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In  this  paper  we  provide  a  computational  method  for  evaluating  the
complexity of a large class of mathematical problems in a uniform way.
The method, which is inspired by A New Kind of Science  [1],  is  based
on the possibility of completely describing complex mathematical prob-
lems,  such  as  the  Riemann  hypothesis,  in  terms  of  very  simple  pro-
grams.  The method is  illustrated on a  variety  of  examples  from differ-
ent areas of mathematics and its power and limits are studied.

1. Introduction

Evaluating, or even guessing, the degree of difficulty of an open prob-
lem, or that  of  a  solved problem before seeing its  solution,  is  notori-
ously  hard not  only  for  beginners,  but  also  for  the  most  experienced
mathematicians. 

Can a uniform method be developed for evaluating in some objec-
tive  way  the  difficulty  of  a  mathematical  problem?  The  question  is
not trivial because mathematical problems are very diverse. The Math-
ematics Subject Classification (MSC2000) based on the Mathematical
Reviews  and  Zentralblatt  MATH  databases,  contains  over  5,000
two-, three-, and five-digit classifications [2]. Additionally, there is no
clear  indication  that  all,  most,  or  even  a  large  part  of  mathematical
problems have any kind of “commonality” allowing a uniform evalua-
tion of their complexity. How could one compare a problem in num-
ber theory with a problem in complex analysis or algebraic topology? 

Surprisingly  enough,  such  a  commonality  exists  for  many  mathe-
matical  problems.  One of  them, the  so-called halting problem  [3],  as
discussed in this paper is based on the possibility of expressing a prob-
lem in  terms of  very  simple  programs that  are  reducible  to  a  natural
question in theoretical computer science. As a consequence, a uniform
approach for evaluating the complexity of a large class of mathemati-
cal problems was developed. 

This  paper  is  structured  as  follows.  In  Section  2  a  series  of  inter-
esting mathematical  problems are presented and analyzed in order to
find  their  commonality.  They  are  the  infinity  of  primes,  Goldbach’s
conjecture and other problems in number theory, the pigeonhole prin-
ciple,  Hilbert’s  tenth  problem,  the  four  color  theorem,  the  Riemann
hypothesis,  and  the  Collatz  and  palindrome  conjectures.  We  show
how all these problems are closely related to the halting problem. Sec-
tion 3 discusses the most (in)famous problem in theoretical computer
science, the halting problem. Section 4 presents the method for evalu-
ating complexity. Section 5 gives an example of a class of problems to
which  the  proposed  method  applies;  namely,  the  class  of  finitely
refutable  problems,  and  Section  6  examines  the  power  and  limits  of
the  proposed  method.  We  finish  the  paper  with  a  few  concluding
remarks. 
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2. Some Interesting Mathematical Problems: What Do They Have in 
Common?

In this section we discuss some interesting, solved or open, mathemati-
cal  problems  searching  for  their  possible  “common  computational
structure”. 

2.1 The Infinity of Primes

Euclid is credited with the first proof that the set of primes is infinite:
there is  no largest  prime as  much as  there is  no largest  natural  num-
ber. The typical argument, a reasoning by absurdity, runs as follows.
Let us suppose that the set of primes is finite, say 9p1, p2, p3, … , pn=.
Construct the number q  p1 p2 p3 … pn + 1. If q is a prime, then we
have a new prime as q > pi  for all 1 § i § n. If q is not a prime, then
(by the prime factoring theorem) it must be divisible by a prime r < q.
But  r  cannot  be  any  pi  in  our  original  exhaustive  list  of  primes  be-
cause dividing q by pi  produces the remainder 1. As a consequence, r
is a new prime as well. In both cases we have found a contradiction, a
prime that is not in the original list. 

Wittgenstein  criticized  Euclid’s  proof  on  its  “totality”  nature  be-
cause  [4,  p.  64]:  “In  mathematics  we  must  always  be  dealing  with
systems,  and  not  with  totalities.”  (Wittgenstein  advocated  a  form  of
anti-platonism by rejecting the interpretation of mathematical proposi-
tions in terms of propositions which are capable of being true or false
in correspondence to reality, cf. [4].)

Instead of a proof of the existence of an infinity of primes based on
deduction from certain formal or informal assumptions,  Wittgenstein
called for the construction of “a formal expression that proves the in-
finity of primes by its syntactical features.” 

Such  a  proof  can  be  easily  obtained  by  rephrasing  Euclid’s  argu-
ment in terms of a formal or informal computer program Pprimes  that
generates  the  sequence  of  primes  in  increasing  order.  The  infinity  of
primes  is  equivalent  with  the  property  of  Pprimes  to  continue  indefi-
nitely and never stop. Although we do not subscribe to Wittgenstein’s
philosophy  of  mathematics,  we  acknowledge  the  importance  of  his
preference for process versus function.

 268 C. S. Calude and E. Calude 

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.



Such  a  proof  can  be  easily  obtained  by  rephrasing  Euclid’s  argu-
ment in terms of a formal or informal computer program Pprimes  that
generates  the  sequence  of  primes  in  increasing  order.  The  infinity  of
primes  is  equivalent  with  the  property  of  Pprimes  to  continue  indefi-
nitely and never stop. Although we do not subscribe to Wittgenstein’s
philosophy  of  mathematics,  we  acknowledge  the  importance  of  his
preference for process versus function.

2.2 Goldbach’s Conjecture and Other Problems in Number Theory

Goldbach’s  conjecture,  which is  part  of  Hilbert’s  eighth problem [5],
states that all positive even integers greater than two can be expressed
as  the  sum  of  two  primes.  The  conjecture  was  tested  up  to  1018;
see [6]. 

Applying  the  same  idea  as  for  the  infinity  of  primes,  a  computer
program  PGoldbach  can  be  written  that  enumerates  all  positive  even
integers  greater  than  two  and  for  each  of  them  checks  the  required
property.  The  program  PGoldbach  stops  if  and  only  if  it  finds  a
counter-example  for  Goldbach’s  conjecture.  In  other  words,
PGoldbach never stops if and only if Goldbach’s conjecture is true. 

The same approach works for many problems in number theory, in
particular  for  Fermat’s  last  theorem. The program PFermat  systemati-
cally  generates  all  4-tuples  of  positive  integers  greater  than  3,
Hn, x, y, zL,  and  stops  when  it  finds  the  first  4-tuple  for  which
xn + yn  zn. 

Can the same method be applied to the conjecture that there are in-
finitely many Mersenne primes? (Mersenne primes are numbers of the
form 2n - 1.  Currently  only  46  Mersenne  primes  are  known and  the
largest is 243 112 609 - 1. The conjecture is believed to be true because
the harmonic series diverges.)

Or  to  the  twin  primes  conjecture  that  there  are  infinitely  many
primes p such that p + 2 is also prime? (This is believed to be true be-
cause of the probabilistic distribution of primes.)

It is clear that Goldbach’s conjecture and Fermat’s last theorem are
statements of the form H" nL PHnL,  where P  is a computable predicate.
The  last  two  conjectures  have  a  more  complicated  structure  and  can
be written in the form H" NL H$ n > NL P£HnL, where P£ is a computable
predicate. A program generating more and more natural numbers sat-
isfying  the  twin  primes  conjecture  may  not  stop  either  because  there
are infinitely many pairs  of  primes p, p + 2 or because there are only
finitely many primes p such that p + 2 is also prime! 

So,  the  last  two  conjectures  cannot  be  directly  represented  by  the
halting  property  of  an  associated  program.  It  is  an  open  question
whether the last conjectures can be represented in the form H" nL PHnL,
where  P  is  a  computable  predicate. Still,  can  they  be  described  in
terms  of  the  halting  status  of  some  program?  A  positive  answer  is
given in Section 6.

 Evaluating the Complexity of Mathematical Problems: Part 1 269 

Complex Systems, 18 © 2009 Complex Systems Publications, Inc. 



So,  the  last  two  conjectures  cannot  be  directly  represented  by  the
halting  property  of  an  associated  program.  It  is  an  open  question
whether the last conjectures can be represented in the form H" nL PHnL,
where  P  is  a  computable  predicate. Still,  can  they  be  described  in
terms  of  the  halting  status  of  some  program?  A  positive  answer  is
given in Section 6.

2.3 The Pigeonhole Principle

The statement if n > m pigeons are put into m pigeonholes, there is a
hole  with more than one pigeon is  called the pigeonhole  principle  or
the Dirichlet principle. 

Here is a more formal statement: every function from a set of n ele-
ments  into  a  set  with  m < n  elements  is  not  injective.  A  program
Ppigeonholeprinciple  which  for  all  n  generates  all  functions  from

81, 2, … , n<  into  81, 2, … , m<,  for  all  m < n,  and  for  each  of  them
checks  whether  the  function  is  injective,  will  either  find  an  injective
function and stop, or will continue forever. The validity of the pigeon-
hole  principle  is  equivalent  to  the  fact  that  the  program
Ppigeonholeprinciple never stops. 

2.4 Hilbert’s Tenth Problem

Solving algebraic equations using integer (or rational) constants in the
domain  of  positive  integers  is  an  old  mathematical  activity.  Some  of
these  equations  do  not  have  a  solution  at  all,  others  have  a  finite
number  of  solutions,  and  some  have  infinitely  many  solutions.  The
equation 2 x - 2 y  1 has  no integer  solution,  the  equation 5 x  10
has  a  unique  integer  solution,  and  the  equation  7 x - 17 y  1  has
infinitely many integer solutions. 

A  Diophantine  equation  (named  after  Diophantus  of  Alexandria,
circa 200 AD) is an equation of the form P  0 where P is a polyno-
mial  with  integer  coefficients.  Fermat’s  equations  xn + yn  zn  for
n  1, 2, … are all  Diophantine.  To solve a given Diophantine equa-
tion P  0, we have to determine whether the equation has solutions
in the domain of positive integers, and, if it has, to find all of them. 

Here is the formulation of Hilbert’s tenth problem (for the original
statement in German, see [7]):

10.  Determining  the  solvability  of  a  Diophantine  equation.
Given  a  Diophantine  equation  with  any  number  of  unknowns
and  with  rational  integer  coefficients:  devise  a  process,  which
could  determine  by  a  finite  number  of  operations  whether  the
equation is solvable in rational integers. 

Consider the parametric Diophantine equation 

(1)Ia1, a2, … , an, x1, x2, … , xm+1M  0,

where  a1, a2, … , an  are  parameters  and  x1, x2, … , xm+1  are  un-
knowns. Fixing values for parameters results in a particular Diophan-
tine  equation.  For  example,  in  the  parametric  Diophantine  equation
Ha1 - a2L

2 - x1 - 1  0,  a1  and  a2  are  the  parameters  and  x1  is  the
only  unknown.  If  we put  a1  1 and a2  0 we get  the  Diophantine
equation x1  0; if we take a1  a2  0 we get the Diophantine equa-
tion x1 + 1  0. 
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Given equation (1),  we can construct  a program PP  which,  begin-
ning  with  the  input  a1, a2, … , an,  will  eventually  halt  if  and  only  if
equation  (1)  has  a  solution  in  the  unknowns  x1, x2, … , xm+1.  The
program  PP  systematically  generates  all  vectors  with  m + 1  integers
Ii1, i2, … , im+1M,  checks  for  each  of  them  whether
P Ia1, a2, … , an, i1, i2, … , im+1M  0,  and  stops  when  the  first  solu-
tion is found. 

Can we make the program PP  “independent” of P in the sense that
P  appears as an input of the program? The answer is affirmative: we
can  construct  a  program  PH10P  that  when  given  an  arbitrary  Dio-
phantine equation (without parameters, i.e., n  0) P  0, will eventu-
ally stop if and only if the equation P  0 has a solution. Can we de-
cide in a finite amount of time whether the program PH10P  eventually
halts?  The  answer  is  negative,  as  is  well  known  [8].  The  core  argu-
ment is based on the fact that every computably enumerable set of nat-
ural  numbers  that  can  be  represented  in  the  form
8n : P Hn, x1, x2, … , xmL  0  has  a  solution  in  the  non-negative  inte-
gers unknown x1, x2, … , xm<, cf. [9]. 

It is interesting to note that the counterpart of Hilbert’s tenth prob-
lem  for  real  unknowns,  that  is,  given  an  equation  of  the  form
PHx1, x2, … , xmL  0  where  P  is  a  polynomial  with  integer  coeffi-
cients  (same  as  in  the  classical  case)  but  x1, x2, … , xm  are  real  un-
knowns,  is  decidable.  There  is  a  program  that  decides  in  a  finite
amount of time whether the equation has a solution in the domain of
reals.  Indeed,  the  decision  problem  is  solved  by  the  Sturm  method
[10] for m  1 and Tarski’s method [11] works for any number of un-
knowns. This shows that extrapolating computational facts from posi-
tive  integers  to  reals  is  not  always  possible.  Of  course,  no  program
can in general compute exactly some solutions, even if their number is
known,  because  solutions  can  be  irrational.  However,  solutions  can
be effectively  approximated up to any precision.  This  leads  us  to  the
following problem for standard Diophantine equations. 

Fix a Diophantine equation 

(2)DHn, x1, x2, … , xmL  0,

and then consider the following two questions.

† For  a  fixed  n  n0,  does  the  equation  DIn0, x1, x2, … , xmM  0 have
a solution? 

† For  a  fixed  n  n0,  does  the  equation  DIn0, x1, x2, … , xmM  0 have
an infinity of solutions? 

Both questions are undecidable for some instances of equation (2).
For each  equation (2) the information contained in the sequence of k
answers  to  the  yes/no  question  “does  the  equation
DIn0, x1, x2, … , xmM  0  have  a  solution  for  n  1, 2, … , k?”  con-
tains  only  log k  bits  of  information  (knowing  how  many  equations
have  solutions  is  enough  to  determine  exactly  which  equations  have
solutions).  This  information  can  be  substantially  compressed.  How-
ever, for some instances of equation (2) the information contained in
the  sequence  of  k  answers  to  the  yes/no question “does  the  equation
DIn0, x1, x2, … , xmM  0  have  infinitely  many  solutions  for
n  1, 2, … , k?” contains about k bits of information, that is, the in-
formation cannot be algorithmically compressed. For more, see [12]. 
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2.5 The Four Color Theorem

The four color theorem, first conjectured in 1853 by Francis Guthrie,
states that every plane separated into regions may be colored using no
more than four colors in such a way that no two adjacent regions re-
ceive  the  same color.  Two regions  are  called  adjacent  if  they  share  a
border segment, not just a point. Regions must be contiguous, that is,
the plan has no exclaves. 

In  graph-theoretical  terms,  the  four  color  theorem  states  that  the
vertices of every planar graph can be colored with at most four colors
so that no two adjacent vertices receive the same color. Shortly, every
planar graph is four-colorable. 

The four color theorem was proved in 1977 [13, 14] (see also [15])
using  a  computer-assisted  proof  that  consists  of  constructing  a  finite
set  of  “configurations”,  and  then  proving  that  each  of  them  is
“reducible”~which  implies  that  no  configuration  with  this  property
can  appear  in  a  minimal  counter-example  to  the  theorem.  Checking
the correctness of the original proof is a very difficult task. It implies,
among other things, checking the descriptions of 1476 graphs, check-
ing  the  correctness  of  the  programs,  proving  the  correctness  of  the
compiler used to compile the programs, and checking the degree of re-
liability  of  the  hardware  used  to  run  the  programs.  This  computer-
assisted  proof  generated  lots  of  mathematical  and  philosophical  dis-
cussions around the notion of acceptable mathematical proof; see, for
example, [16|18]. Various partial independent verifications have been
obtained, though it appears that there is no verification in its entirety.
The formal confirmation announced in [19] uses the equational logic
program Coq (see [20] for a recent presentation of the formal proof).
The following quote from the concluding discussion in [19] is relevant
for the current status of the proof (emphasis added): 
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However,  an  argument  can  be  made  that  our  “proof”  is  not  a
proof in the traditional sense, because it  contains steps that can
never  be verified by humans.  In particular,  we have not  proved
the  correctness  of  the  compiler  we  compiled  our  programs  on,
nor have we proved the infallibility of the hardware we ran our
programs on. These have to be taken on faith, and are conceiv-
ably a source of error.… Apart from this hypothetical possibility
of  a  computer  consistently  giving  an  incorrect  answer,  the  rest
of our proof can be verified in the same way as traditional math-
ematical  proofs.  We  concede,  however,  that  verifying  a  com-
puter program is much more difficult than checking a mathemat-
ical proof of the same length.

A program Pfourcolortheorem  that systematically generates all planar
graphs and checks if each one is colorable with four colors and stops
when the first counter-example is found will  never halt if  and only if
the theorem is true. However, this program will be quite long because
testing the planarity of a graph is difficult. A better solution is to use
the  Diophantine  representation  of  the  four  color  theorem  proposed
in [9]: 

(3)FHn, t, a, …L  0.

Equation (3) has no solution if and only if every planar graph can be
colored with at  most  four colors  so that  no two adjacent  vertices  re-
ceive  the  same  color.  Based  on  equation  (3),  we  can  write  the  pro-
gram PF as in Section 2.4, which can be taken as Pfourcolortheorem. 

Actually,  it  is  better to use a pre-Diophantine representation given
by  the  following  conditions.  Without  restricting  the  generality,  we
consider  the  maps  Tn  consisting  of  the  points  Hx, yL  such  that
JHx, yL § Q  In2 + 3 nM ë 2,  where  J  is  Cantor’s  bijection  JHx, yL 
IHx + yL2 + 3 x + yM ë 2.  Given  a  four-coloring  of  Tn,  t0, t1, … , tQ
there  exist  (and  can  be  effectively  computed)  s, t  such  that  for  all
0 § i § Q (the integer remainder function is denoted by rem):

ti  remHt, 1 + sHi + 1LL.

In other words, the sequence t0, t1, … , tQ can be coded by s and t. 
Every  sequence  u0, u1, … , uQ  with  ui < 4  can  be  represented  by

some u § R  H1 + 4 HQ + 2L !LQ+1 such that 

ui  remHu, 1 + 4 HQ + 2L ! Hi + 1LL.

Finally,  there  is  a  map  (say,  Tn)  that  cannot  be  colored  in  four
colors if and only if the following condition is satisfied: 

H$ n, t, sL H" u § RL H$ x, yL Hx + y § nL @A Ó BD,
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where 

A  uJ Hx,yL ¥ 4,

B  AItJ Hx,yL  tJ Hx+1,yL Ô uJ Hx,yL ≠ uJ Hx+1,yLM Ó

ItJ Hx,yL ≠ tJ Hx+1,yL Ô uJ Hx,yL  uJ Hx+1,yLM Ó

ItJ Hx,yL  tJ Hx,y+1L Ô uJ Hx,yL ≠ uJ Hx,y+1LM Ó

ItJ Hx,yL ≠ tJ Hx,y+1L Ô uJ Hx,yL  uJ Hx,y+1LME.

A simple inspection shows that the given condition is computable, so
the  four  color  theorem  is  of  the  form  H" nL PHnL,  where  P  is  a  com-
putable predicate. 

2.6 The Riemann Hypothesis

The Riemann hypothesis is  probably the most famous and important
conjecture in mathematics. It appears in Hilbert’s eighth problem [5]:
the nontrivial complex zeros of Riemann’s zeta function, which is de-
fined for ReHsL > 1 by 

zHsL  ‚

n1

¶ 1

ns
,

lie exactly on the line ReHsL  1 ê 2. 
According  to  Matiyasevich  [8,  pp.  119|121],  the  negation  of  the

Riemann hypothesis is  equivalent to the existence of positive integers
k, l, m, n  satisfying  the  following  six  conditions  (here  x z  means  “x
divides z”): 

1. n ¥ 600, 

2. " y < n AIy + 1M mE, 

3. m > 0 & " y < m Ay  m Ó $ x < n AŸ AHx + 1L yEEE, 

4. explogHm - 1, lL, 

5. explogHn - 1, kL, 

6. Hl - nL2 > 4 n2 k4, 

and explogHa, bL denotes the predicate 

$ x x > b + 1 & 1 +
1

x

x b

§ a + 1 < 4 1 +
1

x

x b

.

An inspection of these conditions shows that the Riemann hypothesis
is  of  the  form  " n, RHnL,  where  R  is  a  computable  predicate. Hence,
one can write a program PRiemann  such that the Riemann hypothesis
is false if and only if PRiemann halts. 
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An inspection of these conditions shows that the Riemann hypothesis
is  of  the  form  " n, RHnL,  where  R  is  a  computable  predicate. Hence,
one can write a program PRiemann  such that the Riemann hypothesis
is false if and only if PRiemann halts. 

2.7 The Collatz and Palindrome Conjectures

When  he  was  a  student,  L.  Collatz  posed  the  following  problem:
given any integer seed a1,  there exists  a natural  N  such that  aN  1,
where 

an+1 
an
2

, if an is even,

3 an + 1, otherwise.

This is known as Collatz’s conjecture, the Syracuse conjecture, the
3 x + 1  problem,  Kakutani’s  problem,  Hasse  algorithm,  or  Ulam’s
problem.  There  is  a  huge  amount  of  literature  on  this  problem  and
various  natural  generalizations:  see  [21|23].  Erdös  has  said  (cf.  [21])
that “Mathematics may not be ready for such problems.” 

Does  there  exist  a  program PCollatz  such  that  Collatz’s  conjecture
is false if and only if PCollatz halts? 

First, we note that a brute-force tester, that is, a program that will
enumerate all seeds and try to find an iteration equal to 1 for each of
them,  may  never  stop  in  two  different  cases:  (a)  because  the  conjec-
ture is indeed true, or (b) because for some specific seed a1  there is no
N  such  that  aN  1.  It  is  not  clear  how  to  differentiate  these  cases;
even worse, it is not clear how to refute (b) using a brute-force tester. 

A  simple  nonconstructive  argument  answering  our  question  in  the
affirmative appears in [3]. Indeed, observe first that the set 

Collatz  8a1 : aN  1, for some N ¥ 1<

is  computably  enumerable.  Collatz’s  conjecture  requires  proving  that
Collatz does indeed contain all positive integers. 

If  Collatz  is  not  computable,  then  the  conjecture  is  false,  and  any
program that  eventually  halts  can be  taken as  PCollatz  as  (a)  is  ruled
out. If Collatz is computable, then we can write a program PCollatz  to
find  an  integer  not  in  Collatz:  the  conjecture  is  true  if  and  only  if
PCollatz never stops. 

Now we present the palindrome conjecture. The reverse (mirror) of
a number is the number formed with the same decimal digits but writ-
ten in the opposite order. For example, the mirror of 12 is 21, the mir-
ror of 131072 is 270131, and so on. Start with the decimal representa-
tion of a natural a, reverse the digits, and add the constructed number
to  a.  Iterate  this  process  until  the  result  is  a  palindrome.  Following
[24], the palindrome conjecture states that for every natural a, a palin-
drome  number  will  be  obtained  after  finitely  many  iterations  of  the
given procedure. 

The  same  nonconstructive  argument  used  for  Collatz’s  conjecture
applies  to  the  palindrome  conjecture:  there  exists  a  program
Ppalindrome  such  that  the  palindrome conjecture  is  true  if  and only  if

Ppalindrome never stops. 
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The  same  nonconstructive  argument  used  for  Collatz’s  conjecture
applies  to  the  palindrome  conjecture:  there  exists  a  program
Ppalindrome  such  that  the  palindrome conjecture  is  true  if  and only  if

Ppalindrome never stops. 

Collatz  and  palindrome  conjectures  have  the  following  general
form. Let a œ N and let T  be a computable function from naturals to
naturals.  The  conjecture  associated  to  Ha, TL  is:  for  each
x œ N, TiHxL  a, for some i > 0. 

Considering the set 

(4)B Ha, TL  9x œ N : TiHxL  a, for some i > 0=,

the conjecture associated to Ha, TL becomes equivalent with the equal-
ity  BHa, TL  N.  The  argument  used  for  Collatz’s  conjecture  applies
to  this  general  case  too,  so  one  can  prove  in  a  nonconstructive  way
the  existence  of  a  program PHa,TL  such  that  the  conjecture  associated
to Ha, TL is true if and only if PHa,TL never stops. 

3. The Halting Problem

In  Section  2  the  halting  property  of  various  programs  repeatedly  ap-
peared.  It  is  time  to  ask  the  question:  can  the  halting  problem  be
solved  by  a  program?  As  all  of  our  programs  have  a  very  specific
form~they  have  no  input  and  each  of  them  either  stops  (in  which
case the output is a natural number) or never stops~we show with a
simple  argument  that  the  halting  problem,  that  is,  the  problem  of
whether or not such a program eventually stops, is unsolvable by any
program.  This  means  that  there  is  no  program H  with  the  following
three properties.

1. H accepts as input any program of the given type.

2. H eventually halts.

3. H produces the output 1 if the input program eventually stops, or 0 in
case the input program never stops. 

Here is an information-theoretic analysis of the existence of the hy-
pothetical  program H.  Assume that  there exists  a  halting program H
with  the  three  properties.  Using  H  we  construct  the  following
(legitimate) program P.

1. Read a natural N. 

2. Generate all programs up to N bits in size.

3. Use H to check each generated program for whether or not it halts. 
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4. Simulate the running of the remaining programs.

5. Output 1 plus the biggest value output by these programs. 

The  program  P  halts  for  every  natural  N.  Indeed,  the  number  of
programs less than N bits in size is finite, so by the assumption that H
can  decide  the  halting  status  of  every  program in  a  finite  amount  of
time,  we  can  filter  out  all  nonhalting  programs.  The  remaining  pro-
grams  (certainly,  finitely  many)  can  be  run  and  after  a  finite  (maybe
very long) computation they will all halt and each will produce a natu-
ral number as output. Did we obtain a contradiction? 

To answer the question we have to ask the right auxiliary question:
how long is P? The answer is that P  is  about log2 N  bits.  Indeed, we
need about  log2 N  bits  to  code N  in  binary,  and the  rest  of  the  pro-
gram P is a constant, say c. Hence, the length of P is log2 N + c bits. 

Now  observe  that  there  is  a  big  difference  between  the  size  of  P
and the size of the output produced by P. Indeed, for large enough N,
P  belongs  to  the  set  of  programs  having  less  than  N  bits  because
log2 N + OH1L < N.  Hence,  in  this  case,  P  generates  itself  at  some
stage  of  the  computation.  As  P  always  halts,  the  program H  decides
that P stops, so P is run as a part of the simulation (inside the compu-
tation of  P)  and produces  a  natural  number  as  a  result.  But  the  pro-
gram P itself will output a natural number that is different from every
output  produced  by  a  simulated  computation,  in  particular  from the
output produced by P itself, which is a contradiction.

This proof (see [12] for more details) shows that in general there is
no  method,  no  uniform procedure,  to  test  whether  an  arbitrary  pro-
gram eventually stops or not.  Of course,  this does not imply that for
some  infinite  class  of  programs  we  cannot  find  a  program  to  decide
their  halting  status.  Actually,  there  are  infinite  sets  of  programs  for 
which the halting problem is decidable, for example, the class of primi-
tive recursive programs (which are all total).

What is the situation with the programs associated to the problems
discussed before? Can we hope to decide for each of them whether it
halts  or  not?  For  some  programs,  such  as  PFermat,  we  know the  an-
swer:  the program never stops as  certified by A.  Wiles’  proof of  Fer-
mat’s  last  theorem.  For  the  program  PRiemann  the  answer  is  not
known.  We  currently  cannot  even  explicitly  write  the  program
PCollatz. (We conjecture that the statement “PCollatz never stops” is in-
dependent  of  the  Zermelo|Fraenkel  set  theory  with  the  axiom  of
choice, or ZFC.) For some programs P the statement “P halts” is inde-
pendent of ZFC. Such a statement has to be true. A proof of indepen- 
dence is an alternative proof, admittedly not usual, of the truth of the
statement.
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4. A Computational Method for Evaluating the Complexity of 
Mathematical Problems

We  now  return  to  Fermat’s  last  theorem  and  to  the  fact  that  it  is
equivalent to the statement “PFermat  never halts”. We do not propose
to  prove  Fermat’s  last  theorem  by  showing  that  PFermat  never  halts,
but to use the program PFermat as a way to measure the complexity of
Fermat’s last theorem.

We  do  this  by  counting  the  number  of  bits  necessary  to  specify
PFermat  in  some  fixed  “universal  formalism”  (e.g.,  a  universal  self-
delimiting Turing machine [12]). Of course, there are many programs
equivalent to PFermat, so a natural way to evaluate their complexity is
to consider the smallest such program. 

The choice of the universal formalism used to code programs is ir-
relevant  up  to  an  additive  constant,  so  if  a  problem  is  significantly
more  complex  in  some  fixed  formalism  than  in  another  one,  then  it
will  continue  to  be  more  complex in  any other  formalism.  However,
the proposed measure is uncomputable [12], so we have to work with
an upper bound on the size of a program “describing” the conjecture,
problem, or theorem. 

In practice,  to evaluate the complexity of  a problem P  we need to
effectively  obtain  the  program  PP  and  compute  its  size  in  bits.  This
gives an upper bound on the complexity of PP, and hence on the diffi-
culty of P. But, as we have seen with the Collatz and palindrome con-
jectures, even this type of approximation may not be achievable in all
cases. We cannot evaluate a bound on the difficulty of a problem P if
we do not know at least one “explicit” program PP. 

5. Finitely Refutable Problems

It  is  time  to  ask  the  question:  What  is  the  class  of  problems  whose
complexity can be evaluated with the method proposed in Section 4?
We will not answer this question, which is open, but do give an exam-
ple  of  a  large  class  of  problems  to  which  the  method  applies.  With
Pythagoras’  dictum  “all  is  number”  as  a  guiding  principle  we  will
look at finite numerical tests. 

Let N  denote the set  of  positive integers and for every k œ N  con-
sider a predicate P on N. 

Consider the formula 

f  Q1 n1 Q2 n2 … Qk nk P In1, n2, … , nkM

where  Q1, Q2, … , Qk œ 8" , $<  are  quantifier  symbols.  In  analogy

with the arithmetic classes, we say that f  is in the class P
`

s  or S
`
s  if the

quantifier  prefix  of  f  starts  with  "  or  $,  respectively, and  contains
s - 1 alternations of quantifier symbols. When P is computable, then f
is in Ps or Ss, respectively. It is sufficient to consider only such formu-
las f  in which no two consecutive quantifier symbols are the same. In
the remainder of this section we make this assumption without special
mention. With f  as given, we have s  k. 
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where  Q1, Q2, … , Qk œ 8" , $<  are  quantifier  symbols.  In  analogy

with the arithmetic classes, we say that f  is in the class P
`

s  or S
`
s  if the

quantifier  prefix  of  f  starts  with  "  or  $,  respectively, and  contains
s - 1 alternations of quantifier symbols. When P is computable, then f
is in Ps or Ss, respectively. It is sufficient to consider only such formu-
las f  in which no two consecutive quantifier symbols are the same. In
the remainder of this section we make this assumption without special
mention. With f  as given, we have s  k. 

As  usual,  with  P  as  given,  we  write  PIn1, … , nkM  instead  of
PIn1, … , nkM  1  when  n1, … , nk  are  elements  of  N.  Thus,
Ÿ PIn1, … , nkM  if  and  only  if  PIn1, … , nkM  0.  Moreover,  since  we
consider variable symbols only in the domain N, if f  is any formula in
first-order logic, we write f  is true instead of f  is true in N. 

Let Gs be one of the classes P
`

s, S
`
s, Ps, or Ss. We refer to the task of

proving  or  refuting  a  first-order  logic  formula  as  a  problem  and,  in
particular, to problems expressed by formulas in Gs as Gs|problems. 

We say that a problem is being solved if the corresponding formula
is proved or disproved to be true, that is, if the truth value of the for-
mula is determined. A problem is said to be finitely solvable  if  it  can
be solved by examining finitely many cases. 

For example, consider the predicate 

PHnL 
1, if n is even or n  1 or n is a prime,

0, otherwise,

that  is,  PHnL  0  if  and  only  if  n  is  an  odd  number  greater  than  1
which  is  not  a  prime.  Then  the  conjecture  expressed  by  the  formula
H" nL PHnL  is  finitely  solvable;  indeed,  it  is  sufficient  to  check all  n  up
to 10 to refute this conjecture. 

Goldbach’s  conjecture  is  a  P1|problem.  To  express  it  let
PGoldbach : N Ø 80, 1< be such that 

PGoldbach HnL 

1, if n is odd or (n is even and n is the sum of two primes),

0, otherwise.

Thus,  fGoldbach  H" nL PGoldbachHnL  is  true  if  and  only  if  Goldbach’s
conjecture is true. 

Similarly,  the  Riemann  hypothesis  is  a  P1|problem.  By  a  result
given in [9], the Riemann hypothesis can be expressed in terms of the
function dRiemann : N Ø R defined by 

dRiemann HkL  ‰

n<k

‰

j§n

hRiemann HjL,

 Evaluating the Complexity of Mathematical Problems: Part 1 279 

Complex Systems, 18 © 2009 Complex Systems Publications, Inc. 



where 

hRiemann HjL 
p, if j  pr for some prime p and some r œ N,

1, otherwise.

The  Riemann  hypothesis  is  equivalent  with  the  assertion  that  for
all n œ N 

‚

k§dRiemann HnL

1

k
-

n2

2

2

< 36 n3.

If we set 

PRiemann HnL  1, if ‚
k§dRiemannHnL

1

k
-

n2

2

2

< 36 n3,

0, otherwise.

Then,  fRiemann  H" nL PRiemannHnL  is  true  if  and  only  if  the  Riemann
hypothesis  is  true.  Clearly,  PRiemann  is  decidable,  therefore,  the  Rie-
mann hypothesis is a P1|problem. 

What is the “commonality” of all problems in classes P
`

s and S
`
s? 

For s œ N, let G
`

s  denote any of P
`

s  and S
`
s, and let Gs  denote any of

Ps and Ss. Let 

f  Q1 n1 Q2 n2 … Qs ns P Hn1, n2, … , nsL

with s œ N, where Q1, Q2, … , Qs are alternating quantifier symbols. 
Following  [25],  we  define  a  test  set  for  f  to  be  a  set  T Œ Ns  such

that  f  is  true  in  Ns  if  and  only  if  it  is  true  in  T.  The  problem  f  is
finitely solvable if there is a finite test set for f .  In [25] the following
result was proved: 

Every f œ G
`

s is finitely solvable. 

In other words, a solution to each mass problem (i.e., a problem hav-
ing  an  infinite  number  of  instances  or  cases)  in  the  given  classes  can
be obtained by inspecting only finitely many instances of the problem.
As we might expect, this fact cannot be used to obtain a uniform algo-
rithmic way of solving these types of problems because the finite test
set cannot be computed even for all problems in the class P1: There is
no constructive proof showing that every f œ P1 has a finite test set. 
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6. The Power and the Limits of the Method

Our analysis gives a new method of comparing the difficulties of two
or more finitely refutable problems. The main obstacle is the noncom-
putability  of  the  measure  [12].  However,  by  working  with  upper
bounds, we can obtain a practical method for evaluating the complex-
ity that allows a relative ranking of problems.

In  weighting  the  importance  of  computing  the  exact  value  of  the
complexity  measure,  recall  Knuth  [26]:  “premature  optimization  is
the root of all evil” and Rabin [27] “we should give up the attempt to
derive results and answers with complete certainty.”

The method can be applied to every P1|problem. All problems dis-
cussed in Section 2 can be analyzed with this method [3]. Trying to re-
duce the length of a program is in general possible; of course, proving
minimality is, in general, impossible [12]. 

The method proposed is certainly not universal. Let us discuss here
the class of P1|problems. Not every mathematical statement is  a P1|

problem.  For  instance,  the  twin  primes  conjecture  discussed  in  Sec-
tion 2.2 is not a P1|problem. Writing 

PTP Hn, mL 
1, m > n and m and m + 2 are primes,

0, otherwise,

this conjecture can be stated as 

fTP  " n $ m PTPHn, mL.

The  formula  fTP  is  in  the  class  P2.  Bennett  conjectured  in  [28]  that
most  mathematical  conjectures  can  be  settled  indirectly  by  proving
stronger  conjectures.  For  the  twin  primes  conjecture  a  stronger  P1|

problem is obtained as follows. Consider the predicate 

PT
£ HnL 

1, if there is m with 10n-1 § m § 10n, m and m + 2 primes,

0, otherwise.

Let fT
£  H" nL PT

£ HnL. Thus, fT
£  gives rise to a P1|problem and, if fT

£  is
true, then fT  is also true (but the converse is not necessarily true). 

However,  there  exists  a  program  PTP  such  that  the  twin  primes
conjecture is  true if  and only if  PTP  never halts.  As in Collatz’s case,
the argument is nonconstructive and based on the fact that the set 

TP  9n : " n $ m > n such that m and m + 2 are primes=

is computably enumerable. 
The method depends on the chosen universal Turing machine, that

is,  our  working  framework.  Changing  the  universal  machine  will  re-
sult  in  changes  of  the  complexity  value, but  not  in  relative  compari-
son between problems.  The choice  of  the  machine is  irrelevant  up to
an  additive  constant,  so  if  a  problem  is  significantly  more  complex
than  another  one  with  respect  to  a  fixed  universal  machine,  then  it
will continue to be more complex for any other machine. The method
was used by relativizing to the halting problem. The same method can
be used by relativizing to other unsolvable problems, for example, the
totality problem. Going from the halting problem to the totality prob-
lem will increase the power of expression. For example, to the conjec-
ture associated to Ha, TL  (see  equation (4)),  we can associate  the pro-
gram Ga,T HxL defined by 
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The method depends on the chosen universal Turing machine, that
is,  our  working  framework.  Changing  the  universal  machine  will  re-
sult  in  changes  of  the  complexity  value, but  not  in  relative  compari-
son between problems.  The choice  of  the  machine is  irrelevant  up to
an  additive  constant,  so  if  a  problem  is  significantly  more  complex
than  another  one  with  respect  to  a  fixed  universal  machine,  then  it
will continue to be more complex for any other machine. The method
was used by relativizing to the halting problem. The same method can
be used by relativizing to other unsolvable problems, for example, the
totality problem. Going from the halting problem to the totality prob-
lem will increase the power of expression. For example, to the conjec-
ture associated to Ha, TL  (see  equation (4)),  we can associate  the pro-
gram Ga,T HxL defined by 

Ga,T HxL  min
i

ATi HxL  aE.

The conjecture associated to Ha, TL  is true if and only if Ga,THxL  is to-
tal. Writing the program for Ga,THxL is simple, but in the special cases
of  the  Collatz,  palindrome,  and  twin  primes  conjectures  writing  the
corresponding  Pa,T  program  is  problematic  (we  are  only  able  to
prove its existence). 

In [29] Kim discusses the possibility that the Poincaré conjecture (a
recently solved problem in topology, see [30|32]) is  equivalent to the
unsolvability of a Diophantine equation (see also [33]). If this is true,
then our method would also offer,  at least in principle,  an indication
of the difficulty of the Poincaré conjecture.

7. Conclusions

We  have  presented  a  computational  method  for  evaluating  the  com-
plexity  of  mathematical  problems.  The  method,  inspired  by  [1],  is
based on the possibility of completely describing complex mathemati-
cal problems, such as the Riemann hypothesis, in terms of very simple
programs. 

If a mathematical problem, irrespective of its nature, can be equiva-
lently expressed in terms of the property that a certain associated pro-
gram eventually  halts,  then  the  proposed  method  applies.  For  exam-
ple,  the  method  applies  to  every  P1|problem.  Specific  instances  of
such problems are, for example, Fermat’s last theorem, the Goldbach
conjecture, the four color problem, the Riemann hypothesis, Hilbert’s
tenth  problem,  the  Collatz  problem,  the  palindrome  conjecture,  and
the twin primes conjecture. As an illustration, according to this com-
plexity measure, the Riemann hypothesis is about twice as difficult as
the Goldbach conjecture [3]. Although the method applies to both the
Collatz  and  twin  primes  conjectures,  it  is  an  open  question  whether
one can effectively evaluate the complexity of these problems. 

Our  method,  which  is  a  refinement  below the  first  Turing  degree,
provides  a  total  order  in  the  class  of  finitely  refutable problems.  The
difficulty  of  the  problem  is  additive  (modulo  the  constants  involved
due to the choice of the universal Turing machine). The same method
can  be  used  by  relativizing  to  other  unsolvable  problems  different
from the halting problem (e.g., the totality problem). 
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Our  method,  which  is  a  refinement  below the  first  Turing  degree,
provides  a  total  order  in  the  class  of  finitely  refutable problems.  The
difficulty  of  the  problem  is  additive  (modulo  the  constants  involved
due to the choice of the universal Turing machine). The same method
can  be  used  by  relativizing  to  other  unsolvable  problems  different
from the halting problem (e.g., the totality problem). 

The scalability  of  the  measure,  both in  terms of  ordering,  the  role
of the additive constants involved, and its relativization to various un-
solvable problems are open questions. 

In  Part  2  of  this  study  we  will  present  a  formalism  for  uniformly
evaluating the complexity of the problems discussed in this paper and
a ranking of those problems will be presented. 
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