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In  this  paper  we  present  an  implementation  of  the  computational
method  in  [1]  that  allows  ranking  mathematical  statements  by  their
complexity. We introduce the complexity classes IℭU,iMi¥1, and, accord-
ingly,  show  that  Legendre’s  conjecture,  Fermat’s  last  theorem,  and
Goldbach’s  conjecture  are  in  ℭU,1,  Dyson’s  conjecture  is  in  ℭU,2,  the
Riemann hypothesis is in ℭU,3, and the four color theorem is in ℭU,4. 

1. Introduction

Based on the possibility of expressing mathematical problems in terms
of  (very)  simple  programs  reducible  to  the  halting  problem in  [1,  2],
we developed a uniform approach for evaluating the complexity of a
large class of mathematical problems. In this paper we: (a) describe an
implementation  of  the  method,  (b)  introduce  the  complexity  classes
IℭU,iMi¥1

,  and  (c)  rank  according  to  (b)  these  six  mathematical  state-

ments: Goldbach’s conjecture, Legendre’s conjecture, Fermat’s last the-
orem,  Dyson’s  conjecture,  the  four  color  theorem,  and  the  Riemann
hypothesis.  To  this  aim  we  describe  a  universal  programming  lan-
guage that is a prefix-free Turing machine and a uniform method for
evaluating  the  size  (measured  in  bits)  of  the  programs  written  in  the
language. For each of the six statements,  we write the shortest possi-
ble program to systematically search for a counter-example. The pro-
grams never stop if and only if the statements are true. The ranking of
a  statement  in  a  class  ℭU,i  is  based  on  the  size  of  its  associated  pro-
gram. 

The programs for Goldbach’s conjecture and the Riemann hypothe-
sis given here improve (in size) those in [2] and appear in [3]. The pro-
gram for  the  four  color  theorem is  in  [4].  The  other  three  programs
appear here for the first time. 

The paper is structured as follows. In Section 2 we introduce a uni-
versal programming language. In Section 3 we present the implementa-
tion  of  the  method  introduced  in  [1,  2]  and  the  complexity  classes
IℭU,iMi¥1

.  In  Section  4  we  present  algorithms  for  some  routines

frequently  used  in  the  programs.  In  Sections  5  through  7  we  discuss
Legendre’s  conjecture,  Fermat’s  last  theorem,  Dyson’s  conjecture,
Goldbach’s  conjecture,  the  four  color  theorem,  and the  Riemann hy-
pothesis. Section 8 presents some conclusions. 
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The paper is structured as follows. In Section 2 we introduce a uni-
versal programming language. In Section 3 we present the implementa-
tion  of  the  method  introduced  in  [1,  2]  and  the  complexity  classes
IℭU,iMi¥1

.  In  Section  4  we  present  algorithms  for  some  routines

frequently  used  in  the  programs.  In  Sections  5  through  7  we  discuss
Legendre’s  conjecture,  Fermat’s  last  theorem,  Dyson’s  conjecture,
Goldbach’s  conjecture,  the  four  color  theorem,  and the  Riemann hy-
pothesis. Section 8 presents some conclusions. 

2. A Universal Programming Language

We  briefly  describe  the  syntax  and  semantics  of  a  register  machine
language that implements a (natural) universal prefix-free binary Tur-
ing machine U. The language is a refinement of those described in [2,
5, 6]. 

Any  register  program  (machine)  uses  a  finite  number  of  registers,
each  of  which  may  contain  an  arbitrarily  large  non-negative  integer.
By default, all registers, named with a string of lower or uppercase let-
ters,  are  initialized  to  0.  Instructions  are  labeled  by  default  with
0, 1, 2, … .

Here  is  a  list  of  the  register  machine  instructions.  Note  that  in  all
cases  R2  and  R3  denote  either  a  register  or  a  non-negative  integer,
while  R1 must  be  a  register.  When referring  to  R we use,  depending
upon the context, either the name of register R or the non-negative in-
teger stored in R. 

† R1, R2, R3: If  the contents of R1 and R2 are equal,  then the execu-
tion continues at the R3th  instruction of the program. If the contents of
R1 and R2 are not equal, then execution continues with the next instruc-
tion in sequence. There is an illegal branch error if the content of R3 is
outside the scope of the program. 

† &R1, R2: The content of register R1 is replaced by R2. 

† +R1, R2: The content of register R1 is replaced by the sum of the con-
tents of R1 and R2. 

† !R1: One bit is read into the register R1, so the content of R1 becomes
either 0 or 1. Any attempt to read past the last data bit results in a run-
time error. 

† %: This is the last instruction for each register machine program before
the  input  data.  It  halts  the  execution  in  two  possible  states:  successful
completion or an under-read error. 

A  register  machine  program  consists  of  a  finite  list  of  labeled
instructions from the complete list, with the restriction that the halt in-
struction appears only once, as the last instruction of the list. The in-
put  data  (a  binary  string)  follows  immediately  after  the  halt  instruc-
tion. A program that does not read all of the data or attempts to read
past the last data bit results in a runtime error. Some programs (such
as the ones presented in this  paper)  have no input data,  so they can-
not halt with an under-read error. 
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A  register  machine  program  consists  of  a  finite  list  of  labeled
instructions from the complete list, with the restriction that the halt in-
struction appears only once, as the last instruction of the list. The in-
put  data  (a  binary  string)  follows  immediately  after  the  halt  instruc-
tion. A program that does not read all of the data or attempts to read
past the last data bit results in a runtime error. Some programs (such
as the ones presented in this  paper)  have no input data,  so they can-
not halt with an under-read error. 

The instruction R, R, n is used for the unconditional jump to the
nth  instruction  of  the  program.  For  Boolean  data  types  we  use
integers 0  false and 1  true. 

For  longer  programs  it  is  convenient  to  distinguish  between  the
main program and some sets of instructions called “routines”, which
perform  specific  tasks  within  another  routine  or  the  main  program.
The  call  and  call-back  of  a  routine  are  executed  with  unconditional
jumps. 

3. Complexity

We present a method of evaluating the complexity of a P1|problem p,
that is, a statement of the form p  " sPHsL where P is a computable
predicate. To every P1|problem p  " sPHsL, we associate a program
PP  inf 8n : PHnL  false< to search for a possible counter-example to
p. The following equivalence holds true: p is true if and only if UHPPL
never halts. 

The complexity (with respect to U) of a P1|problem p is defined by 

CUHpL  inf 8†PP§ : p  " nPHnL<.

The  choice  of  U  is  not  important  because  if  U, U£  are  universal,
then there exists a constant c  cU,U£  such that for every P1|problem
p,  °CUHpL - CU£ HpL• § c.  The “bad news” is that the complexity CU  is
not computable [7]. 

At  first  glance,  the  complexity  CU  may  appear  to  separate  the  set
of  P1|problems  into  only  two classes.  However,  this  is  false  because
CU  is unbounded. Because of incomputability, we can work only with
upper  bounds  of  CU.  As  the  exact  value  of  CU  is  not  important,  we
classify P1|problems into the following classes: 

ℭU,n  9p : p is aP1 -problem, CUHpL § n kbit=.

(A  kilobit  [kbit  or  kb]  is  equal  to  210  bits.)  It  is  seen  that  for  every
n ¥ 1 there is an m > n such that ℭU,n is strictly included in ℭU,m. We
do not know whether m can always be taken to be n + 1, that is, if we
have a strict hierarchy. 

The goal is to compute an upper bound of the complexity CUHpL by
choosing  a  representation  p  " nPHnL  for  which  †PP§  is  the  smallest
possible;  hence  †PP§  is  the  best  possible  upper  bound  for  CUHpL. The
running time efficiency of  the program PP  is  irrelevant here;  it  is  the
size in bits that counts. (See more details and comments in [1].) 
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The goal is to compute an upper bound of the complexity CUHpL by
choosing  a  representation  p  " nPHnL  for  which  †PP§  is  the  smallest
possible;  hence  †PP§  is  the  best  possible  upper  bound  for  CUHpL. The
running time efficiency of  the program PP  is  irrelevant here;  it  is  the
size in bits that counts. (See more details and comments in [1].) 

To compute an upper bound on CUHpL we need to compute the size
in bits of the program PP, so we need to uniquely code in binary the
programs for U. To this aim, we use the following prefix-free coding. 

The  binary  coding  of  special  characters  (instructions  and  comma)
is given in Table 1 (ε is the empty string).

Special Characters Code Instruction Code

, ε + 111

& 01 ! 110

= 00 % 100

Table 1. 

For  registers,  we  use  the  prefix-free  code  code1 
90 x 1 x x œ 80, 1<*=.  Table 2 gives the codes of the first  15 registers.
The register names are chosen to optimize the length of the program,
that is, the most frequent registers have the smallest code1 length.

Register code1 Register code1 Register code1

R1 010 R6 00111 R11 0001100

R2 011 R7 0001000 R12 0001101

R3 00100 R8 0001001 R13 0001110

R4 00101 R9 0001010 R14 0001111

R5 00110 R10 0001011 R15 000010000

Table 2. 

For  non-negative  integers,  we  use  the  prefix-free  code
code2  91 x 0 x x œ 80, 1<*=.  Table  3  gives  the  codes  of  the  first  16
non-negative integers. 

Integer code2 Integer code2 Integer code2 Integer code2

0 100 4 11010 8 1110010 12 1110110

1 101 5 11011 9 1110011 13 1110111

2 11000 6 1110000 10 1110100 14 111100000

3 11001 7 1110001 11 1110101 15 111100001

Table 3. 

The  instructions  are  coded  by  self-delimiting  binary  strings  as
follows.  (Because  xε  ε x  x,  for  every  string  x œ 80, 1<*,  we  omit
the ε.)
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The  instructions  are  coded  by  self-delimiting  binary  strings  as
follows.  (Because  xε  ε x  x,  for  every  string  x œ 80, 1<*,  we  omit
the ε.)

1. & R1, R2 is coded in two different ways depending on R2: 

01 code1HR1L codeiHR2L,

where i  1 if R2 is a register and i  2 if R2 is an integer. 

2. + R1, R2 is coded in two different ways depending on R2: 

111 code1 HR1L codei HR2L,

where i  1 if R2 is a register and i  2 if R2 is a non-negative integer. 

3.   R1,  R2,  R3  is  coded  in  four  different  ways  depending  on  the  data
types of R2 and R3: 

00 code1 HR1L codei HR2L codej HR3L,

where i  1 if R2 is a register and i  2 if R2 is a non-negative integer,
j  1 if R3 is a register and j  2 if R3 is a non-negative integer. 

4. ! R1 is coded by 

110 code1 HR1L.

5. % is coded by 

100.

All codings for instruction names, registers, and non-negative inte-
gers  are  self-delimiting.  The  prefix-free  codes  used  for  registers  and
non-negative  integers  are  disjoint.  The  code  of  any  instruction  is  the
concatenation of  the codes of  the instruction name and the codes (in
order) of its components, hence the set of codes of instructions is pre-
fix-free.  The  code  of  a  program is  the  concatenation  of  the  codes  of
its instructions, so the set of codes of all programs is also prefix-free. 

Table 4 gives some examples of instructions. 

Instruction Code Length

% 100 3

& R1, 0 01 010 100 8

& R1, R2 01 010 011 8

+ R1, 1 111 010 101 9

+ R1, R2 111 010 011 9

 R1, 0, 1 00 010 100 101 11

 R1, R2, 0 00 010 011 100 11

Table 4. 
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The shortest programs are 

100 01010100100 01010011100.

The smallest program that halts is 100 and the smallest program that
never halts is 00010010100100. 

Table  5  gives  a  register  machine  routine  that  computes  in  d  the
product  of  two non-negative  integers  a  and b  (see  the  algorithm MUL
in  Section  4).  We  use:  R1  a,  R2  b,  R3  c,  R4  d,  R5  e,
R8  h.

Instruction Number Instruction Code Length
0 & h, e 01 0001001 00110 14
1 & d, 0 01 00101 100 10
2  b, 0, 8 00 011 100 1110010 15
3 & e, 1 01 00110 101 10
4 + d, a 111 00101 010 11
5  b, e, 8 00 011 00110 1110010 17
6 + e, 1 111 00110 101 11
7  a, a, 4 00 010 010 11010 13
8 & e, h 01 00110 0001001 14
9  a, a, c 00 010 010 00100 13

Table 5. 

The routine given in Table 5 can be uniquely encoded by concate-
nating the binary strings coding its instructions,

0100010010011001001011000001110011100100100110101Ö
11100101010000110011011100101110011010100010010Ö
11010010011000010010001001000100,

which is a string with a size of 128 bits. 

4. Algorithms

Some register machine programs may be difficult to follow because of
their  terse  syntax.  In  order  to  facilitate  understanding,  we sometimes
present parts of them as algorithms in pseudocode. The notation used
in  these  algorithms  is  self-explanatory  (e.g.,  the  assignment  instruc-
tion  is  denoted  by  Set  x  to  v,  Next  x  is  the  successor,  and  GoTo  Ln
specifies the unconditional jump). 

We  start  with  a  simple  routine  REM  that  computes  the  integer  re-
mainder of a divided by b. A local register e is initialized to b and in-
cremented by 1 until it reaches the value of a when the algorithm fin-
ishes. The value of d, the result of the algorithm, is initialized to 0 and
incremented every time e is incremented. When d reaches the value of
b, the value of d is reset to 0. The routine works for any non-negative
integers a and b. 
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We  start  with  a  simple  routine  REM  that  computes  the  integer  re-
mainder of a divided by b. A local register e is initialized to b and in-
cremented by 1 until it reaches the value of a when the algorithm fin-
ishes. The value of d, the result of the algorithm, is initialized to 0 and
incremented every time e is incremented. When d reaches the value of
b, the value of d is reset to 0. The routine works for any non-negative
integers a and b. 

Algorithm REM
INPUT: a > b > 0 
OUTPUT: drem(a,b) i.e., ab*q+d, with 0 < d < b, for some q 
1. Set e to b 
2. Set d to 0 
3. if e  a 
4. then STOP 
5. else Next e 
6. Next d 
7. if d  b 
8. then GoTo 2 //reset the remainder to 0 
9. else GoTo 3 

Here is the register machine program corresponding to REM.
//REM computes in d the integer remainder 
// of a divided by b, assumes a>b>0. 
//It uses the local register e to perform its task 
0. &h,e //store locally the original value of e 
1. &e,b //copy the value of b in e 
2. &d,0 //set result to 0 
3. e,a,8 //e reached a, continue with instruction 8 
4. +e,1 //as e < a, increase e 
5. +d,1 //increase the result 
6. d,b,2 //result reached b, continue with instruction 2 
7. a,a,3 //continue with instruction 3 
8. &e,h //restore original value in e 
9. a,a,c //computation completed, registers a, b, c, and 

//e have their original values and d contains 
//the integer remainder of a divided by b 

We continue with the algorithms MUL and CMP for routines that are
used repeatedly. MUL performs the multiplication of a and b and stores
the  product  in  d.  The  algorithm  is  based  on  the  multiplication  per-
formed as a repeated addition. The local counter e keeps track of how
many times a is added to itself. 

Algorithm MUL 
INPUT: a > 0, b > 0 
OUTPUT: d a*b 
1. Set d to 0 
2. if b  0 
3. then STOP 
4. else Set e to 1 
5. Set d to d+a 
6. if e  b 
7. then STOP 
8. else Next e 
9. GoTo 5 
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Algorithm MUL 
INPUT: a > 0, b > 0 
OUTPUT: d a*b 
1. Set d to 0 
2. if b  0 
3. then STOP 
4. else Set e to 1 
5. Set d to d+a 
6. if e  b 
7. then STOP 
8. else Next e 
9. GoTo 5 

The register machine program and its code for the multiplication algo-
rithm appear in Table 5. CMP returns 0 if its two input values a and b
are equal, returns 1 when a < b, and returns 2 when b < a.

Algorithm CMP 
INPUT: a > 0, b > 0 
OUTPUT: d is 1 if a < b, d is 0 for a  b, and d is 2 otherwise 
1. Set e to a 
2. Set f to b 
3. Next e 
4. Next f 
5. Set d to 0 
6. if e  f 
7. then STOP 
8. else Set d to 1 
9. if e  b 
10. then STOP 
11. else Set d to 2 
12. if f  a 
13. then STOP 
14. else GoTo 3 

5. Legendre’s Conjecture

Legendre’s  conjecture  [8]  states  that  for  any  natural  number  n  there
exists  a  prime  number  p  such  that  n2 § p § Hn + 1L2.  The  following
algorithm checks whether for each natural number n any of the num-
bers  n2 + 1, … , Hn + 1L2 - 1  is  prime.  If  a  prime  is  found,  the  algo-
rithm generates  the next  n  and so on.  If  for  some natural  n,  none of
the numbers from the given set is  prime, the algorithm stops and the
conjecture  is  false;  otherwise,  the  algorithm  never  stops.  Here  is  the
register machine program for Legendre’s conjecture. 

0. &n,2 
1. &m,n 
2. &p,1 
3. p,n,7 //mn^2 
4. +m,n 
5. +p,1 
6. p,p,3 
7. &M,m 
8. +M,n 
9. +M,n //Mn^2+2n 
10. &x,m 
11. x,M,31 //no prime x was found 
12. &p, 2 //is x divided by p? 
13. &z,1 //z 1 if x is prime, z0 if p is not prime 
14. x,p,26 //x is prime 
15. &e,p 
16. &q,0 //compute qrem(x,p) 
17. e,x,22 
18. +e,1 
19. +q,1 
20. q,p,16 
21. p,p,17 
22. q,0,25 //x is not prime 
23. +p,1 
24. p,p,13 
25. &z,0 
26. z,0,29 //x is not prime 
27. +n,1 //x is prime 
28. p,p,1 
29. +x,1 
30. p,p,11 
31. % //Legendre’s conjecture is false
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0. &n,2 
1. &m,n 
2. &p,1 
3. p,n,7 //mn^2 
4. +m,n 
5. +p,1 
6. p,p,3 
7. &M,m 
8. +M,n 
9. +M,n //Mn^2+2n 
10. &x,m 
11. x,M,31 //no prime x was found 
12. &p, 2 //is x divided by p? 
13. &z,1 //z 1 if x is prime, z0 if p is not prime 
14. x,p,26 //x is prime 
15. &e,p 
16. &q,0 //compute qrem(x,p) 
17. e,x,22 
18. +e,1 
19. +q,1 
20. q,p,16 
21. p,p,17 
22. q,0,25 //x is not prime 
23. +p,1 
24. p,p,13 
25. &z,0 
26. z,0,29 //x is not prime 
27. +n,1 //x is prime 
28. p,p,1 
29. +x,1 
30. p,p,11 
31. % //Legendre’s conjecture is false

This  register  machine  program  for  Legendre’s  conjecture  has  32  in-
structions.  Computing  its  size,  we  get  ℭU(Legendre’s  conjec-
ture) § 416  when  using  R1  p,  R2  n,  R3 = x,  R4 = m,  R5 = q,
R6 = M, R7 = z, R8 = e.

6. Fermat’s Last Theorem

Fermat’s  last  theorem  is  one  of  the  most  famous  theorems  in  the
history  of  mathematics.  It  states  that  there  are  no  positive  integers
x, y, z  satisfying  the  equation  xn + yn  zn,  for  any  integer  value
n > 2.  The  result  was  conjectured  by  Pierre  de  Fermat  in  1637,  and
was finally proved in 1995 by A. Wiles [9] (see also [10]). Many illus-
trious  mathematicians  failed  to  prove  it,  but  their  efforts  stimulated
the development of algebraic number theory. 

The following register  machine program for Fermat’s  last  theorem
uses the integer B ¥ 5 to enumerate all 4-tuples of integers Hx, y, z, nL
with  z § B, x, y < z, n § B  for  which  the  equality  xn + yn  zn  is
tested. 

0. a,a,20 
1. &i,x //POW(a,b) 
2. &j,y 
3. &k,z 
4. &x,1 
5. &d,a 
6. x,b,16 //d  a^b 
7. &z,a //compute a*d 
8. &y,1 
9. y,d,13 //z  a*d 
10. +y,1 //y < d 
11. +z,a 
12. a,a,9 
13. &d,z 
14. +x,1 //x < b 
15. a,a,6 
16. &x,i 
17. &y,j 
18. &z,k 
19. a,a,c //d  a^b 
20. &B,5 //Main program 
21. &n,4 
22. &z,4 
23. &x,3 
24. &y,3 
25. &c,29 
26. &a,x 
27. &b,n 
28. a,a,1 //d  x^n 
29. &e,d 
30. &c,33 
31. &a,y 
32. a,a,1 //d  y^n 
33. +e,d //e  x^n + y^n 
34. &a,z 
35. +c,4 //c  37 
36. a,a,1 //d  z^n 
37. e,d,52 //x^n + y^n  z^n 
38. +y,1 //x^n + y^n / z^n 
39. y,z,41 
40. a,a,25 //y < z 
41. +x,1 //y  z 
42. x,z,44 
43. a,a,24 //x < z 
44. +z,1 //x  z 
45. B,z,47 
46. a,a,23 //z < B 
47. +n,1 //z  B 
48. n,B,50 
49. a,a,22 //n < B 
50. +B,1 //n  B 
51. a,a,21 
52. % //Fermat’s last theorem is false
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0. a,a,20 
1. &i,x //POW(a,b) 
2. &j,y 
3. &k,z 
4. &x,1 
5. &d,a 
6. x,b,16 //d  a^b 
7. &z,a //compute a*d 
8. &y,1 
9. y,d,13 //z  a*d 
10. +y,1 //y < d 
11. +z,a 
12. a,a,9 
13. &d,z 
14. +x,1 //x < b 
15. a,a,6 
16. &x,i 
17. &y,j 
18. &z,k 
19. a,a,c //d  a^b 
20. &B,5 //Main program 
21. &n,4 
22. &z,4 
23. &x,3 
24. &y,3 
25. &c,29 
26. &a,x 
27. &b,n 
28. a,a,1 //d  x^n 
29. &e,d 
30. &c,33 
31. &a,y 
32. a,a,1 //d  y^n 
33. +e,d //e  x^n + y^n 
34. &a,z 
35. +c,4 //c  37 
36. a,a,1 //d  z^n 
37. e,d,52 //x^n + y^n  z^n 
38. +y,1 //x^n + y^n / z^n 
39. y,z,41 
40. a,a,25 //y < z 
41. +x,1 //y  z 
42. x,z,44 
43. a,a,24 //x < z 
44. +z,1 //x  z 
45. B,z,47 
46. a,a,23 //z < B 
47. +n,1 //z  B 
48. n,B,50 
49. a,a,22 //n < B 
50. +B,1 //n  B 
51. a,a,21 
52. % //Fermat’s last theorem is false

This  register  machine  program  for  Fermat’s  last  theorem  has  53  in-
structions.  Computing  its  size,  we  get  ℭU(Fermat’s  last  theorem)
§ 738  when  using  R1 = a,  R2 = z,  R3 = x,  R4 = y,  R5 = d,  R6 = c,

R7 = B, R8 = n, R9 = e, R10 = b, R11 = i, R12 = j, R13 = k.
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This  register  machine  program  for  Fermat’s  last  theorem  has  53  in-
structions.  Computing  its  size,  we  get  ℭU(Fermat’s  last  theorem)
§ 738  when  using  R1 = a,  R2 = z,  R3 = x,  R4 = y,  R5 = d,  R6 = c,

R7 = B, R8 = n, R9 = e, R10 = b, R11 = i, R12 = j, R13 = k.

7. Dyson and Goldbach Conjectures, the Four Color Theorem, and 
Riemann’s Hypothesis

Dyson’s first conjecture [11] states that

the reverse of a power of two is never a power of five

and is motivated by the quest to find a simple true unprovable state-
ment in Gödel’s sense. In [11], p. 86, Dyson states:

Thanks to Kurt Gödel, we know that there are true mathemati-
cal  statements  that  cannot  be  proved.  But  I  want  a  little  more
than this.  I  want  a  statement  that  is  true,  unprovable,  and sim-
ple enough to be understood by people who are not mathemati-
cians. 

Dyson’s second conjecture [11] states that 

Dyson’s first conjecture is unprovable.

(To  be  precise,  we  must  specify  the  formal  system  in  which  Dyson’s
first  conjecture  is  unprovable.  A  natural  candidate  is  Peano  arith-
metic.)  Here  is  the  heuristic  argument  in  support  of  Dyson’s  second
conjecture [11]:

The digits in a big power of two seem to occur in a random way
without any regular pattern. If it ever happened that the reverse
of  a  power  of  two  was  a  power  of  five,  this  would  be  an  un-
likely  accident,  and  the  chance  of  it  happening  grows  rapidly
smaller as the numbers grow bigger. If we assume that the digits
occur at random, then the chance of the accident happening for
any power of two greater than a billion is less than one in a bil-
lion.  It  is  easy  to  check  that  it  does  not  happen  for  powers  of
two smaller than a billion. 

In  fact,  this  conjecture  was  verified  in  [12]  up  to  all  powers  2k  with
k § 105 and in [13] up to all powers 2k with k § 108. 

Of  course,  if  Dyson’s  first  conjecture  is  false,  that  is,  a  counter-
example is found, then Dyson’s second conjecture is also false. 

In  [13]  it  was  shown  that  the  complexity  of  Dyson’s  first  conjec-
ture,  shortly,  Dyson’s  conjecture,  has  an  upper  bound  of  3928  bits
(150 register machine instructions). Here is a shorter program written
for U. 

0. a,a,27 
1. & E,e //CMP(a,b) 
2. &F,f 
3. &e,a 
4. &f,b 
5. +e,1 
6. +f,1 
7. &d,0 
8. e,f,14 //a  b 
9. &d,1 
10. e,b,14 //a < b 
11. &d,2 
12. f,a,14 //a > b 
13. a,a,5 
14. &f,F 
15. &e, E 
16. a,a,c 
17. & E,e //MUL(a,b) 
18. &d,0 
19. b,0,25 //ab  0 
20. &e,1 
21. +d,a 
22. e,b,25 //d  ab 
23. +e,1 
24. a,a,21 
25. &e, E 
26. a,a,c 
27. &k,1 //MAIN PROGRAM 
28. &n,1 
29. +n,n 
30. &c,34 // compute f  reverse of n 
31. &a,n 
32. &b,10 
33. a,a,1 //d  CMP(n,10) 
34. d,1,58 //n < 10 
35. &f,0 //n > 10 
36. &e,b 
37. &q,0 
38. +q,1 
39. &r,0 
40. e,n,45 //r  n mod 10, q  floor(n/10) 
41. +e,1 //e < n 
42. +r,1 
43. r,b,38 
44. a,a,40 //r < b 
45. +f,r 
46. &a,f 
47. &c,49 
48. a,a,17 //d  (f+r)*10 
49. +f,d 
50. &a,q 
51. +c,4 //c  53 
52. a,a,1 //d  CMP(q,10) 
53. d,1,56 //q < 10 
54. +f,q //q > 10 
55. a,a,59 
56. &n,q 
57. a,a,36 
58. &f,n //reverse of n  n 
59. &s,1 
60. &j,0 
61. +j,1 
62. &c,66 
63. &a,s 
64. &b,5 
65. a,a,17 //d  MUL(5^(j-1),5) 
66. &s,d 
67. +c,5 //c  71 
68. &a,s //a  5^j
69. &b,f //b  reverse(2^k) 
70. a,a,1 //d  CMP(s,f) 
71. d,1,61 //s < f 
72. d,0,75 //s  f 
73. +k,1 //s > f 
74. a,a,29 
75. % //Dyson’s conjecture is false
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0. a,a,27 
1. & E,e //CMP(a,b) 
2. &F,f 
3. &e,a 
4. &f,b 
5. +e,1 
6. +f,1 
7. &d,0 
8. e,f,14 //a  b 
9. &d,1 
10. e,b,14 //a < b 
11. &d,2 
12. f,a,14 //a > b 
13. a,a,5 
14. &f,F 
15. &e, E 
16. a,a,c 
17. & E,e //MUL(a,b) 
18. &d,0 
19. b,0,25 //ab  0 
20. &e,1 
21. +d,a 
22. e,b,25 //d  ab 
23. +e,1 
24. a,a,21 
25. &e, E 
26. a,a,c 
27. &k,1 //MAIN PROGRAM 
28. &n,1 
29. +n,n 
30. &c,34 // compute f  reverse of n 
31. &a,n 
32. &b,10 
33. a,a,1 //d  CMP(n,10) 
34. d,1,58 //n < 10 
35. &f,0 //n > 10 
36. &e,b 
37. &q,0 
38. +q,1 
39. &r,0 
40. e,n,45 //r  n mod 10, q  floor(n/10) 
41. +e,1 //e < n 
42. +r,1 
43. r,b,38 
44. a,a,40 //r < b 
45. +f,r 
46. &a,f 
47. &c,49 
48. a,a,17 //d  (f+r)*10 
49. +f,d 
50. &a,q 
51. +c,4 //c  53 
52. a,a,1 //d  CMP(q,10) 
53. d,1,56 //q < 10 
54. +f,q //q > 10 
55. a,a,59 
56. &n,q 
57. a,a,36 
58. &f,n //reverse of n  n 
59. &s,1 
60. &j,0 
61. +j,1 
62. &c,66 
63. &a,s 
64. &b,5 
65. a,a,17 //d  MUL(5^(j-1),5) 
66. &s,d 
67. +c,5 //c  71 
68. &a,s //a  5^j
69. &b,f //b  reverse(2^k) 
70. a,a,1 //d  CMP(s,f) 
71. d,1,61 //s < f 
72. d,0,75 //s  f 
73. +k,1 //s > f 
74. a,a,29 
75. % //Dyson’s conjecture is false
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0. a,a,27 
1. & E,e //CMP(a,b) 
2. &F,f 
3. &e,a 
4. &f,b 
5. +e,1 
6. +f,1 
7. &d,0 
8. e,f,14 //a  b 
9. &d,1 
10. e,b,14 //a < b 
11. &d,2 
12. f,a,14 //a > b 
13. a,a,5 
14. &f,F 
15. &e, E 
16. a,a,c 
17. & E,e //MUL(a,b) 
18. &d,0 
19. b,0,25 //ab  0 
20. &e,1 
21. +d,a 
22. e,b,25 //d  ab 
23. +e,1 
24. a,a,21 
25. &e, E 
26. a,a,c 
27. &k,1 //MAIN PROGRAM 
28. &n,1 
29. +n,n 
30. &c,34 // compute f  reverse of n 
31. &a,n 
32. &b,10 
33. a,a,1 //d  CMP(n,10) 
34. d,1,58 //n < 10 
35. &f,0 //n > 10 
36. &e,b 
37. &q,0 
38. +q,1 
39. &r,0 
40. e,n,45 //r  n mod 10, q  floor(n/10) 
41. +e,1 //e < n 
42. +r,1 
43. r,b,38 
44. a,a,40 //r < b 
45. +f,r 
46. &a,f 
47. &c,49 
48. a,a,17 //d  (f+r)*10 
49. +f,d 
50. &a,q 
51. +c,4 //c  53 
52. a,a,1 //d  CMP(q,10) 
53. d,1,56 //q < 10 
54. +f,q //q > 10 
55. a,a,59 
56. &n,q 
57. a,a,36 
58. &f,n //reverse of n  n 
59. &s,1 
60. &j,0 
61. +j,1 
62. &c,66 
63. &a,s 
64. &b,5 
65. a,a,17 //d  MUL(5^(j-1),5) 
66. &s,d 
67. +c,5 //c  71 
68. &a,s //a  5^j
69. &b,f //b  reverse(2^k) 
70. a,a,1 //d  CMP(s,f) 
71. d,1,61 //s < f 
72. d,0,75 //s  f 
73. +k,1 //s > f 
74. a,a,29 
75. % //Dyson’s conjecture is false

This register machine program for Dyson’s conjecture has 76 instruc-
tions.  Computing  its  size,  we  get  ℭU(Dyson’s  conjecture)  §  1067
when  using  R1 = a,  R2 = e,  R3 = f,  R4 = d,  R5 = b,  R6 = c,  R7 = n,
R8 = q, R9 = E, R10 = r, R11 = s, R12 = F, R13 = k, R14 = j. 

8. Final Comments

We have calculated the upper bounds on the ℭU  complexity of these
six  mathematical  statements:  Goldbach’s  conjecture  756,  Legendre’s
conjecture  416,  Fermat’s  last  theorem 738,  Dyson’s  conjecture  1067,
the  Riemann  hypothesis  2741,  and  the  four  color  theorem  3289.
Accordingly,  Legendre’s  conjecture,  Fermat’s  last  theorem and  Gold-
bach’s conjecture are in ℭU,1,  Dyson’s conjecture is  in ℭU,2,  the Rie-
mann hypothesis is in ℭU,3, and the four color theorem is in ℭU,4. 

It is still possible to improve the size of the programs for these state-
ments or to use a different implementation of the method. We conjec-
ture  that,  with  the  possible  exception  of  the  four  color  theorem,  our
ranking of the six mathematical  statements cannot be improved. It  is
open whether for every i ¥ 1, ℭU,i Õ ℭU,i+1. 
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It is still possible to improve the size of the programs for these state-
ments or to use a different implementation of the method. We conjec-
ture  that,  with  the  possible  exception  of  the  four  color  theorem,  our
ranking of the six mathematical  statements cannot be improved. It  is
open whether for every i ¥ 1, ℭU,i Õ ℭU,i+1. 

Finally,  the  halting  problem  can  be  expressed  in  Peano  arithmetic
(PA),  so  reducing  a  problem  to  an  instance  of  the  halting  problem
shows the possibility of expressing that problem in PA. In some cases
this was evident without any reducibility; in others, like the Riemann
hypothesis,  this  was  not  so  clear.  In  all  cases  it  is  interesting  to  look
for  solutions  of  the  problem in  PA  (see  [14]  for  a  discussion  of  Fer-
mat’s last theorem). 
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