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ABSTRACT

A disjunctive sequence is an infinite sequence in which every finite string appears as
a substring. An absolutely disjunctive number (or lexicon) is a real whose expansion
with respect to every base is disjunctive.

In this note we give a simple construction of absolutely disjunctive Liouville num-
bers (reals which can be “quite closely” approximated by sequences of rationals).
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1. Introduction

Disjunctivity is a qualitative form of (Borel) normality: normal sequences are disjunc-
tive, but the converse is false. Like normality [7, 15], disjunctivity is not base-invariant
(for more details see [9]).

Jürgensen and Thierrin [11] gave a construction of Liouville numbers disjunctive
in base b. Highly incomputable Liouville numbers disjunctive to every base have been
presented in [19, Theorem 15].

The recent construction of a computable absolutely normal Liouville number in [1]
yields also computable, absolutely disjunctive Liouville numbers. This construction,
however, is based on rather complicated measure-theoretic arguments from [2]. The
aim of this note is to present a simple algorithm producing weaker examples, that is,
computable Liouville numbers disjunctive to every base.

1.1. Notation

In this section, we introduce the notation used throughout the paper. By

N = {0, 1, 2, . . .},
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we denote the set of natural numbers. Its elements will be usually denoted by let-
ters i, . . . , n. The set Ab = {0, 1, . . . , b − 1}, where b ≥ 2 is a positive integer, is
called the b-base; the elements of Ab are called b-digits. By A∗

b we denote the set of
all finite strings (words) with ε denoting the empty string; Aω

b is the set of all infinite
sequences (ω-words) over Ab; ω-words are usually denoted by x, y. The length of a
finite or infinite string η over Ab is denoted by |η|.

For w ∈ A∗
b and η ∈ A∗

b ∪ Aω
b , w · η is their concatenation. This concatenation

product extends in an obvious way to subsets L ⊆ A∗
b and B ⊆ A∗

b ∪ Aω
b . If w ∈ A∗

b

and i ≥ 0 is an integer, then wi is the concatenation ww · · · w (i times) and wω is the
infinite concatenation ww · · · w · · · . The · operator can be omitted when the meaning
is clear, as in wη.

By w ⊑ u and w ⊏ y, we denote that w is a prefix of u and y, respectively. Further,
let

pref (y) = { w | w ⊏ y }

and

infix(y) = { w | ∃v(v · w ⊏ y) }

be the set of prefixes and infixes of y, respectively.

1.2. Preliminary Definitions and Results

In this section, we define the classes of real numbers studied in the paper.
A real number α is called a Liouville number if it is irrational and for every positive

integer k, there exist integers pk and qk with qk > 1 such that
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A real α ∈ [0, 1] is called computable if for some b ≥ 2 it has a b-ary com-
putable expansion α = 0.x1x2 . . . , that is, there is a computable function fα such
that fα(n) = xn, for all n ≥ 1. This condition is equivalent to the requirement that
there is a computable sequence of rationals

(

pn

qn

)

n∈N
such that

|α −
pn

qn

| ≤
1

2n
,

for all n ∈ N. This shows that if α is computable, then its expansions in any base b

are computable.

Originally, ω-words x were called disjunctive because the syntactic monoid of the
set {x} is disjunctive, that is, its syntactic congruence is the identity (see [10]). Equiv-
alently, disjunctive ω-words are those which have every finite word as subword.1 In
fact, in a disjunctive ω-word every word appears infinitely many times.

1In view of this latter property, they are also called rich ω-words.
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Disjunctivity is also related to randomness: disjunctive ω-words are exactly
the ω-words not contained in any null-set definable by finite automata [16, 17]. For
more properties of disjunctive sequences see [4].

A real number α ∈ [0, 1] is disjunctive (or rich) in base b if its b-ary expansion is
disjunctive. For example, Champernowne’s number 0.0123456789101112 . . . is com-
putable and disjunctive in base 10 [8]. No rational number is disjunctive in any base.

An absolutely disjunctive number (or lexicon) is a real which is disjunctive in every
base. Every Martin-Löf random real is a lexicon, but the converse is false [3].

In the sequel, we denote by L, C and D the set of all Liouville numbers, computable
numbers and absolutely disjunctive numbers in [0, 1], respectively.

1.3. Co-meagre and Dense Sets

It is useful to consider the unit interval [0, 1] and the spaces of infinite sequences Aω
b

as metric spaces. Suitable metrics are the usual distance |α − β| in [0, 1] and

ρ(x, y) = b− inf{ i∈N|i≥1,xi 6=yi },

for infinite words x = x1 · · · xi · · · , y = y1 · · · yi · · · with xi, yi ∈ Ab. With these
metrics [0, 1] and Aω

b become complete metric spaces.

Let X be a complete metric space. A set M ⊆ X is nowhere dense if its closure
(smallest closed set containing M) does not contain a non-empty open subset. A
set M ⊆ X is meagre (or of first Baire category) if it is a countable union of nowhere
dense sets. A complement of a meagre set is called co-meagre (or residual).

The following closure property of co-meagre sets is well-known (see [12]).

Fact 1. In a complete metric space the family of co-meagre sets is closed under

countable intersection.

A set M ⊆ X is dense if M ∩ M ′ 6= ∅ for every non-empty open set M ′ ⊆ X . Note
that in a complete metric space every co-meagre set is dense, but a dense set might
be meagre, even countable.

The following relations hold for subsets F ⊆ Aω
b and their counterparts in [0, 1].

Lemma 2 [18]. Let F ⊆ Aω
b and MF = { 0.x | x ∈ F } ⊆ [0, 1]. Then

(I) F is nowhere dense if and only if MF is nowhere dense.

(II) F is co-meagre if and only if MF is co-meagre.

(III) F is dense if and only if MF is dense.

Fact 3 [14].

(I) The set of Liouville numbers L is co-meagre.

(II) The set of computable numbers C is countable, meagre and dense.
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2. Disjunctive ω-words

As mentioned above, disjunctive ω-words are infinite words x ∈ Aω
b having

infix(x) = A∗
b .

By

Db = { x | x ∈ Aω
b ∧ infix(x) = A∗

b }

we denote the set of all disjunctive ω-words in Aω
b . Then the set of all absolutely

disjunctive numbers in [0, 1] is

D = { α | α ∈ [0, 1] ∧ ∀b(b ≥ 2 → ∃x(x ∈ Db ∧ α = 0.x)) }.

The set D has the following topological property:

Lemma 4 [6, 18]. The set D is co-meagre in [0, 1].

Then from Fact 1 and Lemma 2, it follows that the set of absolutely disjunctive
Liouville numbers is “topologically” large:

Corollary 5. The intersection L ∩ D is co-meagre in [0, 1].

Corollary 5 gives only an existence proof, not a constructive one. Furthermore,
since the set of computable reals C is countable, it does not even show that L ∩ D ∩ C
is not empty.

To show the existence of computable absolutely disjunctive Liouville numbers, we
use a representation of the b-ary counterparts

{ x ∈ Aω
b | 0.x ∈ D }

of D via computable languages. In Section 4, we then show how this description
can be transformed into an algorithm computing an absolutely disjunctive Liouville
number.

Theorem 6 [18]. For every base b, there effectively exists a computable lan-

guage Wb ⊆ A∗
b such that the ω-language

{ x ∈ Aω
b | the set pref (x) ∩ Wb is infinite }

is the set of all b-ary expansions of absolutely disjunctive reals in [0, 1].

More explicitly, Theorem 6 ([18, Theorem 21]) provides, for every base b, an in-
creasing computable function g : N → A∗

b such that g(N) = Wb. This function g

naturally induces a computable order on Wb.

Since D is dense in [0, 1], from Lemma 2.III, we deduce that the ω-language

{ x ∈ Aω
b | the set pref (x) ∩ Wb is infinite }

is dense in Aω
b . This yields the following.
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Corollary 7. For every u ∈ A∗
b there is a v ∈ Wb such that u ⊏ v.

Proof. As the ω-language

{ x ∈ Aω
b | the set pref (x) ∩ Wb is infinite }

is dense, every open subset of Aω
b contains an x such that pref (x) ∩ Wb is infinite.

Consider the open ω-language u · Aω
b (see e. g., [18]). Then there is an x for

which pref (x) ∩ Wb is infinite. Consequently, there is a v ∈ pref(x) ∩ Wb such
that u ⊏ v. �

3. Expansions of Liouville Numbers

For our purposes, it is useful to have the following property of b-ary expansions x
of reals which guarantees that 0.x is a Liouville number. A similar criterion was
sketched, without proof, by Maillet in [13].

Using finitely or infinitely many strings wi ∈ A∗
b and a function f : N → N \ {0},

we construct b-ary expansions of real numbers in the following way.

Define Λ∞
j=0w

f(j)
j as the concatenation of w0 (f(0) times), w1 (f(1) times),w2 (f(2)

times). . . .

Lemma 8 [5]. Let

• (wi)i∈N be a family of non-empty strings wi ∈ A∗
b ,

• f : N → N \ {0}, and

• ni =
i

∑

j=0

f(j) · |wj |.

If

lim inf
i→∞

ni−1 + |wi|

ni−1 + f(i) · |wi|
= 0 , (1)

then x = Λ∞
j=0w

f(j)
j is the b-ary expansion of a rational or a Liouville number.

4. The Algorithm

The following algorithm computes the b-ary expansion x = Λ∞
j=0w

f(j)
j of an absolutely

disjunctive Liouville number whose b-ary expansion starts with a given word w0 ∈ A∗
b .

It uses the computable injective ordering g : N → Wb of the computable language Wb

given by Theorem 6.
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Algorithm Liouville-disjunctive

0 initialise w0 = u0 = v0, f(0) = 1

1 for i = 1 to ∞ do

2 vi = first word in
(

Wb ∩ ui−1 · A∗
b

)

\ {ui−1}

3 calculate wi from vi = ui−1 · wi

4 calculate f(i) = min
{

k |
|ui−1| + |wi|

|ui−1| + k · |wi|
<

1

i

}

5 ui = ui−1 · w
f(i)
i

6 endfor

The algorithm computes three families of words (ui)i∈N, (vi)i∈N, and (wi)i∈N and
a function f : N → N \ {0}. Note that at each step the set (Wb ∩ ui−1 · A∗

b ) \ {ui−1}
is effectively ordered according to g.

First, Step 2 implies vi ∈ Wb and together with Step 5, by induction,

ui−1 ⊏ vi ⊑ ui ⊏ vi+1.

From the Step 3 and ui−1 ⊏ vi, we have |wi| > 0. Then, again using Step 5, by
induction one verifies that

ui = Λi
j=0w

f(j)
j . (2)

It remains to show that the algorithm will produce an infinite computable ω-word,
that is, it never stops. To this end it suffices to show that the choice in Step 2 is
always possible. From Corollary 7 we know that for every u ∈ A∗

b there is a v ∈ Wb

such that u ⊏ v. This makes it possible to choose the first element in Wb w. r. t. g

which has u as a proper prefix.
Thus, the algorithm computes two computable approximations of an ω-word

x = Λ∞
j=0w

f(j)
j

via the families of prefixes (ui)i∈N and (vi)i∈N. From vi ∈ Wb, we obtain 0.x ∈ D via
Theorem 6, and, because of (2), Step 4 shows that the words ui and wi satisfy Eq. (1).
Thus, Lemma 8 verifies that 0.x is also a Liouville number. The computability of x
follows directly from the algorithm.
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