Pφ for
which there is no admissible value assignment function on O such that v(Pψ) = 1 and Pφ is value
definite.

Before we proceed to prove Theorem 2, let us first discuss some important relevant issues.
This theorem has a slightly different form from the standard Kochen-Specker theorem because

of the requirement that a particular observable in the set O be assigned the value 1. However,
since, as we will see, it is only the orthogonality relations between the observables in O which
is important, a change of basis can always ensure that the required observable Pψ be assigned the
value 1.

In order to interpret this result, one has to take into account the eigenstate assumption discussed
in Sec. II A: If a quantum system is prepared in a state |ψ⟩ in n ≥ 3 dimensional Hilbert space, then
every one-dimensional projection observable that does not commute with Pψ is value indefinite and
hence cannot have a predetermined measurement outcome.

A. Insufficiency of existing Kochen-Specker diagrams

The first question to address is whether existing Kochen-Specker diagrams (i.e., Greechie dia-
grams specifying the orthogonality relations of O) could be used to provide a set O of observables
proving Theorem 2; it is not a priori obvious that such diagrams are unable to do so. In Section
II A 1, we showed, as an example, that a particular simple and well-known Kochen-Specker dia-
gram is not sufficient for this purpose. A careful search through existing diagrams showed that this
is the case in general, and we were unable to find an existing Kochen-Specker diagram in which
there are two observables Pa and Pb with the required property that if v(Pa) = 1, both v(Pb) = 0 and
v(Pb) = 1 lead to a contradiction.

A second conceptual problem with the use of fixed Kochen-Specker diagrams as in existing
proofs is the following. Since, in order to derive a contradiction, we need to assume that an observ-
able Pψ in the given observable set has v(Pψ) = 1, and this limits the observables which can be
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TABLE I. The 37 vectors specifying the observables used in the proof of Lemma 1, with normalisation factors omitted.

|a⟩= (1,0,0) |b⟩= (√2,1,1) |1⟩= (0,1,1) |2⟩= (0,1,−1) |3⟩= (√2,−1,−1)
|4⟩= (0,0,1) |5⟩= (0,1,0) |6⟩= (√2,1,−3) |7⟩= (1,−√2,0) |8⟩= (√2,−3,1)
|9⟩= (1,0,−√2) |10⟩= (√2,1,0) |11⟩= (√2,0,1) |12⟩= (√2,−2,−3) |13⟩= (1,−√2,

√
2)

|14⟩= (√2,−3,−2) |15⟩= (1,√2,−
√

2) |16⟩= (√8,1,−1) |17⟩= (√8,−1,1) |18⟩= (√2,−7,−3)
|19⟩= (√2,−1,3) |20⟩= (√2,−3,−7) |21⟩= (√2,3,−1) |22⟩= (1,√2,0) |23⟩= (1,0,√2)
|24⟩= (√2,−1,−3) |25⟩= (√2,−1,1) |26⟩= (√2,−3,−1) |27⟩= (√2,1,−1) |28⟩= (√2,−1,0)
|29⟩= (√2,0,−1) |30⟩= (√2,2,3) |31⟩= (√2,3,2) |32⟩= (√2,3,7) |33⟩= (√2,7,3)
|34⟩= (√2,1,3) |35⟩= (√2,3,1)

shown to be value indefinite to, at best, the remaining ones in O \ {Pψ}. However, we wish to prove
more: that every one-dimensional projection observable not commuting with Pψ is value indefinite.

As a result, we need not only a set of observables with the required properties discussed above
but furthermore an approach to generalise this set of observables to arbitrary other observables. We
overcome this apparent lack of generality via a method of reductions, which we present in Sec. III B
and will return to discuss later on.

B. Proof of Theorem 2

We prove Theorem 2 in three main steps:

1. We first prove it for the special case that |⟨ψ|φ⟩| = 1√
2
. A similar result (for |⟨ψ|φ⟩| = 3√

14
) was

shown in Ref. 11, but this involved two separate diagrams applying to separate cases. Here, we
give a single diagram providing a much more compact, clear proof.

2. We prove a simple reduction for 0 < |⟨ψ|φ⟩| < 1√
2

to the first case.
3. The third and main part of the proof involves finding a reduction in the opposite sense, applying

to the final 1 > |⟨ψ|φ⟩| > 1√
2

case. It is this final reduction allowing the complete proof that is
the most involved technical aspect of this paper.

As is standard in Kochen-Specker proofs,9 we will work directly in the three-dimensional case
of C3 (in fact, only R3 is needed), since the case for n > 3 can be simply reduced to this situation.

Lemma 1. Given any two unit vectors |a⟩ , |b⟩ ∈ C3 with |⟨a|b⟩| = 1√
2

there exists a finite set of
one-dimensional projection observables O such that if v(Pa) = 1 then Pb is value indefinite under
every admissible assignment function v on O.

Proof. By choosing an appropriate basis, we can assume, without loss of generality, that
|a⟩ = (1,0,0) and |b⟩ = 1

2 (1,
√

2,1). Let us consider the set O = {Pa,Pb,Pi; i = 1, . . . ,35} of one-
dimensional projection observables where the vectors |i⟩ for i = 1, . . . ,35 are defined in Table I
(with the normalisation factors emitted for simplicity). The orthogonality relations between these
vectors give the 26 contexts shown in Table II. Note that these observables are “tightly” connected:
the context-observable ratio is relatively high. The Greechie diagram showing the orthogonality
relations is shown in Fig. 2.

Let us assume, for the sake of contradiction, than an admissible v exists for O, with v(Pa) = 1
and v(Pb) defined (i.e., Pb value definite). Then, there are two cases: v(Pb) = 1 or v(Pb) = 0.

TABLE II. The 26 contexts used in the proof of Lemma 1.

C1= {Pa,P1,P2} C2= {Pa,P4,P5} C3= {Pb,P2,P3} C4= {Pb,P6,P7} C5= {Pb,P8,P9}
C6= {P4,P7,P10} C7= {P5,P9,P11} C8= {P10,P12,P13} C9= {P11,P14,P15} C10= {P1,P13,P16}
C11= {P1,P15,P17} C12= {P16,P18,P19} C13= {P17,P20,P21} C14= {P3,P19,P22} C15= {P3,P21,P23}
C16= {P22,P24,P25} C17= {P23,P26,P27} C18= {P4,P22,P28} C19= {P5,P23,P29} C20= {P15,P28,P30}
C21= {P13,P29,P31} C22= {P8,P16,P32} C23= {P6,P17,P33} C24= {P7,P27,P34} C25= {P9,P25,P35}
C26= {P1,P25,P27}.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  193.81.140.222 On: Thu, 01 Oct 2015 15:11:09



102201-8 Abbott, Calude, and Svozil J. Math. Phys. 56, 102201 (2015)

FIG. 2. Greechie diagram showing the orthogonality relation between the observables in Table I. We have shown the
deduction for v(Pa)= v(Pb)= 1, where black squares represent the value 1, and circles the value 0. Observe that the context
C26, shown dotted, contains three observables with the value 0, and hence v is not admissible.

Case 1: v(Pb) = 1. Since Pa ∈ C1,C2 and v(Pa) = 1, admissibility requires that v(P1) = v(P2) =
v(P4) = v(P5) = 0. Similarly, since Pb ∈ C3,C4,C5 we have v(P3) = v(P6) = v(P7) = v(P8) = v(P9) =
0. Since v(P4) = v(P7) = 0, admissibility in C6 means that we must have v(P10) = 1; similarly
v(P11) = 1 also. This chain of reasoning can be continued, applying the admissibility rules from
Definition 4 one context at a time, as shown in Table III. In this table, where the leftmost column
indicates the value of v on the given observables, the values shown in bold in each column (context)
are deduced from the admissibility rules based on the values of the other observables in the context
which have already been deduced in the preceding columns. Note that, at each step, admissibility
requires that certain observables take particular values; we never proceed by reasoning that v(Pi)
must be either 0 or 1 for some Pi as is common in proofs of the standard Kochen-Specker theorem
(except for Pb, where this is exactly the assumption that Pb is value definite), because this is not
required by admissibility. Eventually, as we see, we deduce that v(P1) = v(P25) = v(P27) = 0. But
since C26 = {P1,P25,P27}, this contradicts the admissibility of v .

Case 2: v(Pb) = 0. By following a similar line of reasoning, shown in Table IV, we once again
deduce that v(P1) = v(P25) = v(P27) = 0, a contradiction.

Hence, we must conclude that Pb cannot be value definite if v is admissible on O. �

We next show a “contraction” lemma that constitutes a simple “forcing” of value definiteness:
given Pa and Pb with v(Pa) = v(Pb) = 1, there is a |c⟩ which is “closer” (i.e., at a smaller angle

TABLE III. The values that must be taken for the shown observables under any admissible assignment function v satisfying
v(Pa)= v(Pb)= 1. The value (shown in the leftmost column) for observables in bold is deduced from the admissibility rules
and observables appearing in columns to the left of that observable in the table.

v C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1 Pa Pa Pb Pb Pb P10 P11 P10 P11 P16 P17 P16 P17 P22 P23 P22 P23

0 P1 P4 P2 P6 P8 P4 P5 P12 P14 P1 P1 P18 P20 P3 P3 P24 P26

0 P2 P5 P3 P7 P9 P7 P9 P13 P15 P13 P15 P19 P21 P19 P21 P25 P27
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TABLE IV. The values that must be taken for the shown observables under any admissible assignment function v satisfying
v(Pa)= 1 and v(Pb)= 0. As in Table III, the bold values represent the observables with values deduced from previous
observables in the table.

v C1 C2 C3 C14 C15 C18 C19 C20 C21 C10 C11 C22 C23 C4 C5 C24 C25

1 Pa Pa P3 P3 P3 P28 P29 P28 P29 P16 P17 P16 P17 P7 P9 P7 P9

0 P1 P4 Pb P19 P21 P4 P5 P15 P13 P1 P1 P8 P6 Pb Pb P27 P25

0 P2 P5 P2 P22 P23 P22 P23 P30 P31 P13 P15 P32 P33 P6 P8 P34 P35

of our choosing; contracted) to both |a⟩ and |b⟩, for which v(Pc) = 1 also. This result was proved
in Ref. 11, but we reproduce the short proof here for completeness. The form of the vectors |c±⟩
specified in the lemma will be used several times in the rest of the paper.

Lemma 2 (Contraction Lemma, Ref. 11). Given any two unit vectors |a⟩ , |b⟩ ∈ C3 with 0 <
|⟨a|b⟩| < 1 and a z ∈ C such that |⟨a|b⟩| < |z | < 1, we can effectively find a unit vector |c⟩ with
⟨a|c⟩ = z, and a finite set of one-dimensional projection observables O containing Pa, Pb, Pc such
that if v(Pa) = v(Pb) = 1, then v(Pc) = 1, for every admissible assignment function v on O.

Furthermore, if we choose our basis such that |a⟩ = (0,0,1) and |b⟩ = (1 − |p|2,0,p), where
p = ⟨a|b⟩, then |c⟩ can only be one of the following two vectors: |c±⟩ = (x,±y, z), where z = ⟨a|c⟩,
x = p(1 − z2)/(z1 − p2), and y =

√
1 − x2 − z2.

Proof. Without loss of generality, we assume the ⟨a|b⟩ ∈ R and choose a basis so that |a⟩ =
(0,0,1) and |b⟩ = (q,0,p) where p = ⟨a|b⟩ and q =


1 − p2.

Note that, since p < |z | and thus p2 < z2, we have

p2(1 − z2)
q2z2 =

p2 − p2z2

q2z2 <
z2 − p2z2

q2z2 =
(1 − p2)z2

q2z2 = 1.

If we let x = p(1−z2)
qz

, we thus have

x2 =
p2(1 − z2)

q2z2 (1 − z2) < 1 − z2.

We can then set y =
√

1 − x2 − z2 ∈ R, making |c⟩ = (x, y, z) a unit vector such that ⟨a|c⟩ = z.
Let |α⟩ = |a⟩ × |c⟩ = (−y, x,0), |β⟩ = |b⟩ × |c⟩ = (−py,px − qz,qy) and note that ⟨α|β⟩ = 0

also. Thus, if we let |α′⟩ = |a⟩ × |α⟩ and |β′⟩ = |b⟩ × |β′⟩, then {|a⟩ , |α⟩ , |α′⟩}, {|b⟩ , |β⟩ , |β′⟩}, and
{|α⟩ , |β⟩ , |c⟩} are all orthonormal bases for R3 and thus C1 = {Pα,Pβ,Pc}, C2 = {Pa,Pα,Pα′}, and
C3 = {Pb,Pβ,Pβ′} are all contexts in O = C1 ∪ C2 ∪ C3. This construction is illustrated in Fig. 3.

If v is an admissible assignment function on O with v(Pa) = v(Pb) = 1, then we must have
v(Pα) = v(Pβ) = 0 and hence v(Pc) = 1, as required. �

FIG. 3. Greechie orthogonality diagram with an overlaid value assignment that illustrates the reduction in Lemma 2. Once
again, the circles and squares represent observables that have the values 0 and 1, respectively.
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We now present a proof for the reduction in the opposite direction: finding (from |a⟩ , |b⟩) two
vectors |c⟩ , |d⟩ specifying observables Pc,Pd for which v(Pc) = v(Pd) = 1, and which are further
apart from each other than |a⟩ is from |b⟩. This is made easier by noting that it is not necessary to
find a vector |c⟩ “further” from |a⟩ than |b⟩, but rather just two vectors further from each other than
|a⟩ is from |b⟩.

This process is broken into two steps. We first prove an “expansion lemma” which, unlike the
contraction lemma, does not find two vectors arbitrarily far apart satisfying the required criteria.
Rather, we then show a further lemma, the “iteration lemma,” proving that this expansion can be
iterated to meet the required conditions.

Lemma 3 (Expansion Lemma). Given any two unit vectors |a⟩ , |b⟩ ∈ C3 with 1
3 < |⟨a|b⟩| <

1, we can effectively find unit vectors |c⟩ , |d⟩ with 0 < |⟨c|d⟩| < |⟨a|b⟩| and a finite set of one-
dimensional projection observables O containing Pa,Pb,Pc,Pd such that if v(Pa) = v(Pb) = 1, then
v(Pc) = v(Pd) = 1, for every admissible assignment function v on O.

Proof. Let ⟨a|b⟩ = α. Without loss of generality, we will consider only the positive, real case of
1
3 < α < 1. We fix an orthonormal basis such that, written in this basis, |a⟩ and |b⟩ lie in the xz-plane
bisected by the z-axis. In this basis, we thus have

|a⟩ =
(

1 − β2,0,β
)
, |b⟩ =

(
−


1 − β2,0,β
)
,

where

β =


α + 1

2
· (1)

It is readily confirmed that

⟨a|b⟩ = β2 − (1 − β2) = 2β2 − 1 = α

as desired. Note that we thus have 
2
3
< β < 1. (2)

Figure 4 shows the contour representing all the possible vectors specifying observables which
can be forced to take the value 1 from the construction in Lemma 2. We use two applications of
Lemma 2 applied to |a⟩ , |b⟩ to give two such vectors |c⟩ , |d⟩ lying in the y z-plane.

We can also see, at least for the chosen values of |a⟩ , |b⟩ that are shown in Fig. 4, that
⟨a|b⟩ > ⟨c|d⟩. Indeed it appears that the vectors “|c⟩,” “|d⟩” shown in the y z-plane provide the
maximum separation, and the symmetry under exchange of |a⟩ and |b⟩ of Lemma 2 seems to
support this. However, it is not necessary to prove this is the case. Rather, we will show directly that
the vectors |c⟩ , |d⟩ provide the required expansion. To do so, we derive a simple explicit form for
|c⟩ , |d⟩, and thus ⟨c|d⟩. We focus first on finding |c⟩; the form of |d⟩ follows immediately.

Rather than use basis-transformations to attempt to apply Lemma 2 to find the form of |c⟩ , |d⟩
in this specific case, we will re-derive the result explicitly making use of our symmetrised basis
choice.

The vectors |a⟩ , |b⟩ , |c⟩ need to follow the orthogonality relations shown in Fig. 3 in order to
conclude that v(Pc) = 1. That is, we need vectors |e⟩ , | f ⟩ such that {|e⟩ , | f ⟩ , |c⟩} is an orthonormal
set, and further that ⟨a|e⟩ = ⟨b| f ⟩ = 0.

Since we choose |c⟩ to be in the y z-plane, we can write it in the parameterised form |c⟩ =(
0,


1 − γ2,γ

)
, where γ > 0 remains to be found. Since |e⟩ should be orthogonal to both |a⟩ and |c⟩,

we have

|e⟩ = |a⟩ × |c⟩ =
(
−β


1 − γ2,−γ


1 − β2,


(1 − β2)(1 − γ2)

)
.

Similarly, we have

| f ⟩ = |b⟩ × |c⟩ =
(
−β


1 − γ2,γ


1 − β2,−


(1 − β2)(1 − γ2)

)
.
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FIG. 4. A plot of the possible vectors |c⟩ corresponding to the one-dimensional projection observables that Lemma 2 can
force to take the value 1. The bold (red) curve represents the position on the unit sphere of such vectors for given |a⟩, |b⟩.
Note the |c⟩ and |d⟩ are further apart from each other than |a⟩ and |b⟩.

Further, the orthogonality of |e⟩ and | f ⟩ gives us

⟨e| f ⟩= β2(1 − γ2) − γ2(1 − β2) − (1 − β2)(1 − γ2)
= β2 − β2

γ
2 − γ2 + β2

γ
2 − 1 + γ2 + β2 − β2

γ
2

= 2β2 − β2
γ

2 − 1

= 0

and hence β2(2 − γ2) = 1. Thus,

γ =


2 − 1

β2 · (3)

Further, it is readily verified that 1√
2
< γ < 1 for


2
3 < β < 1, and hence for all 1

3 < α < 1 (recall
Eq. (2)).

Similarly, we find |d⟩ = (0,−1 − γ2,γ) using a further two auxiliary vectors |g⟩ , |h⟩ forming
the orthonormal set {|d⟩ , |g⟩ , |h⟩} where ⟨a|g⟩ = ⟨b|h⟩ = 0.

Thus, if we take O = {Pa,Pb,Pc,Pd,Pe,Pf ,Pg ,Ph}, as a result of the orthogonality relation-
ships expressed in Fig. 3, v(Pc) = v(Pd) = 1 for any admissible v on O with v(Pa) = v(Pb) = 1.

It remains then just to show that

⟨c|d⟩ = 2γ2 − 1 < ⟨a|b⟩ = α = 2β2 − 1. (4)

We note that ⟨c|d⟩ > 0 for γ > 1√
2
.
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We finish the proof by showing proving Eq. (4), that is, that ⟨c|d⟩ < α, or, equivalently, γ2 < β2.
But since we can write (

β − 1
β

)2

= β2 − 1
β2 − 2

we have from Eq. (3)

γ
2 = 2 − 1

β2 = β
2 −

(
β − 1

β

)2

< β2,

concluding the proof.
We note for completeness that we can write ⟨c|d⟩ directly in terms of α from Eqs. (1), (3), and

(4) as

⟨c|d⟩ = 3 − 4
α + 1

· (5)

�

We now prove that by iterating this procedure we can find a pair of vectors arbitrarily far apart
from each other.

Lemma 4 (Iteration Lemma). Given any two unit vectors |a⟩ , |b⟩ ∈ C3 with 1
3 < |⟨a|b⟩| < 1, we

can effectively find unit vectors |c⟩ , |d⟩ with 0 < |⟨c|d⟩| ≤ 1
3 and a finite set of one-dimensional

projection observables O containing Pa,Pb,Pc,Pd such that if v(Pa) = v(Pb) = 1, then v(Pc) =
v(Pd) = 1, for every admissible assignment function v on O.

Proof. We prove by iterating Lemma 3, and use the notation |c0⟩ ≡ |a⟩ and |d0⟩ ≡ |b⟩, indi-
cating the 0th iteration. We start with |c0⟩ , |d0⟩ and for each i ≥ 0, as long as |ci⟩ , |di⟩ satisfy
⟨ci |di⟩ > 1

3 , apply the construction used in the proof of Lemma 3 to generate |ci+1⟩ , |di+1⟩ for the
next iteration. In particular, |ci+1⟩ , |di+1⟩ satisfy the equality Eq. (5) for αi = ⟨ci |di⟩ (in particular,
α0 = ⟨c0|d0⟩ = ⟨a|b⟩).

By Lemma 3, we know that ⟨ci |di⟩ > ⟨ci+1|di+1⟩ for each iteration i. We now prove that the
process cannot produce an infinite sequence |c0⟩ , |d0⟩ ; |c1⟩ , |d1⟩ ; . . ., with ⟨ci |di⟩ > 1

3 for all i, that
is, for some i we have ⟨ci |di⟩ ≤ 1

3 . (The sequence must stop here, since Lemma 3 cannot be applied
for ⟨ci |di⟩ ≤ 1

3 .)
From Eq. (5), we define the function s :

� 1
3 ,1

�
→ (0,1) such that

s(u) = 3 − 4
u + 1

,

giving the inner product of the next pair in the iteration. We thus have s(α0) = α1 and, more
generally, αi = si(α0). We can thus rephrase the problem: does there exist a k such that sk(α0) ≤ 1

3 ?
Let us, for the sake of contradiction, assume the contrary. Then (αi)i = (si(α0))i is an infinite

strictly decreasing sequence of reals with αi > 1
3 for all i. For any finite i, we thus have

si(α0) = αi = α0 − |α1 − α0| − · · · − |αi − αi−1|
= α0 − (α0 − α1) − · · · − (αi−1 − αi)

= α0 −
i−1
k=0

(αk − αk+1).

Let us define the function D :
� 1

3 ,1
�
→

�
0, 1

3

�
such that

D(u) = u − s(u) = u −
(
3 − 4

u + 1

)
so that

αi = α0 −
i−1
k=0

D(αk).
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We can show that dD
du < 0 for u ∈

� 1
3 ,1

�
: calculating the derivative we have

dD
du
= 1 − 4

(u + 1)2 < 1 − 4
(1 + 1)2 = 0.

Since D is thus a strictly decreasing function on
� 1

3 ,1
�

and αk < α0 for all k > 0, we have D(α0) <
D(αk) for all k > 0. Hence, we set

αi = α0 −
i−1
k=0

D(αk) < α0 − iD(α0).

Since D(α0) = α0 − α1 > 0 is a positive constant, it is not possible that si(α0) = αi > 1
3 , for all i > 0,

because in this case we would have 1
3 < α0 − iD(α0), for all i > 0, a contradiction.

In fact, if k is the smallest positive integer greater than
α0− 1

3
D(α0) , then αk ≤ 1

3 , as required. We note
that sk+1(α0) is not defined.

By Lemma 3, for each i = 0, . . . , k − 1, there exists a set Oi of one-dimensional projection
observables such that v(Pci+1) = v(Pdi+1) = 1 under any v admissible on Oi satisfying v(Pci) =
v(Pdi) = 1. Hence, if we take the set O = ∪k−1

i=0Oi we must have v(Pck) = v(Pdk) = 1 under any
admissible v on O satisfying v(Pa) = v(Pb) = 1, and ⟨ck |dk⟩ ≤ 1

3 , as required. �

With these lemmata proved, we are in a position to combine them to prove Theorem 2.

Proof of Theorem 2. If we have |⟨ψ|φ⟩| = 1√
2

then, by Lemma 1, there exists a finite set O
of one-dimensional projection observables for which there is no admissible v on O satisfying the
requirements, so we are done.

Otherwise, we proceed directly to prove that if O is a set of one-dimensional projection observ-
ables containing Pψ,Pφ then no admissible assignment function v on O with v(Pψ) = 1 can have Pφ
value definite. We show this in two cases: first that v(Pφ) , 1 and then that v(Pφ) , 0. Let us first
show that there is a set O1 for which v(Pφ) , 1 if v is admissible on O1.

There are two cases: either 0 < |⟨ψ|φ⟩| < 1√
2

or 1 > |⟨ψ|φ⟩| > 1√
2
.

If 0 < |⟨ψ|φ⟩| < 1√
2
, then by Lemma 2 there exists a vector |φ′⟩ such that ⟨ψ|φ′⟩ = 1√

2
and a

set O2 of observables containing Pψ,Pφ,Pφ′ such that if v is admissible on O2, v(Pφ′) = 1 also. But,
by Lemma 1, there exists a set O3 of one-dimensional projection observables containing Pψ,Pφ′
such that if v is admissible on O3 and v(Pψ) = 1, Pφ′ must be value indefinite. Thus, if we take
O1 = O2 ∪ O3 we cannot have v(Pφ) = 1 as required.

If 1 > |⟨ψ|φ⟩| > 1√
2
, then by Lemma 4 there exist two vectors |ψ′⟩ , |φ′⟩ such that 0 < |⟨ψ′|φ′⟩| ≤

1
3 and a set O4 of observables containing Pψ,Pφ,Pψ′,Pφ′ such that if v is admissible on O4 then
v(Pψ′) = v(Pφ′) = 1 also. But, by Lemma 2, there exists a vector |φ′′⟩ such that ⟨ψ′|φ′′⟩ = 1√

2
and a

set O5 of observables containing Pψ′,Pφ′′,Pφ′ such that if v is admissible, v(Pφ′′) = 1 also. Finally,
once more by Lemma 1, there exists a set O6 for which v there is no admissible v on O5 satisfy-
ing v(Pψ′) = v(Pφ′′) = 1. Hence, there is no admissible v on the set O1 = O4 ∪ O5 ∪ O6 such that
v(Pφ) = 1 as required.

This shows that there exists a set O1 of one-dimensional projection observables containing
Pψ,Pφ such that we cannot have v(Pφ) = 1 if v(Pψ) = 1 if v is admissible O1. It remains to show that
there exists a set O0 such that we cannot have v(Pφ) = 0 if v is admissible on O0.

Let us assume, without loss of generality, that |ψ⟩ = (1,0,0) and |φ⟩ = (p,1 − p2,0) where
p = |⟨ψ|φ⟩|. Then let |α⟩ = (0,1,0), |β⟩ = (0,0,1), and |φ′⟩ = (1 − p2,p,0). Then, {|ψ⟩ , |α⟩ , |β⟩}
and {|φ⟩ , |φ′⟩ , |β⟩} are orthonormal bases for C3 and hence C1 = {Pψ,Pα,Pβ} and C2 = {Pφ,Pφ′,Pβ}
are contexts in O7 = C1 ∪ C2. But if v is admissible on O7 and v(Pψ) = 1, v(Pφ) = 0, admissibility
implies that v(Pφ) = 1.

As we have shown just before, there exists a set O8 of one-dimensional projection observ-
ables containing Pψ,Pφ′ such that there is no admissible assignment function v on O8 with v(Pψ) =
v(Pφ′) = 1, and hence there is no admissible v on O0 = O7 ∪ O8 such that v(Pψ) = 1 and v(Pφ) = 0.

Having covered all cases, we are forced to conclude that there is a setO = O0 ∪ O1 of observables
containing Pψ and Pφ such that if v(Pψ) = 1, Pφ cannot be value definite if v is admissible on O. �
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IV. DISCUSSION

The important difference between Theorem 2 and the Kochen-Specker theorem lies in what
physical conclusions can be drawn from the theorems which, of course, are purely mathematical
results. Key to interpreting such theorems is the recognition that a value assignment represents
a possible hidden variable assignment for a quantum system, and that the value assigned to an
observable thus represents the result that would be obtained upon its measurement. Under this
interpretation, the Kochen-Specker theorem shows that, given a system prepared in the quantum
state |ψ⟩ in dimension 3 or higher Hilbert space, the results of all possible measurements on the state
|ψ⟩ cannot be predetermined (noncontextually) as they would in a classical theory. It says nothing,
however, about whether all, or simply a few, outcomes are not predetermined. On the other hand,
Theorem 2 implies that no one-dimensional projection observable P can have a predetermined
measurement outcome for the system unless |ψ⟩ is an eigenstate of P. This interpretation relies
on the eigenstate assumption discussed earlier in the paper, stating that the observable Pψ has a
predetermined measurement outcome — a very weak assumption. Conceptually, this means that
Theorem 2 goes further than the Kochen-Specker theorem in showing the extent of non-classicality
that the quantum logic event-structure implies.

It is possible to generalise this result — that formally applies only to one-dimensional projec-
tion observables — to the value-indefiniteness of more general classes of observables. Since an
observable A (formally a Hermitian operator in n-dimensional Hilbert space) with a non-degenerate
spectrum, distinct eigenvalues a1, . . . ,an, and eigenstates |a1⟩ , . . . , |an⟩ can be expressed as its
spectral decomposition A =

n
i=1 aiPai (where Pai =

|ai⟩⟨ai |
|⟨ai |ai⟩| , as usual), it physically has a predeter-

mined measurement outcome if and only if all the projectors Pai, i = 1, . . . ,n, have predetermined
measurement outcomes,23 that is, are value definite. Thus, for a system prepared in a state |ψ⟩
in dimension 3 or higher Hilbert space, the outcome of a measurement of an observable A with
non-degenerate spectra cannot be predetermined (noncontextually) unless |ψ⟩ is an eigenstate of A.

A. Proof size

Since the first appearance of the Kochen-Specker theorem,2 much attention has been given
to reducing the number of observables and contexts needed to obtain a contradiction and prove
the theorem. The original result used a set of 117 observables, but more recent results have, to
quote some notable examples, shown sets containing 31 observables (in three-dimensional Hilbert
space)10 and 18 observables (in four-dimensional Hilbert space).6

While such results do not affect the interpretation of the theorem, they have merit in showing
the depth of the contradiction between the classical and quantum logical structures. More recently,
smaller proofs have been of particular interest since these have been used to derive noncontextuality
inequalities that can be experimentally tested7 in the same vein as Bell-inequalities;1 smaller sets of
observables lead to smaller and more readily testable inequalities.

Conceptually, however, the key point is probably that the theorem can be proved using a finite
set of observables; if a contradiction only arose when an infinity of observables were consid-
ered, this would potentially raise questions about the constructive and operational character of the
theorem and its use of counterfactuals; hence, its interpretation would be more questionable.4

The localised nature of Theorem 2 immediately means that a single finite set O of one-
dimensional projection observables will never suffice to prove the value indefiniteness of all such
projection observables Pφ not commuting with Pψ for a given state |ψ⟩. There are infinitely many
such observables, and one must, by definition, include Pφ in O to localise value indefiniteness to Pφ.
Rather, the nature of Theorem 2 means we must look for constructive methods to obtain a set Oφ for
a given Pφ, which is precisely what we have done in our proof of the result.

Of course, a given set of orthogonality relations (i.e., a Greechie diagram) may be realisable
for an infinity of different such sets O, as is the case with the diagram depicted in Fig. 3. Thus, it
would be preferable to find a given set of orthogonality relations for which a set Oφ of observables
realising these relations and containing both Pψ and Pφ for any Pφ. Since we were unable to give
such a set of relations, we had to iterate Lemma 3 a number of times depending on Pψ, with no
upper bound (but only ever finitely many times).
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Furthermore, it seems that it is difficult, if not impossible, to succeed in giving a fixed set of
orthogonality relations that works in all cases. In order to show an observable Pa has v(Pa) = 1 us-
ing the admissibility requirements, one must give a context {Pa,Pb,Pc} ⊂ O for which it is already
known that v(Pb) = v(Pc) = 0. This implies two observable Pd and Pe such that v(Pd) = v(Pe) = 1
and ⟨b|d⟩ = ⟨c|e⟩ = 0. But this is precisely the case described in Lemma 2. However, in Lemma 3,
we showed the limitations of this process in “widening the angle” between vectors whose corre-
sponding projectors both take the value 1 — hence the necessity of iterating Lemma 3.

As a result, it seems that, in contrast to the Kochen-Specker theorem, arbitrarily large (but
always finite) sets of observables are needed to show that a given observable Pφ is value indefinite.
Nonetheless, the critical point is once again that for any given Pφ, we can show that Pφ is value
indefinite with a finite set of observables, and hence that the counterfactual reasoning used is no
more problematic than in the Kochen-Specker theorem.

B. State-independence and testability

One of the strengths of the Kochen-Specker theorem that has been repeatedly emphasised is the
fact that the contradiction between its hypotheses is derived independently of the state a quantum
system is prepared in; this is commonly referred to as state-independence. This is in contrast to
violation of Bell-type inequalities (which occur only for particular entangled states) and shows
that the non-classicality results from the structure of quantum mechanics itself, rather than fea-
tures of particular states, such as entanglement.18,19 Consequently, various experimental inequalities
based on the Kochen-Specker theorem that, although often simpler, are state-dependent have been
criticised, and much effort has been expended to find simple, state-independent inequalities to test.7

In contrast to the Kochen-Specker theorem, the form of Theorem 2 and, in particular, the inter-
pretation (relying, of course, on the eigenstate assumption) that for a system prepared in a given
state |ψ⟩, any one-dimensional projection observable Pφ not commuting with Pψ is value indefinite,
may suggest that Theorem 2 does not share this state-independence. As a result, this issue deserves
a little discussion.

The state-independence of the Kochen-Specker theorem ensures that no quantum state in n ≥ 3
dimensional Hilbert space admits a classical assignment of definite values to all observables within
certain finite sets. This is true also with Theorem 2: for any quantum state |ψ⟩, all projection
observables not contained within the “star” of one-dimensional projection observables commuting
with Pψ (see Fig. 5) are value indefinite.

Rather, it is not Theorem 2 that is state-dependent, but the proof we have given: to show that
a given observable Pφ is value indefinite from the assumption that v(Pψ) = 1, we need a set O
particular to this |φ⟩. However, as we discussed in Sec. IV A, this is perfectly reasonable given the
form of the theorem.

One can emphasise further the state-independence of Theorem 2 by restating the theorem in
the following form: “Only a single one-dimensional projection observable on the Hilbert space Cn

FIG. 5. Greechie diagram showing an observable Pψ with v(Pψ)= 1 and the (infinite) set of compatible observables Pφ
for which v(Pφ)= 0. This is the maximal extent of value definiteness for a system in state |ψ⟩ — no other one-dimensional
projection observables on C3 can be value definite.
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for n ≥ 3 can be assigned the value 1 by an admissible, noncontextual value assignment function.”
In this form, the state-independence is clear; the illusion of state-dependence enters because of the
connection, via the eigenstate assumption, between the “one observable assigned the value 1” and
the particular state |ψ⟩ (and corresponding observable Pψ with v(Pψ) = 1) which is necessary for the
physical interpretation of the theorem.

The importance of the state-independence of the Kochen-Specker theorem arises, in part, in
the use of Kochen-Specker sets of observables in testable inequalities. It is important to note
that, even though these inequalities are sometimes referred to as “Kochen-Specker inequalities,”20

they are better seen simply as noncontextuality inequalities. These inequalities are derived under
the assumption only of noncontextuality, ignoring the admissibility requirements, and bounds on
quantities are calculated over all possible noncontextual value assignments. A key result shows
that one can derive such an inequality from any Kochen-Specker set.21 It is clear that these value
assignments cannot obey the admissibility requirements, since the Kochen-Specker theorem shows
precisely that no classical value assignment can do so.

The strength of Theorem 2, on the other hand, relies precisely on the use of the admissibility
requirements to determine when definite values should be assigned. Hence, while one can use
the methods of Ref. 21 to derive inequalities from the constructions in the proof of Theorem 2,
these bounds would be calculated over all noncontextual value assignments (subject to v(Pψ) = 1),
without paying heed to admissibility, and hence would offer no conceptual advantage over existing
inequalities. Furthermore, since our construction in Lemma 1, for example, contains 37 observables,
these would pose no experimental benefit to existing, simpler inequalities either.18

Nonetheless, the state-independence of the result shows that the value indefiniteness of almost
all one-dimensional projection observables in quantum mechanics is indeed a deep feature of the
theory — of the logical structure of Hilbert space — rather than a property of particular states.

V. CONCLUSIONS

In summary, we proved a variant of the Kochen-Specker theorem showing that the non-
classicality implied by the Kochen-Specker theorem is, in a specific sense, maximal. Specifically,
under the assumptions that (1) any value definite observables behave noncontextually and (2) con-
texts obey weak “admissibility” rules on any value definite observables they contain, we show that
only one one-dimensional projection observable on the Hilbert space Cn (for n ≥ 3) can be assigned
consistently the definite value 1.

If a quantum system is prepared in a state |ψ⟩, subject to the assumption that any value assign-
ment function for the system must assign the value 1 to Pψ since Pψ |ψ⟩ = |ψ⟩, the theorem can be
interpreted as showing that the measurement of any observable Pφ projecting onto the linear sub-
space spanned by a state |φ⟩ that is neither orthogonal nor co-aligned with |ψ⟩ must be value indef-
inite — that is, indeterministic. This interpretation, which shows that almost all one-dimensional
projection observables are value indefinite for a given system,12 is stronger than what can be drawn
from the Kochen-Specker theorem, which, in contrast, shows only that not all observables can be
value definite.

This result justifies further the general belief that quantum mechanics is indeterministic —
that there is no hidden variable or definite value determining the outcome of a measurement in
advance. This eliminates the need to assume that the non-classicality shown by the Kochen-Specker
theorem should apply uniformly, instead deriving this global value indefiniteness. As with the
Kochen-Specker theorem, this result relies on the assumption that classical values, should they
exist, must behave noncontextually.

Finally, these results help theoretically certify quantum random number generators,11 since
the promises of such devices rely on the indeterministic nature of quantum measurements.22 By
localising value indefinite observables, one can be sure that the measurements producing the output
bits do not yield any pre-existing element of physical reality. We emphasise that these results do
not hold for two-dimensional systems — a class into which many current quantum random number
generators unfortunately fall.
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