
Evaluating the Complexity of
Mathematical Problems: Part 2

Cristian S. Calude

University of Auckland, New Zealand
www.cs.auckland.ac.nz/~cristian

Elena Calude

Massey University at Albany, New Zealand
www.massey.ac.nz/~ecalude

In this paper we present an implementation of the computational
method in [1] that allows ranking mathematical statements by their
complexity. We introduce the complexity classes IℭU,iMi¥1, and, accord-
ingly, show that Legendre’s conjecture, Fermat’s last theorem, and
Goldbach’s conjecture are in ℭU,1, Dyson’s conjecture is in ℭU,2, the
Riemann hypothesis is in ℭU,3, and the four color theorem is in ℭU,4.

1. Introduction

Based on the possibility of expressing mathematical problems in terms
of (very) simple programs reducible to the halting problem in [1, 2],
we developed a uniform approach for evaluating the complexity of a
large class of mathematical problems. In this paper we: (a) describe an
implementation of the method, (b) introduce the complexity classes
IℭU,iMi¥1

, and (c) rank according to (b) these six mathematical state-

ments: Goldbach’s conjecture, Legendre’s conjecture, Fermat’s last the-
orem, Dyson’s conjecture, the four color theorem, and the Riemann
hypothesis. To this aim we describe a universal programming lan-
guage that is a prefix-free Turing machine and a uniform method for
evaluating the size (measured in bits) of the programs written in the
language. For each of the six statements, we write the shortest possi-
ble program to systematically search for a counter-example. The pro-
grams never stop if and only if the statements are true. The ranking of
a statement in a class ℭU,i is based on the size of its associated pro-
gram.

The programs for Goldbach’s conjecture and the Riemann hypothe-
sis given here improve (in size) those in [2] and appear in [3]. The pro-
gram for the four color theorem is in [4]. The other three programs
appear here for the first time.

The paper is structured as follows. In Section 2 we introduce a uni-
versal programming language. In Section 3 we present the implementa-
tion of the method introduced in [1, 2] and the complexity classes
IℭU,iMi¥1

. In Section 4 we present algorithms for some routines

frequently used in the programs. In Sections 5 through 7 we discuss
Legendre’s conjecture, Fermat’s last theorem, Dyson’s conjecture,
Goldbach’s conjecture, the four color theorem, and the Riemann hy-
pothesis. Section 8 presents some conclusions.

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

The paper is structured as follows. In Section 2 we introduce a uni-
versal programming language. In Section 3 we present the implementa-
tion of the method introduced in [1, 2] and the complexity classes
IℭU,iMi¥1

. In Section 4 we present algorithms for some routines

frequently used in the programs. In Sections 5 through 7 we discuss
Legendre’s conjecture, Fermat’s last theorem, Dyson’s conjecture,
Goldbach’s conjecture, the four color theorem, and the Riemann hy-
pothesis. Section 8 presents some conclusions.

2. A Universal Programming Language

We briefly describe the syntax and semantics of a register machine
language that implements a (natural) universal prefix-free binary Tur-
ing machine U. The language is a refinement of those described in [2,
5, 6].

Any register program (machine) uses a finite number of registers,
each of which may contain an arbitrarily large non-negative integer.
By default, all registers, named with a string of lower or uppercase let-
ters, are initialized to 0. Instructions are labeled by default with
0, 1, 2, … .

Here is a list of the register machine instructions. Note that in all
cases R2 and R3 denote either a register or a non-negative integer,
while R1 must be a register. When referring to R we use, depending
upon the context, either the name of register R or the non-negative in-
teger stored in R.

† R1, R2, R3: If the contents of R1 and R2 are equal, then the execu-
tion continues at the R3th instruction of the program. If the contents of
R1 and R2 are not equal, then execution continues with the next instruc-
tion in sequence. There is an illegal branch error if the content of R3 is
outside the scope of the program.

† &R1, R2: The content of register R1 is replaced by R2.

† +R1, R2: The content of register R1 is replaced by the sum of the con-
tents of R1 and R2.

† !R1: One bit is read into the register R1, so the content of R1 becomes
either 0 or 1. Any attempt to read past the last data bit results in a run-
time error.

† %: This is the last instruction for each register machine program before
the input data. It halts the execution in two possible states: successful
completion or an under-read error.

A register machine program consists of a finite list of labeled
instructions from the complete list, with the restriction that the halt in-
struction appears only once, as the last instruction of the list. The in-
put data (a binary string) follows immediately after the halt instruc-
tion. A program that does not read all of the data or attempts to read
past the last data bit results in a runtime error. Some programs (such
as the ones presented in this paper) have no input data, so they can-
not halt with an under-read error.

 388 C. S. Calude and E. Calude

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

A register machine program consists of a finite list of labeled
instructions from the complete list, with the restriction that the halt in-
struction appears only once, as the last instruction of the list. The in-
put data (a binary string) follows immediately after the halt instruc-
tion. A program that does not read all of the data or attempts to read
past the last data bit results in a runtime error. Some programs (such
as the ones presented in this paper) have no input data, so they can-
not halt with an under-read error.

The instruction R, R, n is used for the unconditional jump to the
nth instruction of the program. For Boolean data types we use
integers 0 false and 1 true.

For longer programs it is convenient to distinguish between the
main program and some sets of instructions called “routines”, which
perform specific tasks within another routine or the main program.
The call and call-back of a routine are executed with unconditional
jumps.

3. Complexity

We present a method of evaluating the complexity of a P1|problem p,
that is, a statement of the form p " sPHsL where P is a computable
predicate. To every P1|problem p " sPHsL, we associate a program
PP inf 8n : PHnL false< to search for a possible counter-example to
p. The following equivalence holds true: p is true if and only if UHPPL
never halts.

The complexity (with respect to U) of a P1|problem p is defined by

CUHpL inf 8†PP§ : p " nPHnL<.

The choice of U is not important because if U, U£ are universal,
then there exists a constant c cU,U£ such that for every P1|problem
p, °CUHpL - CU£ HpL• § c. The “bad news” is that the complexity CU is
not computable [7].

At first glance, the complexity CU may appear to separate the set
of P1|problems into only two classes. However, this is false because
CU is unbounded. Because of incomputability, we can work only with
upper bounds of CU. As the exact value of CU is not important, we
classify P1|problems into the following classes:

ℭU,n 9p : p is aP1 -problem, CUHpL § n kbit=.

(A kilobit [kbit or kb] is equal to 210 bits.) It is seen that for every
n ¥ 1 there is an m > n such that ℭU,n is strictly included in ℭU,m. We
do not know whether m can always be taken to be n + 1, that is, if we
have a strict hierarchy.

The goal is to compute an upper bound of the complexity CUHpL by
choosing a representation p " nPHnL for which †PP§ is the smallest
possible; hence †PP§ is the best possible upper bound for CUHpL. The
running time efficiency of the program PP is irrelevant here; it is the
size in bits that counts. (See more details and comments in [1].)

 Evaluating the Complexity of Mathematical Problems: Part 2 389

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

The goal is to compute an upper bound of the complexity CUHpL by
choosing a representation p " nPHnL for which †PP§ is the smallest
possible; hence †PP§ is the best possible upper bound for CUHpL. The
running time efficiency of the program PP is irrelevant here; it is the
size in bits that counts. (See more details and comments in [1].)

To compute an upper bound on CUHpL we need to compute the size
in bits of the program PP, so we need to uniquely code in binary the
programs for U. To this aim, we use the following prefix-free coding.

The binary coding of special characters (instructions and comma)
is given in Table 1 (ε is the empty string).

Special Characters Code Instruction Code

, ε + 111

& 01 ! 110

= 00 % 100

Table 1.

For registers, we use the prefix-free code code1
90 x 1 x x œ 80, 1<*=. Table 2 gives the codes of the first 15 registers.
The register names are chosen to optimize the length of the program,
that is, the most frequent registers have the smallest code1 length.

Register code1 Register code1 Register code1

R1 010 R6 00111 R11 0001100

R2 011 R7 0001000 R12 0001101

R3 00100 R8 0001001 R13 0001110

R4 00101 R9 0001010 R14 0001111

R5 00110 R10 0001011 R15 000010000

Table 2.

For non-negative integers, we use the prefix-free code
code2 91 x 0 x x œ 80, 1<*=. Table 3 gives the codes of the first 16
non-negative integers.

Integer code2 Integer code2 Integer code2 Integer code2

0 100 4 11010 8 1110010 12 1110110

1 101 5 11011 9 1110011 13 1110111

2 11000 6 1110000 10 1110100 14 111100000

3 11001 7 1110001 11 1110101 15 111100001

Table 3.

The instructions are coded by self-delimiting binary strings as
follows. (Because xε ε x x, for every string x œ 80, 1<*, we omit
the ε.)

 390 C. S. Calude and E. Calude

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

The instructions are coded by self-delimiting binary strings as
follows. (Because xε ε x x, for every string x œ 80, 1<*, we omit
the ε.)

1. & R1, R2 is coded in two different ways depending on R2:

01 code1HR1L codeiHR2L,

where i 1 if R2 is a register and i 2 if R2 is an integer.

2. + R1, R2 is coded in two different ways depending on R2:

111 code1 HR1L codei HR2L,

where i 1 if R2 is a register and i 2 if R2 is a non-negative integer.

3. R1, R2, R3 is coded in four different ways depending on the data
types of R2 and R3:

00 code1 HR1L codei HR2L codej HR3L,

where i 1 if R2 is a register and i 2 if R2 is a non-negative integer,
j 1 if R3 is a register and j 2 if R3 is a non-negative integer.

4. ! R1 is coded by

110 code1 HR1L.

5. % is coded by

100.

All codings for instruction names, registers, and non-negative inte-
gers are self-delimiting. The prefix-free codes used for registers and
non-negative integers are disjoint. The code of any instruction is the
concatenation of the codes of the instruction name and the codes (in
order) of its components, hence the set of codes of instructions is pre-
fix-free. The code of a program is the concatenation of the codes of
its instructions, so the set of codes of all programs is also prefix-free.

Table 4 gives some examples of instructions.

Instruction Code Length

% 100 3

& R1, 0 01 010 100 8

& R1, R2 01 010 011 8

+ R1, 1 111 010 101 9

+ R1, R2 111 010 011 9

 R1, 0, 1 00 010 100 101 11

 R1, R2, 0 00 010 011 100 11

Table 4.

 Evaluating the Complexity of Mathematical Problems: Part 2 391

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

The shortest programs are

100 01010100100 01010011100.

The smallest program that halts is 100 and the smallest program that
never halts is 00010010100100.

Table 5 gives a register machine routine that computes in d the
product of two non-negative integers a and b (see the algorithm MUL
in Section 4). We use: R1 a, R2 b, R3 c, R4 d, R5 e,
R8 h.

Instruction Number Instruction Code Length
0 & h, e 01 0001001 00110 14
1 & d, 0 01 00101 100 10
2 b, 0, 8 00 011 100 1110010 15
3 & e, 1 01 00110 101 10
4 + d, a 111 00101 010 11
5 b, e, 8 00 011 00110 1110010 17
6 + e, 1 111 00110 101 11
7 a, a, 4 00 010 010 11010 13
8 & e, h 01 00110 0001001 14
9 a, a, c 00 010 010 00100 13

Table 5.

The routine given in Table 5 can be uniquely encoded by concate-
nating the binary strings coding its instructions,

0100010010011001001011000001110011100100100110101Ö
11100101010000110011011100101110011010100010010Ö
11010010011000010010001001000100,

which is a string with a size of 128 bits.

4. Algorithms

Some register machine programs may be difficult to follow because of
their terse syntax. In order to facilitate understanding, we sometimes
present parts of them as algorithms in pseudocode. The notation used
in these algorithms is self-explanatory (e.g., the assignment instruc-
tion is denoted by Set x to v, Next x is the successor, and GoTo Ln
specifies the unconditional jump).

We start with a simple routine REM that computes the integer re-
mainder of a divided by b. A local register e is initialized to b and in-
cremented by 1 until it reaches the value of a when the algorithm fin-
ishes. The value of d, the result of the algorithm, is initialized to 0 and
incremented every time e is incremented. When d reaches the value of
b, the value of d is reset to 0. The routine works for any non-negative
integers a and b.

 392 C. S. Calude and E. Calude

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

We start with a simple routine REM that computes the integer re-
mainder of a divided by b. A local register e is initialized to b and in-
cremented by 1 until it reaches the value of a when the algorithm fin-
ishes. The value of d, the result of the algorithm, is initialized to 0 and
incremented every time e is incremented. When d reaches the value of
b, the value of d is reset to 0. The routine works for any non-negative
integers a and b.

Algorithm REM
INPUT: a > b > 0
OUTPUT: drem(a,b) i.e., ab*q+d, with 0 < d < b, for some q
1. Set e to b
2. Set d to 0
3. if e a
4. then STOP
5. else Next e
6. Next d
7. if d b
8. then GoTo 2 //reset the remainder to 0
9. else GoTo 3

Here is the register machine program corresponding to REM.
//REM computes in d the integer remainder
// of a divided by b, assumes a>b>0.
//It uses the local register e to perform its task
0. &h,e //store locally the original value of e
1. &e,b //copy the value of b in e
2. &d,0 //set result to 0
3. e,a,8 //e reached a, continue with instruction 8
4. +e,1 //as e < a, increase e
5. +d,1 //increase the result
6. d,b,2 //result reached b, continue with instruction 2
7. a,a,3 //continue with instruction 3
8. &e,h //restore original value in e
9. a,a,c //computation completed, registers a, b, c, and

//e have their original values and d contains
//the integer remainder of a divided by b

We continue with the algorithms MUL and CMP for routines that are
used repeatedly. MUL performs the multiplication of a and b and stores
the product in d. The algorithm is based on the multiplication per-
formed as a repeated addition. The local counter e keeps track of how
many times a is added to itself.

Algorithm MUL
INPUT: a > 0, b > 0
OUTPUT: d a*b
1. Set d to 0
2. if b 0
3. then STOP
4. else Set e to 1
5. Set d to d+a
6. if e b
7. then STOP
8. else Next e
9. GoTo 5

 Evaluating the Complexity of Mathematical Problems: Part 2 393

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

Algorithm MUL
INPUT: a > 0, b > 0
OUTPUT: d a*b
1. Set d to 0
2. if b 0
3. then STOP
4. else Set e to 1
5. Set d to d+a
6. if e b
7. then STOP
8. else Next e
9. GoTo 5

The register machine program and its code for the multiplication algo-
rithm appear in Table 5. CMP returns 0 if its two input values a and b
are equal, returns 1 when a < b, and returns 2 when b < a.

Algorithm CMP
INPUT: a > 0, b > 0
OUTPUT: d is 1 if a < b, d is 0 for a b, and d is 2 otherwise
1. Set e to a
2. Set f to b
3. Next e
4. Next f
5. Set d to 0
6. if e f
7. then STOP
8. else Set d to 1
9. if e b
10. then STOP
11. else Set d to 2
12. if f a
13. then STOP
14. else GoTo 3

5. Legendre’s Conjecture

Legendre’s conjecture [8] states that for any natural number n there
exists a prime number p such that n2 § p § Hn + 1L2. The following
algorithm checks whether for each natural number n any of the num-
bers n2 + 1, … , Hn + 1L2 - 1 is prime. If a prime is found, the algo-
rithm generates the next n and so on. If for some natural n, none of
the numbers from the given set is prime, the algorithm stops and the
conjecture is false; otherwise, the algorithm never stops. Here is the
register machine program for Legendre’s conjecture.

0. &n,2
1. &m,n
2. &p,1
3. p,n,7 //mn^2
4. +m,n
5. +p,1
6. p,p,3
7. &M,m
8. +M,n
9. +M,n //Mn^2+2n
10. &x,m
11. x,M,31 //no prime x was found
12. &p, 2 //is x divided by p?
13. &z,1 //z 1 if x is prime, z0 if p is not prime
14. x,p,26 //x is prime
15. &e,p
16. &q,0 //compute qrem(x,p)
17. e,x,22
18. +e,1
19. +q,1
20. q,p,16
21. p,p,17
22. q,0,25 //x is not prime
23. +p,1
24. p,p,13
25. &z,0
26. z,0,29 //x is not prime
27. +n,1 //x is prime
28. p,p,1
29. +x,1
30. p,p,11
31. % //Legendre’s conjecture is false

 394 C. S. Calude and E. Calude

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

0. &n,2
1. &m,n
2. &p,1
3. p,n,7 //mn^2
4. +m,n
5. +p,1
6. p,p,3
7. &M,m
8. +M,n
9. +M,n //Mn^2+2n
10. &x,m
11. x,M,31 //no prime x was found
12. &p, 2 //is x divided by p?
13. &z,1 //z 1 if x is prime, z0 if p is not prime
14. x,p,26 //x is prime
15. &e,p
16. &q,0 //compute qrem(x,p)
17. e,x,22
18. +e,1
19. +q,1
20. q,p,16
21. p,p,17
22. q,0,25 //x is not prime
23. +p,1
24. p,p,13
25. &z,0
26. z,0,29 //x is not prime
27. +n,1 //x is prime
28. p,p,1
29. +x,1
30. p,p,11
31. % //Legendre’s conjecture is false

This register machine program for Legendre’s conjecture has 32 in-
structions. Computing its size, we get ℭU(Legendre’s conjec-
ture) § 416 when using R1 p, R2 n, R3 = x, R4 = m, R5 = q,
R6 = M, R7 = z, R8 = e.

6. Fermat’s Last Theorem

Fermat’s last theorem is one of the most famous theorems in the
history of mathematics. It states that there are no positive integers
x, y, z satisfying the equation xn + yn zn, for any integer value
n > 2. The result was conjectured by Pierre de Fermat in 1637, and
was finally proved in 1995 by A. Wiles [9] (see also [10]). Many illus-
trious mathematicians failed to prove it, but their efforts stimulated
the development of algebraic number theory.

The following register machine program for Fermat’s last theorem
uses the integer B ¥ 5 to enumerate all 4-tuples of integers Hx, y, z, nL
with z § B, x, y < z, n § B for which the equality xn + yn zn is
tested.

0. a,a,20
1. &i,x //POW(a,b)
2. &j,y
3. &k,z
4. &x,1
5. &d,a
6. x,b,16 //d a^b
7. &z,a //compute a*d
8. &y,1
9. y,d,13 //z a*d
10. +y,1 //y < d
11. +z,a
12. a,a,9
13. &d,z
14. +x,1 //x < b
15. a,a,6
16. &x,i
17. &y,j
18. &z,k
19. a,a,c //d a^b
20. &B,5 //Main program
21. &n,4
22. &z,4
23. &x,3
24. &y,3
25. &c,29
26. &a,x
27. &b,n
28. a,a,1 //d x^n
29. &e,d
30. &c,33
31. &a,y
32. a,a,1 //d y^n
33. +e,d //e x^n + y^n
34. &a,z
35. +c,4 //c 37
36. a,a,1 //d z^n
37. e,d,52 //x^n + y^n z^n
38. +y,1 //x^n + y^n / z^n
39. y,z,41
40. a,a,25 //y < z
41. +x,1 //y z
42. x,z,44
43. a,a,24 //x < z
44. +z,1 //x z
45. B,z,47
46. a,a,23 //z < B
47. +n,1 //z B
48. n,B,50
49. a,a,22 //n < B
50. +B,1 //n B
51. a,a,21
52. % //Fermat’s last theorem is false

 Evaluating the Complexity of Mathematical Problems: Part 2 395

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

0. a,a,20
1. &i,x //POW(a,b)
2. &j,y
3. &k,z
4. &x,1
5. &d,a
6. x,b,16 //d a^b
7. &z,a //compute a*d
8. &y,1
9. y,d,13 //z a*d
10. +y,1 //y < d
11. +z,a
12. a,a,9
13. &d,z
14. +x,1 //x < b
15. a,a,6
16. &x,i
17. &y,j
18. &z,k
19. a,a,c //d a^b
20. &B,5 //Main program
21. &n,4
22. &z,4
23. &x,3
24. &y,3
25. &c,29
26. &a,x
27. &b,n
28. a,a,1 //d x^n
29. &e,d
30. &c,33
31. &a,y
32. a,a,1 //d y^n
33. +e,d //e x^n + y^n
34. &a,z
35. +c,4 //c 37
36. a,a,1 //d z^n
37. e,d,52 //x^n + y^n z^n
38. +y,1 //x^n + y^n / z^n
39. y,z,41
40. a,a,25 //y < z
41. +x,1 //y z
42. x,z,44
43. a,a,24 //x < z
44. +z,1 //x z
45. B,z,47
46. a,a,23 //z < B
47. +n,1 //z B
48. n,B,50
49. a,a,22 //n < B
50. +B,1 //n B
51. a,a,21
52. % //Fermat’s last theorem is false

This register machine program for Fermat’s last theorem has 53 in-
structions. Computing its size, we get ℭU(Fermat’s last theorem)
§ 738 when using R1 = a, R2 = z, R3 = x, R4 = y, R5 = d, R6 = c,

R7 = B, R8 = n, R9 = e, R10 = b, R11 = i, R12 = j, R13 = k.

 396 C. S. Calude and E. Calude

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

This register machine program for Fermat’s last theorem has 53 in-
structions. Computing its size, we get ℭU(Fermat’s last theorem)
§ 738 when using R1 = a, R2 = z, R3 = x, R4 = y, R5 = d, R6 = c,

R7 = B, R8 = n, R9 = e, R10 = b, R11 = i, R12 = j, R13 = k.

7. Dyson and Goldbach Conjectures, the Four Color Theorem, and
Riemann’s Hypothesis

Dyson’s first conjecture [11] states that

the reverse of a power of two is never a power of five

and is motivated by the quest to find a simple true unprovable state-
ment in Gödel’s sense. In [11], p. 86, Dyson states:

Thanks to Kurt Gödel, we know that there are true mathemati-
cal statements that cannot be proved. But I want a little more
than this. I want a statement that is true, unprovable, and sim-
ple enough to be understood by people who are not mathemati-
cians.

Dyson’s second conjecture [11] states that

Dyson’s first conjecture is unprovable.

(To be precise, we must specify the formal system in which Dyson’s
first conjecture is unprovable. A natural candidate is Peano arith-
metic.) Here is the heuristic argument in support of Dyson’s second
conjecture [11]:

The digits in a big power of two seem to occur in a random way
without any regular pattern. If it ever happened that the reverse
of a power of two was a power of five, this would be an un-
likely accident, and the chance of it happening grows rapidly
smaller as the numbers grow bigger. If we assume that the digits
occur at random, then the chance of the accident happening for
any power of two greater than a billion is less than one in a bil-
lion. It is easy to check that it does not happen for powers of
two smaller than a billion.

In fact, this conjecture was verified in [12] up to all powers 2k with
k § 105 and in [13] up to all powers 2k with k § 108.

Of course, if Dyson’s first conjecture is false, that is, a counter-
example is found, then Dyson’s second conjecture is also false.

In [13] it was shown that the complexity of Dyson’s first conjec-
ture, shortly, Dyson’s conjecture, has an upper bound of 3928 bits
(150 register machine instructions). Here is a shorter program written
for U.

0. a,a,27
1. & E,e //CMP(a,b)
2. &F,f
3. &e,a
4. &f,b
5. +e,1
6. +f,1
7. &d,0
8. e,f,14 //a b
9. &d,1
10. e,b,14 //a < b
11. &d,2
12. f,a,14 //a > b
13. a,a,5
14. &f,F
15. &e, E
16. a,a,c
17. & E,e //MUL(a,b)
18. &d,0
19. b,0,25 //ab 0
20. &e,1
21. +d,a
22. e,b,25 //d ab
23. +e,1
24. a,a,21
25. &e, E
26. a,a,c
27. &k,1 //MAIN PROGRAM
28. &n,1
29. +n,n
30. &c,34 // compute f reverse of n
31. &a,n
32. &b,10
33. a,a,1 //d CMP(n,10)
34. d,1,58 //n < 10
35. &f,0 //n > 10
36. &e,b
37. &q,0
38. +q,1
39. &r,0
40. e,n,45 //r n mod 10, q floor(n/10)
41. +e,1 //e < n
42. +r,1
43. r,b,38
44. a,a,40 //r < b
45. +f,r
46. &a,f
47. &c,49
48. a,a,17 //d (f+r)*10
49. +f,d
50. &a,q
51. +c,4 //c 53
52. a,a,1 //d CMP(q,10)
53. d,1,56 //q < 10
54. +f,q //q > 10
55. a,a,59
56. &n,q
57. a,a,36
58. &f,n //reverse of n n
59. &s,1
60. &j,0
61. +j,1
62. &c,66
63. &a,s
64. &b,5
65. a,a,17 //d MUL(5^(j-1),5)
66. &s,d
67. +c,5 //c 71
68. &a,s //a 5^j
69. &b,f //b reverse(2^k)
70. a,a,1 //d CMP(s,f)
71. d,1,61 //s < f
72. d,0,75 //s f
73. +k,1 //s > f
74. a,a,29
75. % //Dyson’s conjecture is false

 Evaluating the Complexity of Mathematical Problems: Part 2 397

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

0. a,a,27
1. & E,e //CMP(a,b)
2. &F,f
3. &e,a
4. &f,b
5. +e,1
6. +f,1
7. &d,0
8. e,f,14 //a b
9. &d,1
10. e,b,14 //a < b
11. &d,2
12. f,a,14 //a > b
13. a,a,5
14. &f,F
15. &e, E
16. a,a,c
17. & E,e //MUL(a,b)
18. &d,0
19. b,0,25 //ab 0
20. &e,1
21. +d,a
22. e,b,25 //d ab
23. +e,1
24. a,a,21
25. &e, E
26. a,a,c
27. &k,1 //MAIN PROGRAM
28. &n,1
29. +n,n
30. &c,34 // compute f reverse of n
31. &a,n
32. &b,10
33. a,a,1 //d CMP(n,10)
34. d,1,58 //n < 10
35. &f,0 //n > 10
36. &e,b
37. &q,0
38. +q,1
39. &r,0
40. e,n,45 //r n mod 10, q floor(n/10)
41. +e,1 //e < n
42. +r,1
43. r,b,38
44. a,a,40 //r < b
45. +f,r
46. &a,f
47. &c,49
48. a,a,17 //d (f+r)*10
49. +f,d
50. &a,q
51. +c,4 //c 53
52. a,a,1 //d CMP(q,10)
53. d,1,56 //q < 10
54. +f,q //q > 10
55. a,a,59
56. &n,q
57. a,a,36
58. &f,n //reverse of n n
59. &s,1
60. &j,0
61. +j,1
62. &c,66
63. &a,s
64. &b,5
65. a,a,17 //d MUL(5^(j-1),5)
66. &s,d
67. +c,5 //c 71
68. &a,s //a 5^j
69. &b,f //b reverse(2^k)
70. a,a,1 //d CMP(s,f)
71. d,1,61 //s < f
72. d,0,75 //s f
73. +k,1 //s > f
74. a,a,29
75. % //Dyson’s conjecture is false

 398 C. S. Calude and E. Calude

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

0. a,a,27
1. & E,e //CMP(a,b)
2. &F,f
3. &e,a
4. &f,b
5. +e,1
6. +f,1
7. &d,0
8. e,f,14 //a b
9. &d,1
10. e,b,14 //a < b
11. &d,2
12. f,a,14 //a > b
13. a,a,5
14. &f,F
15. &e, E
16. a,a,c
17. & E,e //MUL(a,b)
18. &d,0
19. b,0,25 //ab 0
20. &e,1
21. +d,a
22. e,b,25 //d ab
23. +e,1
24. a,a,21
25. &e, E
26. a,a,c
27. &k,1 //MAIN PROGRAM
28. &n,1
29. +n,n
30. &c,34 // compute f reverse of n
31. &a,n
32. &b,10
33. a,a,1 //d CMP(n,10)
34. d,1,58 //n < 10
35. &f,0 //n > 10
36. &e,b
37. &q,0
38. +q,1
39. &r,0
40. e,n,45 //r n mod 10, q floor(n/10)
41. +e,1 //e < n
42. +r,1
43. r,b,38
44. a,a,40 //r < b
45. +f,r
46. &a,f
47. &c,49
48. a,a,17 //d (f+r)*10
49. +f,d
50. &a,q
51. +c,4 //c 53
52. a,a,1 //d CMP(q,10)
53. d,1,56 //q < 10
54. +f,q //q > 10
55. a,a,59
56. &n,q
57. a,a,36
58. &f,n //reverse of n n
59. &s,1
60. &j,0
61. +j,1
62. &c,66
63. &a,s
64. &b,5
65. a,a,17 //d MUL(5^(j-1),5)
66. &s,d
67. +c,5 //c 71
68. &a,s //a 5^j
69. &b,f //b reverse(2^k)
70. a,a,1 //d CMP(s,f)
71. d,1,61 //s < f
72. d,0,75 //s f
73. +k,1 //s > f
74. a,a,29
75. % //Dyson’s conjecture is false

This register machine program for Dyson’s conjecture has 76 instruc-
tions. Computing its size, we get ℭU(Dyson’s conjecture) § 1067
when using R1 = a, R2 = e, R3 = f, R4 = d, R5 = b, R6 = c, R7 = n,
R8 = q, R9 = E, R10 = r, R11 = s, R12 = F, R13 = k, R14 = j.

8. Final Comments

We have calculated the upper bounds on the ℭU complexity of these
six mathematical statements: Goldbach’s conjecture 756, Legendre’s
conjecture 416, Fermat’s last theorem 738, Dyson’s conjecture 1067,
the Riemann hypothesis 2741, and the four color theorem 3289.
Accordingly, Legendre’s conjecture, Fermat’s last theorem and Gold-
bach’s conjecture are in ℭU,1, Dyson’s conjecture is in ℭU,2, the Rie-
mann hypothesis is in ℭU,3, and the four color theorem is in ℭU,4.

It is still possible to improve the size of the programs for these state-
ments or to use a different implementation of the method. We conjec-
ture that, with the possible exception of the four color theorem, our
ranking of the six mathematical statements cannot be improved. It is
open whether for every i ¥ 1, ℭU,i Õ ℭU,i+1.

 Evaluating the Complexity of Mathematical Problems: Part 2 399

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

It is still possible to improve the size of the programs for these state-
ments or to use a different implementation of the method. We conjec-
ture that, with the possible exception of the four color theorem, our
ranking of the six mathematical statements cannot be improved. It is
open whether for every i ¥ 1, ℭU,i Õ ℭU,i+1.

Finally, the halting problem can be expressed in Peano arithmetic
(PA), so reducing a problem to an instance of the halting problem
shows the possibility of expressing that problem in PA. In some cases
this was evident without any reducibility; in others, like the Riemann
hypothesis, this was not so clear. In all cases it is interesting to look
for solutions of the problem in PA (see [14] for a discussion of Fer-
mat’s last theorem).

Acknowledgment

We thank M. Dinneen, J. Hertel, and N. Kasto for comments, sugges-
tions, and extensive discussions which improved this paper. We thank
also the anonymous referee for critical comments and useful sugges-
tions.

This work was supported in part by The Andrea von Braun Foun-
dation, Munich, under the grant for “Artistic Forms and Complexity”.

References

[1] C. S. Calude and E. Calude, “Evaluating the Complexity of Mathemati-
cal Problems: Part 1,” Complex Systems, 18(3), 2009 pp. 267|285. See
also CDMTCS Research Report 353, 2009, 19 pp.

[2] C. S. Calude, E. Calude, and M. J. Dinneen, “A New Measure of the Dif-
ficulty of Problems,” Journal for Multiple-Valued Logic and Soft Com-
puting, 12(3|4), 2006 pp. 285|307.

[3] E. Calude, “The Complexity of the Goldbach’s Conjecture and Rie-
mann’s Hypothesis,” CDMTCS Research Report 369, 2009, pp. 14.

[4] C. S. Calude and E. Calude, “The Complexity of the Four Colour Theo-
rem,” CDMTCS Research Report 368, 2009, pp. 14.

[5] G. J. Chaitin, Algorithmic Information Theory, Cambridge: Cambridge
University Press, 1987.

[6] C. S. Calude, M. J. Dinneen, and C.-K. Shu, “Computing a Glimpse of
Randomness,” Experimental Mathematics, 11(2), 2002 pp. 369|378.

[7] C. S. Calude, Information and Randomness: An Algorithmic Perspec-
tive, 2nd ed., Berlin: Springer, 2002.

[8] E. W. Weisstein. “Legendre's Conjecture” from Wolfram MathWorld~
A Wolfram Web Resource.
mathworld.wolfram.com/LegendresConjecture.html.

[9] A. Wiles, “Modular Elliptic Curves and Fermat’s Last Theorem,” An-
nals of Mathematics, 141(3), 1995 pp. 443|551.

 400 C. S. Calude and E. Calude

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

[10] A. Aczel, Fermat’s Last Theorem: Unlocking the Secret of an Ancient
Mathematical Problem, New York: Four Walls Eight Windows, 1996.

[11] F. Dyson, What We Believe But Cannot Prove: Today’s Leading
Thinkers on Science in the Age of Certainty, (J. Brockman, ed.), Lon-
don: Pocket Books, 2006 pp. 85|86. See also
www.edge.org/q2005/q05_9.html#dysonf.

[12] C. S. Calude. “Dyson Statements Are Likely to be True But Unprov-
able.” (12 Jun 2008) www.cs.auckland.ac.nz/~cristian/fdyson.pdf.

[13] J. Hertel, “On the Difficulty of Goldbach and Dyson Conjectures,”
CDMTCS Research Report 367, 2009 pp. 15.

[14] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

 Evaluating the Complexity of Mathematical Problems: Part 2 401

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

