
Evaluating the Complexity of
Mathematical Problems: Part 1

Cristian S. Calude

University of Auckland, New Zealand
www.cs.auckland.ac.nz/~cristian

Elena Calude

Massey University at Albany, New Zealand
www.massey.ac.nz/~ecalude

In this paper we provide a computational method for evaluating the
complexity of a large class of mathematical problems in a uniform way.
The method, which is inspired by A New Kind of Science [1], is based
on the possibility of completely describing complex mathematical prob-
lems, such as the Riemann hypothesis, in terms of very simple pro-
grams. The method is illustrated on a variety of examples from differ-
ent areas of mathematics and its power and limits are studied.

1. Introduction

Evaluating, or even guessing, the degree of difficulty of an open prob-
lem, or that of a solved problem before seeing its solution, is notori-
ously hard not only for beginners, but also for the most experienced
mathematicians.

Can a uniform method be developed for evaluating in some objec-
tive way the difficulty of a mathematical problem? The question is
not trivial because mathematical problems are very diverse. The Math-
ematics Subject Classification (MSC2000) based on the Mathematical
Reviews and Zentralblatt MATH databases, contains over 5,000
two-, three-, and five-digit classifications [2]. Additionally, there is no
clear indication that all, most, or even a large part of mathematical
problems have any kind of “commonality” allowing a uniform evalua-
tion of their complexity. How could one compare a problem in num-
ber theory with a problem in complex analysis or algebraic topology?

Surprisingly enough, such a commonality exists for many mathe-
matical problems. One of them, the so-called halting problem [3], as
discussed in this paper is based on the possibility of expressing a prob-
lem in terms of very simple programs that are reducible to a natural
question in theoretical computer science. As a consequence, a uniform
approach for evaluating the complexity of a large class of mathemati-
cal problems was developed.

This paper is structured as follows. In Section 2 a series of inter-
esting mathematical problems are presented and analyzed in order to
find their commonality. They are the infinity of primes, Goldbach’s
conjecture and other problems in number theory, the pigeonhole prin-
ciple, Hilbert’s tenth problem, the four color theorem, the Riemann
hypothesis, and the Collatz and palindrome conjectures. We show
how all these problems are closely related to the halting problem. Sec-
tion 3 discusses the most (in)famous problem in theoretical computer
science, the halting problem. Section 4 presents the method for evalu-
ating complexity. Section 5 gives an example of a class of problems to
which the proposed method applies; namely, the class of finitely
refutable problems, and Section 6 examines the power and limits of
the proposed method. We finish the paper with a few concluding
remarks.

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

This paper is structured as follows. In Section 2 a series of inter-
esting mathematical problems are presented and analyzed in order to
find their commonality. They are the infinity of primes, Goldbach’s
conjecture and other problems in number theory, the pigeonhole prin-
ciple, Hilbert’s tenth problem, the four color theorem, the Riemann
hypothesis, and the Collatz and palindrome conjectures. We show
how all these problems are closely related to the halting problem. Sec-
tion 3 discusses the most (in)famous problem in theoretical computer
science, the halting problem. Section 4 presents the method for evalu-
ating complexity. Section 5 gives an example of a class of problems to
which the proposed method applies; namely, the class of finitely
refutable problems, and Section 6 examines the power and limits of
the proposed method. We finish the paper with a few concluding
remarks.

2. Some Interesting Mathematical Problems: What Do They Have in
Common?

In this section we discuss some interesting, solved or open, mathemati-
cal problems searching for their possible “common computational
structure”.

2.1 The Infinity of Primes

Euclid is credited with the first proof that the set of primes is infinite:
there is no largest prime as much as there is no largest natural num-
ber. The typical argument, a reasoning by absurdity, runs as follows.
Let us suppose that the set of primes is finite, say 9p1, p2, p3, … , pn=.
Construct the number q  p1 p2 p3 … pn + 1. If q is a prime, then we
have a new prime as q > pi for all 1 § i § n. If q is not a prime, then
(by the prime factoring theorem) it must be divisible by a prime r < q.
But r cannot be any pi in our original exhaustive list of primes be-
cause dividing q by pi produces the remainder 1. As a consequence, r
is a new prime as well. In both cases we have found a contradiction, a
prime that is not in the original list.

Wittgenstein criticized Euclid’s proof on its “totality” nature be-
cause [4, p. 64]: “In mathematics we must always be dealing with
systems, and not with totalities.” (Wittgenstein advocated a form of
anti-platonism by rejecting the interpretation of mathematical proposi-
tions in terms of propositions which are capable of being true or false
in correspondence to reality, cf. [4].)

Instead of a proof of the existence of an infinity of primes based on
deduction from certain formal or informal assumptions, Wittgenstein
called for the construction of “a formal expression that proves the in-
finity of primes by its syntactical features.”

Such a proof can be easily obtained by rephrasing Euclid’s argu-
ment in terms of a formal or informal computer program Pprimes that
generates the sequence of primes in increasing order. The infinity of
primes is equivalent with the property of Pprimes to continue indefi-
nitely and never stop. Although we do not subscribe to Wittgenstein’s
philosophy of mathematics, we acknowledge the importance of his
preference for process versus function.

 268 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Such a proof can be easily obtained by rephrasing Euclid’s argu-
ment in terms of a formal or informal computer program Pprimes that
generates the sequence of primes in increasing order. The infinity of
primes is equivalent with the property of Pprimes to continue indefi-
nitely and never stop. Although we do not subscribe to Wittgenstein’s
philosophy of mathematics, we acknowledge the importance of his
preference for process versus function.

2.2 Goldbach’s Conjecture and Other Problems in Number Theory

Goldbach’s conjecture, which is part of Hilbert’s eighth problem [5],
states that all positive even integers greater than two can be expressed
as the sum of two primes. The conjecture was tested up to 1018;
see [6].

Applying the same idea as for the infinity of primes, a computer
program PGoldbach can be written that enumerates all positive even
integers greater than two and for each of them checks the required
property. The program PGoldbach stops if and only if it finds a
counter-example for Goldbach’s conjecture. In other words,
PGoldbach never stops if and only if Goldbach’s conjecture is true.

The same approach works for many problems in number theory, in
particular for Fermat’s last theorem. The program PFermat systemati-
cally generates all 4-tuples of positive integers greater than 3,
Hn, x, y, zL, and stops when it finds the first 4-tuple for which
xn + yn  zn.

Can the same method be applied to the conjecture that there are in-
finitely many Mersenne primes? (Mersenne primes are numbers of the
form 2n - 1. Currently only 46 Mersenne primes are known and the
largest is 243 112 609 - 1. The conjecture is believed to be true because
the harmonic series diverges.)

Or to the twin primes conjecture that there are infinitely many
primes p such that p + 2 is also prime? (This is believed to be true be-
cause of the probabilistic distribution of primes.)

It is clear that Goldbach’s conjecture and Fermat’s last theorem are
statements of the form H" nL PHnL, where P is a computable predicate.
The last two conjectures have a more complicated structure and can
be written in the form H" NL H$ n > NL P£HnL, where P£ is a computable
predicate. A program generating more and more natural numbers sat-
isfying the twin primes conjecture may not stop either because there
are infinitely many pairs of primes p, p + 2 or because there are only
finitely many primes p such that p + 2 is also prime!

So, the last two conjectures cannot be directly represented by the
halting property of an associated program. It is an open question
whether the last conjectures can be represented in the form H" nL PHnL,
where P is a computable predicate. Still, can they be described in
terms of the halting status of some program? A positive answer is
given in Section 6.

 Evaluating the Complexity of Mathematical Problems: Part 1 269

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

So, the last two conjectures cannot be directly represented by the
halting property of an associated program. It is an open question
whether the last conjectures can be represented in the form H" nL PHnL,
where P is a computable predicate. Still, can they be described in
terms of the halting status of some program? A positive answer is
given in Section 6.

2.3 The Pigeonhole Principle

The statement if n > m pigeons are put into m pigeonholes, there is a
hole with more than one pigeon is called the pigeonhole principle or
the Dirichlet principle.

Here is a more formal statement: every function from a set of n ele-
ments into a set with m < n elements is not injective. A program
Ppigeonholeprinciple which for all n generates all functions from

81, 2, … , n< into 81, 2, … , m<, for all m < n, and for each of them
checks whether the function is injective, will either find an injective
function and stop, or will continue forever. The validity of the pigeon-
hole principle is equivalent to the fact that the program
Ppigeonholeprinciple never stops.

2.4 Hilbert’s Tenth Problem

Solving algebraic equations using integer (or rational) constants in the
domain of positive integers is an old mathematical activity. Some of
these equations do not have a solution at all, others have a finite
number of solutions, and some have infinitely many solutions. The
equation 2 x - 2 y  1 has no integer solution, the equation 5 x  10
has a unique integer solution, and the equation 7 x - 17 y  1 has
infinitely many integer solutions.

A Diophantine equation (named after Diophantus of Alexandria,
circa 200 AD) is an equation of the form P  0 where P is a polyno-
mial with integer coefficients. Fermat’s equations xn + yn  zn for
n  1, 2, … are all Diophantine. To solve a given Diophantine equa-
tion P  0, we have to determine whether the equation has solutions
in the domain of positive integers, and, if it has, to find all of them.

Here is the formulation of Hilbert’s tenth problem (for the original
statement in German, see [7]):

10. Determining the solvability of a Diophantine equation.
Given a Diophantine equation with any number of unknowns
and with rational integer coefficients: devise a process, which
could determine by a finite number of operations whether the
equation is solvable in rational integers.

Consider the parametric Diophantine equation

(1)Ia1, a2, … , an, x1, x2, … , xm+1M  0,

where a1, a2, … , an are parameters and x1, x2, … , xm+1 are un-
knowns. Fixing values for parameters results in a particular Diophan-
tine equation. For example, in the parametric Diophantine equation
Ha1 - a2L

2 - x1 - 1  0, a1 and a2 are the parameters and x1 is the
only unknown. If we put a1  1 and a2  0 we get the Diophantine
equation x1  0; if we take a1  a2  0 we get the Diophantine equa-
tion x1 + 1  0.

 270 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

where a1, a2, … , an are parameters and x1, x2, … , xm+1 are un-
knowns. Fixing values for parameters results in a particular Diophan-
tine equation. For example, in the parametric Diophantine equation
Ha1 - a2L

2 - x1 - 1  0, a1 and a2 are the parameters and x1 is the
only unknown. If we put a1  1 and a2  0 we get the Diophantine
equation x1  0; if we take a1  a2  0 we get the Diophantine equa-
tion x1 + 1  0.

Given equation (1), we can construct a program PP which, begin-
ning with the input a1, a2, … , an, will eventually halt if and only if
equation (1) has a solution in the unknowns x1, x2, … , xm+1. The
program PP systematically generates all vectors with m + 1 integers
Ii1, i2, … , im+1M, checks for each of them whether
P Ia1, a2, … , an, i1, i2, … , im+1M  0, and stops when the first solu-
tion is found.

Can we make the program PP “independent” of P in the sense that
P appears as an input of the program? The answer is affirmative: we
can construct a program PH10P that when given an arbitrary Dio-
phantine equation (without parameters, i.e., n  0) P  0, will eventu-
ally stop if and only if the equation P  0 has a solution. Can we de-
cide in a finite amount of time whether the program PH10P eventually
halts? The answer is negative, as is well known [8]. The core argu-
ment is based on the fact that every computably enumerable set of nat-
ural numbers that can be represented in the form
8n : P Hn, x1, x2, … , xmL  0 has a solution in the non-negative inte-
gers unknown x1, x2, … , xm<, cf. [9].

It is interesting to note that the counterpart of Hilbert’s tenth prob-
lem for real unknowns, that is, given an equation of the form
PHx1, x2, … , xmL  0 where P is a polynomial with integer coeffi-
cients (same as in the classical case) but x1, x2, … , xm are real un-
knowns, is decidable. There is a program that decides in a finite
amount of time whether the equation has a solution in the domain of
reals. Indeed, the decision problem is solved by the Sturm method
[10] for m  1 and Tarski’s method [11] works for any number of un-
knowns. This shows that extrapolating computational facts from posi-
tive integers to reals is not always possible. Of course, no program
can in general compute exactly some solutions, even if their number is
known, because solutions can be irrational. However, solutions can
be effectively approximated up to any precision. This leads us to the
following problem for standard Diophantine equations.

Fix a Diophantine equation

(2)DHn, x1, x2, … , xmL  0,

and then consider the following two questions.

† For a fixed n  n0, does the equation DIn0, x1, x2, … , xmM  0 have
a solution?

† For a fixed n  n0, does the equation DIn0, x1, x2, … , xmM  0 have
an infinity of solutions?

Both questions are undecidable for some instances of equation (2).
For each equation (2) the information contained in the sequence of k
answers to the yes/no question “does the equation
DIn0, x1, x2, … , xmM  0 have a solution for n  1, 2, … , k?” con-
tains only log k bits of information (knowing how many equations
have solutions is enough to determine exactly which equations have
solutions). This information can be substantially compressed. How-
ever, for some instances of equation (2) the information contained in
the sequence of k answers to the yes/no question “does the equation
DIn0, x1, x2, … , xmM  0 have infinitely many solutions for
n  1, 2, … , k?” contains about k bits of information, that is, the in-
formation cannot be algorithmically compressed. For more, see [12].

 Evaluating the Complexity of Mathematical Problems: Part 1 271

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Both questions are undecidable for some instances of equation (2).
For each equation (2) the information contained in the sequence of k
answers to the yes/no question “does the equation
DIn0, x1, x2, … , xmM  0 have a solution for n  1, 2, … , k?” con-
tains only log k bits of information (knowing how many equations
have solutions is enough to determine exactly which equations have
solutions). This information can be substantially compressed. How-
ever, for some instances of equation (2) the information contained in
the sequence of k answers to the yes/no question “does the equation
DIn0, x1, x2, … , xmM  0 have infinitely many solutions for
n  1, 2, … , k?” contains about k bits of information, that is, the in-
formation cannot be algorithmically compressed. For more, see [12].

2.5 The Four Color Theorem

The four color theorem, first conjectured in 1853 by Francis Guthrie,
states that every plane separated into regions may be colored using no
more than four colors in such a way that no two adjacent regions re-
ceive the same color. Two regions are called adjacent if they share a
border segment, not just a point. Regions must be contiguous, that is,
the plan has no exclaves.

In graph-theoretical terms, the four color theorem states that the
vertices of every planar graph can be colored with at most four colors
so that no two adjacent vertices receive the same color. Shortly, every
planar graph is four-colorable.

The four color theorem was proved in 1977 [13, 14] (see also [15])
using a computer-assisted proof that consists of constructing a finite
set of “configurations”, and then proving that each of them is
“reducible”~which implies that no configuration with this property
can appear in a minimal counter-example to the theorem. Checking
the correctness of the original proof is a very difficult task. It implies,
among other things, checking the descriptions of 1476 graphs, check-
ing the correctness of the programs, proving the correctness of the
compiler used to compile the programs, and checking the degree of re-
liability of the hardware used to run the programs. This computer-
assisted proof generated lots of mathematical and philosophical dis-
cussions around the notion of acceptable mathematical proof; see, for
example, [16|18]. Various partial independent verifications have been
obtained, though it appears that there is no verification in its entirety.
The formal confirmation announced in [19] uses the equational logic
program Coq (see [20] for a recent presentation of the formal proof).
The following quote from the concluding discussion in [19] is relevant
for the current status of the proof (emphasis added):

 272 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

However, an argument can be made that our “proof” is not a
proof in the traditional sense, because it contains steps that can
never be verified by humans. In particular, we have not proved
the correctness of the compiler we compiled our programs on,
nor have we proved the infallibility of the hardware we ran our
programs on. These have to be taken on faith, and are conceiv-
ably a source of error.… Apart from this hypothetical possibility
of a computer consistently giving an incorrect answer, the rest
of our proof can be verified in the same way as traditional math-
ematical proofs. We concede, however, that verifying a com-
puter program is much more difficult than checking a mathemat-
ical proof of the same length.

A program Pfourcolortheorem that systematically generates all planar
graphs and checks if each one is colorable with four colors and stops
when the first counter-example is found will never halt if and only if
the theorem is true. However, this program will be quite long because
testing the planarity of a graph is difficult. A better solution is to use
the Diophantine representation of the four color theorem proposed
in [9]:

(3)FHn, t, a, …L  0.

Equation (3) has no solution if and only if every planar graph can be
colored with at most four colors so that no two adjacent vertices re-
ceive the same color. Based on equation (3), we can write the pro-
gram PF as in Section 2.4, which can be taken as Pfourcolortheorem.

Actually, it is better to use a pre-Diophantine representation given
by the following conditions. Without restricting the generality, we
consider the maps Tn consisting of the points Hx, yL such that
JHx, yL § Q  In2 + 3 nM ë 2, where J is Cantor’s bijection JHx, yL 
IHx + yL2 + 3 x + yM ë 2. Given a four-coloring of Tn, t0, t1, … , tQ
there exist (and can be effectively computed) s, t such that for all
0 § i § Q (the integer remainder function is denoted by rem):

ti  remHt, 1 + sHi + 1LL.

In other words, the sequence t0, t1, … , tQ can be coded by s and t.
Every sequence u0, u1, … , uQ with ui < 4 can be represented by

some u § R  H1 + 4 HQ + 2L !LQ+1 such that

ui  remHu, 1 + 4 HQ + 2L ! Hi + 1LL.

Finally, there is a map (say, Tn) that cannot be colored in four
colors if and only if the following condition is satisfied:

H$ n, t, sL H" u § RL H$ x, yL Hx + y § nL @A Ó BD,

 Evaluating the Complexity of Mathematical Problems: Part 1 273

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

where

A  uJ Hx,yL ¥ 4,

B  AItJ Hx,yL  tJ Hx+1,yL Ô uJ Hx,yL ≠ uJ Hx+1,yLM Ó

ItJ Hx,yL ≠ tJ Hx+1,yL Ô uJ Hx,yL  uJ Hx+1,yLM Ó

ItJ Hx,yL  tJ Hx,y+1L Ô uJ Hx,yL ≠ uJ Hx,y+1LM Ó

ItJ Hx,yL ≠ tJ Hx,y+1L Ô uJ Hx,yL  uJ Hx,y+1LME.

A simple inspection shows that the given condition is computable, so
the four color theorem is of the form H" nL PHnL, where P is a com-
putable predicate.

2.6 The Riemann Hypothesis

The Riemann hypothesis is probably the most famous and important
conjecture in mathematics. It appears in Hilbert’s eighth problem [5]:
the nontrivial complex zeros of Riemann’s zeta function, which is de-
fined for ReHsL > 1 by

zHsL  ‚

n1

¶ 1

ns
,

lie exactly on the line ReHsL  1 ê 2.
According to Matiyasevich [8, pp. 119|121], the negation of the

Riemann hypothesis is equivalent to the existence of positive integers
k, l, m, n satisfying the following six conditions (here x z means “x
divides z”):

1. n ¥ 600,

2. " y < n AIy + 1M mE,

3. m > 0 & " y < m Ay  m Ó $ x < n AŸ AHx + 1L yEEE,

4. explogHm - 1, lL,

5. explogHn - 1, kL,

6. Hl - nL2 > 4 n2 k4,

and explogHa, bL denotes the predicate

$ x x > b + 1 & 1 +
1

x

x b

§ a + 1 < 4 1 +
1

x

x b

.

An inspection of these conditions shows that the Riemann hypothesis
is of the form " n, RHnL, where R is a computable predicate. Hence,
one can write a program PRiemann such that the Riemann hypothesis
is false if and only if PRiemann halts.

 274 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

An inspection of these conditions shows that the Riemann hypothesis
is of the form " n, RHnL, where R is a computable predicate. Hence,
one can write a program PRiemann such that the Riemann hypothesis
is false if and only if PRiemann halts.

2.7 The Collatz and Palindrome Conjectures

When he was a student, L. Collatz posed the following problem:
given any integer seed a1, there exists a natural N such that aN  1,
where

an+1 
an
2

, if an is even,

3 an + 1, otherwise.

This is known as Collatz’s conjecture, the Syracuse conjecture, the
3 x + 1 problem, Kakutani’s problem, Hasse algorithm, or Ulam’s
problem. There is a huge amount of literature on this problem and
various natural generalizations: see [21|23]. Erdös has said (cf. [21])
that “Mathematics may not be ready for such problems.”

Does there exist a program PCollatz such that Collatz’s conjecture
is false if and only if PCollatz halts?

First, we note that a brute-force tester, that is, a program that will
enumerate all seeds and try to find an iteration equal to 1 for each of
them, may never stop in two different cases: (a) because the conjec-
ture is indeed true, or (b) because for some specific seed a1 there is no
N such that aN  1. It is not clear how to differentiate these cases;
even worse, it is not clear how to refute (b) using a brute-force tester.

A simple nonconstructive argument answering our question in the
affirmative appears in [3]. Indeed, observe first that the set

Collatz  8a1 : aN  1, for some N ¥ 1<

is computably enumerable. Collatz’s conjecture requires proving that
Collatz does indeed contain all positive integers.

If Collatz is not computable, then the conjecture is false, and any
program that eventually halts can be taken as PCollatz as (a) is ruled
out. If Collatz is computable, then we can write a program PCollatz to
find an integer not in Collatz: the conjecture is true if and only if
PCollatz never stops.

Now we present the palindrome conjecture. The reverse (mirror) of
a number is the number formed with the same decimal digits but writ-
ten in the opposite order. For example, the mirror of 12 is 21, the mir-
ror of 131072 is 270131, and so on. Start with the decimal representa-
tion of a natural a, reverse the digits, and add the constructed number
to a. Iterate this process until the result is a palindrome. Following
[24], the palindrome conjecture states that for every natural a, a palin-
drome number will be obtained after finitely many iterations of the
given procedure.

The same nonconstructive argument used for Collatz’s conjecture
applies to the palindrome conjecture: there exists a program
Ppalindrome such that the palindrome conjecture is true if and only if

Ppalindrome never stops.

 Evaluating the Complexity of Mathematical Problems: Part 1 275

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

The same nonconstructive argument used for Collatz’s conjecture
applies to the palindrome conjecture: there exists a program
Ppalindrome such that the palindrome conjecture is true if and only if

Ppalindrome never stops.

Collatz and palindrome conjectures have the following general
form. Let a œ N and let T be a computable function from naturals to
naturals. The conjecture associated to Ha, TL is: for each
x œ N, TiHxL  a, for some i > 0.

Considering the set

(4)B Ha, TL  9x œ N : TiHxL  a, for some i > 0=,

the conjecture associated to Ha, TL becomes equivalent with the equal-
ity BHa, TL  N. The argument used for Collatz’s conjecture applies
to this general case too, so one can prove in a nonconstructive way
the existence of a program PHa,TL such that the conjecture associated
to Ha, TL is true if and only if PHa,TL never stops.

3. The Halting Problem

In Section 2 the halting property of various programs repeatedly ap-
peared. It is time to ask the question: can the halting problem be
solved by a program? As all of our programs have a very specific
form~they have no input and each of them either stops (in which
case the output is a natural number) or never stops~we show with a
simple argument that the halting problem, that is, the problem of
whether or not such a program eventually stops, is unsolvable by any
program. This means that there is no program H with the following
three properties.

1. H accepts as input any program of the given type.

2. H eventually halts.

3. H produces the output 1 if the input program eventually stops, or 0 in
case the input program never stops.

Here is an information-theoretic analysis of the existence of the hy-
pothetical program H. Assume that there exists a halting program H
with the three properties. Using H we construct the following
(legitimate) program P.

1. Read a natural N.

2. Generate all programs up to N bits in size.

3. Use H to check each generated program for whether or not it halts.

 276 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

4. Simulate the running of the remaining programs.

5. Output 1 plus the biggest value output by these programs.

The program P halts for every natural N. Indeed, the number of
programs less than N bits in size is finite, so by the assumption that H
can decide the halting status of every program in a finite amount of
time, we can filter out all nonhalting programs. The remaining pro-
grams (certainly, finitely many) can be run and after a finite (maybe
very long) computation they will all halt and each will produce a natu-
ral number as output. Did we obtain a contradiction?

To answer the question we have to ask the right auxiliary question:
how long is P? The answer is that P is about log2 N bits. Indeed, we
need about log2 N bits to code N in binary, and the rest of the pro-
gram P is a constant, say c. Hence, the length of P is log2 N + c bits.

Now observe that there is a big difference between the size of P
and the size of the output produced by P. Indeed, for large enough N,
P belongs to the set of programs having less than N bits because
log2 N + OH1L < N. Hence, in this case, P generates itself at some
stage of the computation. As P always halts, the program H decides
that P stops, so P is run as a part of the simulation (inside the compu-
tation of P) and produces a natural number as a result. But the pro-
gram P itself will output a natural number that is different from every
output produced by a simulated computation, in particular from the
output produced by P itself, which is a contradiction.

This proof (see [12] for more details) shows that in general there is
no method, no uniform procedure, to test whether an arbitrary pro-
gram eventually stops or not. Of course, this does not imply that for
some infinite class of programs we cannot find a program to decide
their halting status. Actually, there are infinite sets of programs for
which the halting problem is decidable, for example, the class of primi-
tive recursive programs (which are all total).

What is the situation with the programs associated to the problems
discussed before? Can we hope to decide for each of them whether it
halts or not? For some programs, such as PFermat, we know the an-
swer: the program never stops as certified by A. Wiles’ proof of Fer-
mat’s last theorem. For the program PRiemann the answer is not
known. We currently cannot even explicitly write the program
PCollatz. (We conjecture that the statement “PCollatz never stops” is in-
dependent of the Zermelo|Fraenkel set theory with the axiom of
choice, or ZFC.) For some programs P the statement “P halts” is inde-
pendent of ZFC. Such a statement has to be true. A proof of indepen-
dence is an alternative proof, admittedly not usual, of the truth of the
statement.

 Evaluating the Complexity of Mathematical Problems: Part 1 277

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

4. A Computational Method for Evaluating the Complexity of
Mathematical Problems

We now return to Fermat’s last theorem and to the fact that it is
equivalent to the statement “PFermat never halts”. We do not propose
to prove Fermat’s last theorem by showing that PFermat never halts,
but to use the program PFermat as a way to measure the complexity of
Fermat’s last theorem.

We do this by counting the number of bits necessary to specify
PFermat in some fixed “universal formalism” (e.g., a universal self-
delimiting Turing machine [12]). Of course, there are many programs
equivalent to PFermat, so a natural way to evaluate their complexity is
to consider the smallest such program.

The choice of the universal formalism used to code programs is ir-
relevant up to an additive constant, so if a problem is significantly
more complex in some fixed formalism than in another one, then it
will continue to be more complex in any other formalism. However,
the proposed measure is uncomputable [12], so we have to work with
an upper bound on the size of a program “describing” the conjecture,
problem, or theorem.

In practice, to evaluate the complexity of a problem P we need to
effectively obtain the program PP and compute its size in bits. This
gives an upper bound on the complexity of PP, and hence on the diffi-
culty of P. But, as we have seen with the Collatz and palindrome con-
jectures, even this type of approximation may not be achievable in all
cases. We cannot evaluate a bound on the difficulty of a problem P if
we do not know at least one “explicit” program PP.

5. Finitely Refutable Problems

It is time to ask the question: What is the class of problems whose
complexity can be evaluated with the method proposed in Section 4?
We will not answer this question, which is open, but do give an exam-
ple of a large class of problems to which the method applies. With
Pythagoras’ dictum “all is number” as a guiding principle we will
look at finite numerical tests.

Let N denote the set of positive integers and for every k œ N con-
sider a predicate P on N.

Consider the formula

f  Q1 n1 Q2 n2 … Qk nk P In1, n2, … , nkM

where Q1, Q2, … , Qk œ 8" , $< are quantifier symbols. In analogy

with the arithmetic classes, we say that f is in the class P
`

s or S
`
s if the

quantifier prefix of f starts with " or $, respectively, and contains
s - 1 alternations of quantifier symbols. When P is computable, then f
is in Ps or Ss, respectively. It is sufficient to consider only such formu-
las f in which no two consecutive quantifier symbols are the same. In
the remainder of this section we make this assumption without special
mention. With f as given, we have s  k.

 278 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

where Q1, Q2, … , Qk œ 8" , $< are quantifier symbols. In analogy

with the arithmetic classes, we say that f is in the class P
`

s or S
`
s if the

quantifier prefix of f starts with " or $, respectively, and contains
s - 1 alternations of quantifier symbols. When P is computable, then f
is in Ps or Ss, respectively. It is sufficient to consider only such formu-
las f in which no two consecutive quantifier symbols are the same. In
the remainder of this section we make this assumption without special
mention. With f as given, we have s  k.

As usual, with P as given, we write PIn1, … , nkM instead of
PIn1, … , nkM  1 when n1, … , nk are elements of N. Thus,
Ÿ PIn1, … , nkM if and only if PIn1, … , nkM  0. Moreover, since we
consider variable symbols only in the domain N, if f is any formula in
first-order logic, we write f is true instead of f is true in N.

Let Gs be one of the classes P
`

s, S
`
s, Ps, or Ss. We refer to the task of

proving or refuting a first-order logic formula as a problem and, in
particular, to problems expressed by formulas in Gs as Gs|problems.

We say that a problem is being solved if the corresponding formula
is proved or disproved to be true, that is, if the truth value of the for-
mula is determined. A problem is said to be finitely solvable if it can
be solved by examining finitely many cases.

For example, consider the predicate

PHnL 
1, if n is even or n  1 or n is a prime,

0, otherwise,

that is, PHnL  0 if and only if n is an odd number greater than 1
which is not a prime. Then the conjecture expressed by the formula
H" nL PHnL is finitely solvable; indeed, it is sufficient to check all n up
to 10 to refute this conjecture.

Goldbach’s conjecture is a P1|problem. To express it let
PGoldbach : N Ø 80, 1< be such that

PGoldbach HnL 

1, if n is odd or (n is even and n is the sum of two primes),

0, otherwise.

Thus, fGoldbach  H" nL PGoldbachHnL is true if and only if Goldbach’s
conjecture is true.

Similarly, the Riemann hypothesis is a P1|problem. By a result
given in [9], the Riemann hypothesis can be expressed in terms of the
function dRiemann : N Ø R defined by

dRiemann HkL  ‰

n<k

‰

j§n

hRiemann HjL,

 Evaluating the Complexity of Mathematical Problems: Part 1 279

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

where

hRiemann HjL 
p, if j  pr for some prime p and some r œ N,

1, otherwise.

The Riemann hypothesis is equivalent with the assertion that for
all n œ N

‚

k§dRiemann HnL

1

k
-

n2

2

2

< 36 n3.

If we set

PRiemann HnL  1, if ‚
k§dRiemannHnL

1

k
-

n2

2

2

< 36 n3,

0, otherwise.

Then, fRiemann  H" nL PRiemannHnL is true if and only if the Riemann
hypothesis is true. Clearly, PRiemann is decidable, therefore, the Rie-
mann hypothesis is a P1|problem.

What is the “commonality” of all problems in classes P
`

s and S
`
s?

For s œ N, let G
`

s denote any of P
`

s and S
`
s, and let Gs denote any of

Ps and Ss. Let

f  Q1 n1 Q2 n2 … Qs ns P Hn1, n2, … , nsL

with s œ N, where Q1, Q2, … , Qs are alternating quantifier symbols.
Following [25], we define a test set for f to be a set T Œ Ns such

that f is true in Ns if and only if it is true in T. The problem f is
finitely solvable if there is a finite test set for f . In [25] the following
result was proved:

Every f œ G
`

s is finitely solvable.

In other words, a solution to each mass problem (i.e., a problem hav-
ing an infinite number of instances or cases) in the given classes can
be obtained by inspecting only finitely many instances of the problem.
As we might expect, this fact cannot be used to obtain a uniform algo-
rithmic way of solving these types of problems because the finite test
set cannot be computed even for all problems in the class P1: There is
no constructive proof showing that every f œ P1 has a finite test set.

 280 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

6. The Power and the Limits of the Method

Our analysis gives a new method of comparing the difficulties of two
or more finitely refutable problems. The main obstacle is the noncom-
putability of the measure [12]. However, by working with upper
bounds, we can obtain a practical method for evaluating the complex-
ity that allows a relative ranking of problems.

In weighting the importance of computing the exact value of the
complexity measure, recall Knuth [26]: “premature optimization is
the root of all evil” and Rabin [27] “we should give up the attempt to
derive results and answers with complete certainty.”

The method can be applied to every P1|problem. All problems dis-
cussed in Section 2 can be analyzed with this method [3]. Trying to re-
duce the length of a program is in general possible; of course, proving
minimality is, in general, impossible [12].

The method proposed is certainly not universal. Let us discuss here
the class of P1|problems. Not every mathematical statement is a P1|

problem. For instance, the twin primes conjecture discussed in Sec-
tion 2.2 is not a P1|problem. Writing

PTP Hn, mL 
1, m > n and m and m + 2 are primes,

0, otherwise,

this conjecture can be stated as

fTP  " n $ m PTPHn, mL.

The formula fTP is in the class P2. Bennett conjectured in [28] that
most mathematical conjectures can be settled indirectly by proving
stronger conjectures. For the twin primes conjecture a stronger P1|

problem is obtained as follows. Consider the predicate

PT
£ HnL 

1, if there is m with 10n-1 § m § 10n, m and m + 2 primes,

0, otherwise.

Let fT
£  H" nL PT

£ HnL. Thus, fT
£ gives rise to a P1|problem and, if fT

£ is
true, then fT is also true (but the converse is not necessarily true).

However, there exists a program PTP such that the twin primes
conjecture is true if and only if PTP never halts. As in Collatz’s case,
the argument is nonconstructive and based on the fact that the set

TP  9n : " n $ m > n such that m and m + 2 are primes=

is computably enumerable.
The method depends on the chosen universal Turing machine, that

is, our working framework. Changing the universal machine will re-
sult in changes of the complexity value, but not in relative compari-
son between problems. The choice of the machine is irrelevant up to
an additive constant, so if a problem is significantly more complex
than another one with respect to a fixed universal machine, then it
will continue to be more complex for any other machine. The method
was used by relativizing to the halting problem. The same method can
be used by relativizing to other unsolvable problems, for example, the
totality problem. Going from the halting problem to the totality prob-
lem will increase the power of expression. For example, to the conjec-
ture associated to Ha, TL (see equation (4)), we can associate the pro-
gram Ga,T HxL defined by

 Evaluating the Complexity of Mathematical Problems: Part 1 281

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

The method depends on the chosen universal Turing machine, that
is, our working framework. Changing the universal machine will re-
sult in changes of the complexity value, but not in relative compari-
son between problems. The choice of the machine is irrelevant up to
an additive constant, so if a problem is significantly more complex
than another one with respect to a fixed universal machine, then it
will continue to be more complex for any other machine. The method
was used by relativizing to the halting problem. The same method can
be used by relativizing to other unsolvable problems, for example, the
totality problem. Going from the halting problem to the totality prob-
lem will increase the power of expression. For example, to the conjec-
ture associated to Ha, TL (see equation (4)), we can associate the pro-
gram Ga,T HxL defined by

Ga,T HxL  min
i

ATi HxL  aE.

The conjecture associated to Ha, TL is true if and only if Ga,THxL is to-
tal. Writing the program for Ga,THxL is simple, but in the special cases
of the Collatz, palindrome, and twin primes conjectures writing the
corresponding Pa,T program is problematic (we are only able to
prove its existence).

In [29] Kim discusses the possibility that the Poincaré conjecture (a
recently solved problem in topology, see [30|32]) is equivalent to the
unsolvability of a Diophantine equation (see also [33]). If this is true,
then our method would also offer, at least in principle, an indication
of the difficulty of the Poincaré conjecture.

7. Conclusions

We have presented a computational method for evaluating the com-
plexity of mathematical problems. The method, inspired by [1], is
based on the possibility of completely describing complex mathemati-
cal problems, such as the Riemann hypothesis, in terms of very simple
programs.

If a mathematical problem, irrespective of its nature, can be equiva-
lently expressed in terms of the property that a certain associated pro-
gram eventually halts, then the proposed method applies. For exam-
ple, the method applies to every P1|problem. Specific instances of
such problems are, for example, Fermat’s last theorem, the Goldbach
conjecture, the four color problem, the Riemann hypothesis, Hilbert’s
tenth problem, the Collatz problem, the palindrome conjecture, and
the twin primes conjecture. As an illustration, according to this com-
plexity measure, the Riemann hypothesis is about twice as difficult as
the Goldbach conjecture [3]. Although the method applies to both the
Collatz and twin primes conjectures, it is an open question whether
one can effectively evaluate the complexity of these problems.

Our method, which is a refinement below the first Turing degree,
provides a total order in the class of finitely refutable problems. The
difficulty of the problem is additive (modulo the constants involved
due to the choice of the universal Turing machine). The same method
can be used by relativizing to other unsolvable problems different
from the halting problem (e.g., the totality problem).

 282 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

Our method, which is a refinement below the first Turing degree,
provides a total order in the class of finitely refutable problems. The
difficulty of the problem is additive (modulo the constants involved
due to the choice of the universal Turing machine). The same method
can be used by relativizing to other unsolvable problems different
from the halting problem (e.g., the totality problem).

The scalability of the measure, both in terms of ordering, the role
of the additive constants involved, and its relativization to various un-
solvable problems are open questions.

In Part 2 of this study we will present a formalism for uniformly
evaluating the complexity of the problems discussed in this paper and
a ranking of those problems will be presented.

Acknowledgment

We thank Professor John Casti for discussions and comments regard-
ing the topic of this paper which improved our presentation. We also
thank the anonymous referee for very helpful comments and sugges-
tions.

This work was supported in part by the Andrea von Braun Founda-
tion, Munich, under the grant for “Artistic Forms and Complexity”.

References

[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[2] “2010 Mathematics Subject Classification (MSC2010).” (Sep 17, 2009)
www.ams.org/msc.

[3] C. S. Calude, E. Calude, and M. J. Dinneen, “A New Measure of the Dif-
ficulty of Problems,” Journal for Multiple-Valued Logic and Soft Com-
puting, 12(3-4), 2006 pp. 285|307.

[4] T. Lampert, “Wittgenstein on the Infinity of Primes,” History and Phi-
losophy of Logic, 29(1), 2008 pp. 63|81.
doi.10.1080/01445340701507569.

[5] D. Hilbert, “Mathematical Problems,” Bulletin of the American Mathe-
matical Society, 8(10), 1902 pp. 437|479.

[6] T. Oliveira e Silva. “Goldbach Conjecture Verification.” (Jul 28, 2009)
www.ieeta.pt/~tos/goldbach.html.

[7] Y. V. Matiyasevich. “Hilbert's Tenth Problem. ” (Nov 30, 2008)
logic.pdmi.ras.ru/Hilbert10/stat/stat-eng.htm.

[8] Y. V. Matiyasevich, Hilbert’s Tenth Problem, Cambridge, MA: The
MIT Press, 1993.

[9] M. Davis, Y. V. Matiyasevich, and J. Robinson, “Hilbert’s Tenth Prob-
lem. Diophantine Equations: Positive Aspects of a Negative Solution,”
Mathematical Developments Arising from Hilbert Problems (F. E. Brow-
der, ed.), Providence, RI: American Mathematical Society, 1976
pp. 323|378.

 Evaluating the Complexity of Mathematical Problems: Part 1 283

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

[10] E. W. Weisstein. “Sturm Function” from Wolfram MathWorld~A Wol-
fram Web Resource. mathworld.wolfram.com/SturmFunction.html.

[11] A. Tarski, A Decision Method for Elementary Algebra and Geometry,
2nd ed., Berkeley: University of California Press, 1951.

[12] C. S. Calude, Information and Randomness: An Algorithmic Perspec-
tive, 2nd ed. (revised and extended), Berlin: Springer-Verlag, 2002.

[13] K. Appel, W. Haken, and J. Koch, “Every Planar Map Is Four-Col-
orable, I: Discharging,” Illinois Journal of Mathematics, 21(3), 1977
pp. 429|490.

[14] K. Appel and W. Haken, “Every Planar Map Is Four-Colorable, II: Re-
ducibility,” Illinois Journal of Mathematics, 21(3), 1977 pp. 491|567.

[15] R. Wilson, Four Colours Suffice: How the Map Problem Was Solved,
London: Penguin, 2002.

[16] A. S. Calude, “The Journey of the Four Colour Theorem through
Time,” The New Zealand Mathematics Magazine, 38(3), 2001
pp. 27|35.

[17] C. S. Calude, E. Calude, and S. Marcus, “Passages of Proof,” Bulletin
of the European Association for Theoretical Computer Science, 84,
2004 pp. 167|188.

[18] C. S. Calude, E. Calude, and S. Marcus, “Proving and Programming,”
Randomness and Complexity: from Leibniz to Chaitin (C. S. Calude,
ed.), Singapore: World Scientific, 2007 pp. 310|321.

[19] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. “The Four
Color Theorem.” (Nov 30, 2008)
www.math.gatech.edu/~thomas/FC/fourcolor.html.

[20] G. Gonthier, “Formal Proof~The Four Color Theorem,” Notices of the
American Mathematical Society, 55(11), 2008 pp. 1382|1393.

[21] J. C. Lagarias, “The 3 x + 1 Problem and Its Generalizations,” American
Mathematical Monthly, 92, 1985 pp. 3|23.

[22] R. K. Guy, “Problem E16,” Unsolved Problems in Number Theory, 3rd
ed., (R. K. Guy, ed.), New York: Springer, 2004 pp. 330|336.

[23] J.-P. Davalan, “3 x + 1, Collatz, Syracuse Problem.” (Nov 30, 2008)
pagesperso-orange.fr/jean-paul.davalan/liens/liens_syracuse.html.

[24] J.-P. Delahaye, “Déconcertantes Conjectures,” Pour la Science, 367,
2008 pp. 90|95.

[25] C. S. Calude, H. Jürgensen, and S. Legg, “Solving Finitely Refutable
Mathematical Problems,” Finite versus Infinite. Contributions to an
Eternal Dilemma (C. S. Calude and G. Păun, eds.), London: Springer-
Verlag, 2000 pp. 39|52.

[26] D. E. Knuth, “Structured Programming with Go To Statements,” ACM
Computing Surveys (CSUR), 6(4), 1974 pp. 261|301.
doi.acm.org/10.1145/356635.356640.

[27] M. O. Rabin, “The Possibilities of Chance,” Out of their Minds: The
Lives and Discoveries of 15 Great Computer Scientists (D. Sasha and
C. Lazare, eds.), New York: Copernicus, 1995 pp. 68|89.

[28] C. H. Bennett, “Chaitin’s Omega,” Fractal Music, Hypercards, and
More ~: Mathematical Recreations from Scientific American Magazine
(M. Gardner, ed.), New York: W. H. Freeman, 1992 pp. 307|319.

 284 C. S. Calude and E. Calude

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

[29] M. Kim.“Why Everyone Should Know Number Theory.” (Nov 30,
2008) www.ucl.ac.uk/~ucahmki/numbers.pdf.

[30] B. Kleiner and J. Lott. “Notes and Commentary on Perelman’s Ricci
Flow Papers.” (Nov 30, 2008)
math.berkeley.edu/~lott/ricciflow/perelman.html.

[31] G. Perelman. “The Entropy Formula for the Ricci Flow and Its Geomet-
ric Application.” (Nov 30, 2008)
www.arxiv.org/abs/math.DG/0211159.

[32] G. Perelman, “Ricci Flow with Surgery on Three-Manifolds.” (Nov 30,
2008) www.arxiv.org/abs/math.DG/0303109.

[33] J. F. Manning, “Algorithmic Detection and Description of Hyperbolic
Structures on Closed 3|Manifolds with Solvable Word Problem,” Geom-
etry & Topology, 6, 2002 pp. 1|26. doi .10.2140/gt.2002.6.1.

 Evaluating the Complexity of Mathematical Problems: Part 1 285

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

