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An algorithmic uniform method to measure the complexity of finitely refutable state-
ments [6, 7, 9] was used to classify famous/interesting mathematical statements like
Fermat’s last theorem, the four colour theorem, and the Riemann hypothesis [8, 15, 16].
Working with inductive Turing machines of various orders [1] instead of classical compu-
tations, we propose a class of inductive complexity measures and inductive complexity
classes for mathematical statements which generalise the previous method. In particu-
lar, the new method is capable to classify Π2–statements. As illustrations, we evaluate
the inductive complexity of the Collatz and twin prime conjectures — statements which
cannot be evaluated with the original method.
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1. Introduction

Evaluating (or even guessing) the degree of complexity of an open problem,

conjecture or proven mathematical statement is notoriously hard not only for begin-

ners, but also for the most experienced mathematicians. The question is not trivial

because mathematical problems can be so diverse: the Mathematics Subject Classifi-

cation (MSC2000), based on two databases, Mathematical Reviews and Zentralblatt

MATH, contains over 5,000 two-, three-, and five-digit classifications [25].

In a series of papers [6, 7, 9] a (uniform) algorithmic method to evaluate

the complexity of mathematical problems was developed and, based on it, the

487

http://dx.doi.org/10.1142/S0129054113500160


July 26, 2013 10:4 WSPC/INSTRUCTION FILE S0129054113500160

488 M. Burgin, C. S. Calude & E. Calude

complexity of various interesting mathematical sentences has been evaluated. The

method, rooted in prefix complexity [5], can be applied to every finitely refutable

statement when a single counter-example disproves the statement. This class

includes all Π1–statements, i.e. sentences of the form ∀nP (n), where P is a com-

putable predicate. Euclid’s theorem of the infinity of primes, Goldbach’s conjec-

ture, Fermat’s last theorem, Hilbert’s tenth problem, the four colour theorem, the

Riemann hypothesis, the integer partition theorem are examples of Π1–statements.

Clearly, not every mathematical statement is Π1. The method cannot be applied to

Collatz conjecture or to the twin prime conjecture as currently it is not known how

to express these conjectures as Π1–statements (see the discussion in Section 3).

In this paper we introduce the inductive complexity measures and the inductive

complexity classes for mathematical problems/statements which generalise the pre-

vious method. In particular, the new method is capable of classifying Π2–statements,

i.e. statements of the form ∀n∃i R(n, i), where R(n, i) is a computable binary predi-

cate. We illustrate our method by evaluating the inductive complexity of the Collatz

and twin prime conjectures.

2. A Semi-Decidability Complexity Measure

An algorithm semi-decides a problem µ in case it returns 0 when µ is false and is

undefined when µ is true.a

In [6, 7, 9] the complexity of a Π1–problem π is defined by the size of the “small-

est/simplest” program which systematically searches for a counter-example to π.

A program which systematically searches for a counter-example to π semi-decides

π because the program stops if and only if there exists an m such that P (m) is

false; in particular, if π is true, the program never stops. Accordingly, the resulting

complexity is a semi-decidability complexity measure.

To obtain a formal definition we fix a model of computation, in our case a uni-

versal prefix-free Turing machine U . The requirement of prefix-freeness is motivated

by coding theory (halting programs form an instantaneous code) and the relation

to the binary expansion of Omega number [5] (to be discussed later in this section).

We use register machine programs, cf. [6, 7, 9], to construct a machine U (which

is fully described in [7]); for the present goal, U has to be minimal in the sense

that none of its instructions can be simulated by a program for U written with the

remaining instructions.

To every representation of the Π1–problem as π = ∀mP (m), where P is a

computable predicate, we associate the algorithm ΠP = inf{n : P (n) = false}

which “tries” to find the smallest n such that P (n) is false; if P is true, then ΠP

runs forever, so no number is produced.

There are many programs (for U) which implement ΠP ; without loss of gener-

ality, any such program will be denoted also by ΠP . The simplest way to write a

aThe notions of semi-decidability and decidability (to be discussed in the next section) have been
introduced and studied in [4] in the general context of the axiomatic theory of algorithms.
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program (in pseudo-code) for the algorithm ΠP is as follows:

set n to 1; while (P(n) = true) set n to n+1; print n; stop.

Obviously, this algorithm may not be the smallest in size.

The semi-decidability complexity (with respect to U) of a Π1–problem π is de-

fined by the length of the smallest-length program (for U) for the algorithm ΠP —

defined as above — where minimisation is calculated for all possible representations

π = ∀nP (n) and all programs ΠP :

CU (π) = min{|ΠP | : π = ∀nP (n)}. (1)

Note that π is true iff U(ΠP ) never halts.

The search for a counter-example uses essential “knowledge” about π, but not

“the deep understanding an expert mathematician may have about π”. This “knowl-

edge” evolves in time as more “understanding” of the problem is accumulating,

hence simpler predicates P for describing π are found. Some computable predicates

P ′ such that π = ∀mP ′(m) are not “genuine”. For example, if π is true, we can

take P ′ to be the constant true predicate, which is not genuine in this context.

Why? Because the representation π = ∀mP ′(m) does not reflect any “algorithmic

knowledge” about π permitting a “real” search for a counter-example, say by a

proof-assistant, a search that should work only for π. Consequently, for every com-

putable predicate P , the program containing the single instruction halt is not a

program for ΠP . This requirement seems difficult to capture in mathematical for-

mulas, but is easy to recognise. We have a few proposals to formalise “a search for

a counter-example which is unique for π” none of which seems “general enough”,

so without loss of generality this condition will be kept informal.

In this way we can uniformly and objectively compare problems from different

areas of mathematics, a task generally impossible for human experts. For CU it is

irrelevant whether π is known to be true or false. However, the comparison is limited

by the uniformity of the solution we analyse— we evaluate only one possible solution

from infinitely many candidates. Knowing the complexity of an open Π1–problem

does not give any clue about other ways to solve the problem.

Another way of defining the semi-decidability complexity CU is to consider the

Omega number associated to U ΩU =
∑

U(x) halts 2
−|x|. It is known (see [5]) that

ΩU is Martin-Löf random (hence incomputable) and the halting problem with re-

spect to U for all programs p with |p| ≤ N can be solved using the first N bits

of the binary expansion of ΩU . The complexity CU (π) is the smallest N such that

given the first N bits of the binary expansion of ΩU one can decide whether π is

true or not.

Because the complexity CU is incomputable, we work with upper bounds for CU .

As the exact value of CU is not important, following [7] we classify Π1–problems

into the following classes:

CU,n = {π : π is a Π1–problem, CU (π) ≤ 210n}.
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The threshold 210n is to some extent arbitrary and may be easily changed; its

main goal is only to provide a scale to compare/rank mathematical statements in

a uniform way. Here is one argument in favour of our choice. If instead of U we

use a different universal prefix-free Turing machine U ′ then one can compute a

constant c (depending upon U and U ′) such that for every Π1–problem π one has

|CU (π) − CU ′ (π)| ≤ c. Experimental calculation shows that for minimal machines

the constant c is smaller than 210.

Here are some results obtained with this method. Legendre’s conjecture (there is

a prime number between n2 and (n+1)2, for every positive integer n), Fermat’s last

theorem (there are no positive integers x, y, z satisfying the equation xn + yn = zn,

for any integer value n > 2) and Goldbach’s conjecture (every even integer greater

than 2 can be expressed as the sum of two primes) are in CU,1, Dyson’s conjecture

(the reverseb of a power of two is never a power of five) is in CU,2 [6, 7, 16], the

Riemann hypothesis (all non-trivial zeros of the Riemann zeta function have real

part 1/2) and the integer partition theorem (the number of partitions of an integer

into odd integers is equal to the number of partitions into distinct integers) are each

in CU,3 [10, 15], and the four colour theorem (the vertices of every planar graph can

be coloured with at most four colours so that no two adjacent vertices receive the

same colour) is in CU,4 [8]. Related results have appeared in [12]. For every positive

integer n there is an integer m > n such that CU,n is strictly included in CU,m; it is

an open question whether m can be taken to be n+1. Except for problems in CU,1,

all other results are not known to be strict.

3. The Collatz Conjecture

The Collatz conjecturec proposed by L. Collatz (when he was a student) is the

following: given any positive integer seed a1, there exists a natural N such that

aN = 1, where

an+1 =

{

an/2, if an is even,

3an + 1, otherwise .

There is a huge literature on this problem and various natural generalisations: see

[17, 19, 22, 23]. Erdös is quoted in [22] by saying that Mathematics may not be ready

for such problems. To be able to evaluate the semi-decidability complexity measure

of the Collatz conjecture we need to effectively construct a program ΠCollatz such

that Collatz’s conjecture is false if and only if ΠCollatz halts; the mere existence of

such a program won’t be enough.

A brute-force tester, i.e. the program which enumerates all seeds and for each of

them tries to find an iteration equal to 1, may never stop for two different reasons:

bThe reverse of a number is the number formed with the same digits but written in opposite order.
For example, the reverse of 131072 is 270131.
cAlso known as the Syracuse conjecture, the 3x+1 problem, Kakutani’s problem, Hasse algorithm,
or Ulam’s problem.
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(a) because the Collatz conjecture is true, (b) because there exists a seed a1 such

that there is no N such that aN = 1. How can one algorithmically differentiate

between these cases? How can one refute (b) by a brute-force test? We don’t know

the answers to the above questions. However, a simple non-constructive argument [9]

shows that the Collatz conjecture is a Π1–statement. Indeed, observe that the set

Collatz = {a1 | there exists N ≥ 1 such that aN = 1}

is computably enumerable. Collatz’s conjecture requires to prove that the set

Collatz coincides with the set of all positive integers.

If Collatz is not computable, then the conjecture is false, and any program

which eventually halts can be taken as ΠCollatz as (a) is ruled out.d If Collatz is

computable, then we can write a program ΠCollatz to find an integer not in Collatz:

the conjecture is true if and only if ΠCollatz never stops.

In fact, the above reasoning works for every Π2–statement, i.e. a statement of the

form ∀n∃iR(n, i), for some computable binary predicated R (the Collatz conjecture

is a Π2–statement).

The above observation shows that although, in principle, the developed method

can be applied to the Collatz conjecture and, in fact, to many, but not all Π2–

statements, it is impossible to do this (at least for the time being) as we do not

know how to explicitly construct the program ΠCollatz. This raises the question of

finding a more general method which can be applied to the Collatz conjecture and

similar mathematical statements.

4. Inductive Complexity Measures of Order k

Can one extend the complexity method developed for Π1–statements to Π2–

statements? The algorithmic direct verification of the validity of a Π2–statement

does not work as it never stops irrespective whether the statement is true or false.

However, there is a general method for testing the Π2–statement ρ =

∀n∃iR(n, i), where R is a decidable binary predicate. The program has two loops:

the external loop iterates over n, the internal loop iterates over i, and just before

starting the evaluation of R(n, i), the program outputs n. If ρ is true the output

value keeps changing and if ρ is false then the value gets stuck at the first n for

which R(n, i) is false for all i.

The above method cannot be programmed with a classical algorithm or Turing

machine, but can be formally presented in terms of inductive computations [1]

(which are, by Shöenfield’s limit lemma [24], computations with oracle access to

the Halting Set).

Consider a Turing machine M with input, working and output tapes. The result

of a classical computation of M on input x is the content of the output tape in case

the computation stops; if the computation continues forever, there is no result. The

dSuch programs won’t be “genuine” in the sense discussed in Section 2.
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result of an inductive computation of M on input x is the content of the output

tape in case this content stops changing at some step of the computation; otherwise,

there is no result [1]. A Turing machine running inductive computations is called

an inductive Turing machine of first order.

The hardware is the same for classical and inductive computations; the difference

is in the semantics. In contrast with the classical computation of M on x — which

assumes that the computation has stopped for the result to be produced — the

inductive computation of M on x may not stop but still produce a result in case

the content of the output tape has stabilised at some step of the (possibly infinite)

computation. Of course, halting computations produce the same result classically

and inductively.

The functional composition T1(T2) of two inductive Turing machines of first

order is not necessarily an inductive Turing machine of first order, so it is called an

inductive Turing machine of second order. An inductive Turing machine of order

k ≥ 2 is the functional composition of k inductive Turing machines of first order

(formal details are presented in [3]). If M is a Turing machine, then by M ind we

denote the machine working inductively; inductive Turing machines of order k ≥ 1

are denoted by M ind,k. Inductive programs will be similarly denoted.

The method of evaluating the semi-decidability complexity can be reformulated

in terms of inductive Turing machines of first order. To the computable predicate

P (m) we assign the problem π = ∀mP (m) and the algorithm ΠP = inf{n : P (n) =

false}. It is easy to construct an inductive program of first order Πind,1
P such that

||ΠP | − |Πind,1
P || is bounded by a small constante:

π is true if and only if U(ΠP ) never stops if and only if U ind(Πind,1
P ) = 0.

The inductive complexity measure of first order is defined by

Cind,1
U (π) = min{|Πind,1

P | : π = ∀nP (n)}, (2)

and the corresponding inductive complexity class of first order by

C
ind,1
U,n = {π : π is a Π1–statement, Cind,1

U (π) ≤ 210n}. (3)

There is a constant c < 210 such that for every Π1–statement π we have:

|CU (π)− Cind,1
U (π)| ≤ c,

hence

CU,n ⊆ C
ind,1
U,n ⊆ CU,n+1. (4)

In this way all results proved for CU and CU,n translate automatically in results

for Cind,1
U and C

ind,1
U,n .

eFor example, in the language described in Section 5, Πind,1
P

is constructed as follows: in the
program ΠP the stop instruction % is replaced with the instruction & a, 1 followed by %; here a

is a register not appearing in ΠP , which was designed as output register.
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Why do we need to compute inductively instead of classically? First, because we

can extend the first method from Π1–sentences to more complex sentences, in par-

ticular, to Π2–sentences. Secondly, because in contrast with the semi-decidability

complexity measure CU , the inductive complexity measure of first order is a decid-

ability complexity measure. (Recall that an algorithm decides a problem ρ in case

it returns 0 when ρ is false and 1 when ρ is true; a decidability complexity measures

the complexity of an algorithm deciding the problem.) This has the advantage that

the complexity of a sentence ρ is the same as the complexity of the negation of ρ.

Finally, the inductive computation goes beyond the Turing barrier, in the sense it

can compute Turing incomputable functions, and the possibility of effectively run-

ning such a computation is not completely elucidated (at the time of the writing of

this paper). Does this create a problem? The answer is negative as the main goal

here is not to solve the problem, i.e. not to run the computation, but to encode

efficiently an algorithm solving the problem.f

From the Π2–sentence ∀n∃iR(n, i) we construct the inductive Turing machine

of first order T ind,1
R defined by

T ind,1
R (n) =

{

1, if ∃iR(n, i),

0, otherwise .
(5)

Next we construct the inductive Turing machine of second orderg M ind,2
R

defined by

M ind,2
R =

{

1, if ∀n∃iR(n, i),

0, otherwise .
=

{

1, if ∀n (T ind,1
R (n) = 1),

0, otherwise .
(6)

Note that the predicate T ind,1
R (n) = 1 is well-defined because the inductive Tur-

ing machine of first order T ind,1
R always produces an output. However, the inductive

Turing machine M ind,2
R is of the second order because it uses an inductive Turing

machine of the first order T ind,1
R .

To every mathematical sentence of the form ρ = ∀n∃iR(n, i), where R(n, i) is a

computable predicate, we associate the inductive Turing machine of second order

M ind,2
R as above. Note that there are many programs for U ind which implement

M ind,2
R ; for each of them we have:

∀n∃iR(n, i) is true if and only if U ind(M ind,2
R ) = 1. (7)

In this way, the inductive complexity measure of first order Cind,1
U (π) (see (3))

can be extended to the inductive complexity measure of second order:

f Incidentally, this is an example of the use of a hypercomputation model for which the problem
whether the computation can be materially executed in our Universe is irrelevant.
gThis machine solves the decidability of the Collatz conjecture and has no input argument.
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Cind,2
U (ρ) = min{|M ind,2

R | : ρ = ∀n∃iR(n, i)},

and the inductive complexity class of first order C
ind,1
U,n (see (3)) to the inductive

complexity class of second order:

C
ind,2
U,n = {ρ : ρ = ∀n∃iR(n, i), Cind,2

U (ρ) ≤ 210n}.

The above construction of the inductive Turing machine of second order M ind,2
R

leading to the equivalence (7) is “algorithmic”. The optimization necessary for the

approximation of the complexity Cind,2
U (ρ), on the other hand, is not algorithmic:

it depends on the predicate R(n, i) and requires some creativity to discover.

Based on the above construction and results in [2] one gets the following facts:

(1) for every n, t ≥ 1 there exists m ≥ n such that C
ind,t
U,n ⊂ C

ind,t
U,m ,

(2) there exist Π2–statements ρ which are not in any class C
ind,1
U,n , n ≥ 1,

(3) the semi-decidability problem of every Π2–statement ρ is in a class C
ind,1
U,n , for

some n ≥ 1.

Working with inductive Turing machines of order k > 2 we can define the

inductive complexity measure of order k and the inductive complexity class of

order k.

5. A Universal Prefix-Free Binary Turing Machine

The register machine language we use is a refinement of the language in [9], con-

structed in [7]; see also [18]. The register machine language is simple and minimal

(each instruction is essential, that is no instruction can be reduced to a combination

of the other instructions). It consists of the following instructions:

= R1,R2,R3 If the content of R1 and R2 are equal, then the execution con-

tinues at the R3rd instruction of the program. If the contents of R1 and R2 are not

equal, then execution continues with the next instruction in sequence.

& R1,R2 The content of register R1 is replaced by R2.

+ R1,R2 The content of register R1 is replaced by the sum of the contents of

R1 and R2.

! R1 One bit is read into the register R1, so the content of R1 becomes either 0

or 1. Any attempt to read past the last data-bit results in a run-time error.h

hThis instruction is not used in our codes, but it is necessary for the universality of the register
machine language.



July 26, 2013 10:4 WSPC/INSTRUCTION FILE S0129054113500160

Inductive Complexity Measures 495

% This is the last instruction for each register machine program before the input

data. It halts the execution in two possible states: either successfully halts or it

halts with an under-read error.

A register machine program is a finite list of these instructions. It is

allowed access to an arbitrary number of registers, and each register can hold an

arbitrarily large positive integer. The prefix free binary encoding of these instruc-

tions is discussed in detail in [6, 7], and it is briefly presented below.

Selecting one or several registers as output registers, register machine programs

can compute not only in the classical mode (the program has to halt to get a result),

but also in the inductive mode. In the inductive mode, register machine programs

can simulate inductive Turing machines of the first order in the same way they can

simulate Turing machines working in classical mode.

With subprograms that work in the inductive mode it is possible to obtain

register machines that can simulate inductive Turing machines of higher orders.

6. Binary Coding of Programs

In this section we develop a systematic efficient method to uniquely code in binary

the register machine programs; for consistency with previous results we use the

same prefix-free coding method as in [6, 7, 10, 11].

Each instruction has its own binary op-code, registers names are encoded as the

string code1 = 0|x|1x, x ∈ {0, 1}∗ and literals are encoded code2 = 1|x|0x, x ∈

{0, 1}∗. Some instructions can take registers or literals, but this encoding gives an

unambiguous distinction between the two options. The encodings are summarised

below:

(1) & R1,R2 is coded in two different ways depending on R2: 01code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.

(2) + R1,R2 is coded in two different ways depending on

R2: 111code1(R1)codei(R2), where i = 1 if R2 is a register and i = 2 if R2

is an integer.

(3) = R1,R2,R3 is coded in four different ways depending on the data types of R2

and R3: 00code1(R1)codei(R2)codej(R3), where i = 1 if R2 is a register and

i = 2 if R2 is an integer, j = 1 if R3 is a register and j = 2 if R3 is an integer.

(4) !R1 is coded by 110code1(R1).

(5) % is coded by 100.

All codings for instruction names and special symbol comma, registers and non-

negative integers are prefix-free; the prefix-free codes used for registers and non-

negative integers are disjoint. The code of any instruction is the concatenation

of the codes of the instruction name and the codes (in order) of its components,

hence the set of codes of instructions is prefix-free. The code of a program is the

concatenation of the codes of its instructions, so the set of codes of all programs is

prefix-free too.
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7. Pseudo-Code for the Inductive Turing Machine M
ind,2

R

In this section we present the pseudo-code for the inductive Turing machine of

second orderM ind,2
R defined in (6). The inductive Turing machineM ind,2

R — denoted

by Main— depends on the inductive Turing machine of first order T ind,1
R (n) denoted

by H(n), which in turn is a function of the binary computable predicate R: see (5)

and (6). The result is output in the register OM. This notation will be used also in

the following two sections in which concrete forms of H will be discussed.

Main (H)

1. set OM to 1

2. set n to 1

3. if H(n)=1

4. then set n to n+1

5. goto 3

6. else set OM to 0

7. goto 8

8. stop

8. Inductive Complexity of the Collatz Conjecture

In this section we evaluating the inductive complexity of second order of the Collatz

conjecture.

We start with the function

T ind,1
R (n) =

{

1, if ∃i(F i(n) = 1),

0, otherwise ,

where

F (x) =

{

x/2, if x is even,

3x+ 1, otherwise ,

and F i is the ith iteration of F .

Based on it we define the inductive Turing machineM ind,2
Collatz by the formula (6).

The pseudo-code for H(n) = HCollatz(n) uses G to compute F i(n):

HCollatz(n)

1. set OH to 0.

2. set N to n

3. set i to 1

4. set k to 1

5. if N is even

6. then set G to N/2

7. goto 9

8. else set G to 3*N+1

9. if k = i
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10. then if G = 1

11. then set OH to 1

12. stop

13. else set i to i+1

14. goto 4

15. else set k to k+1

16. set N to G

17. goto 5

The inductive program solving the Collatz conjecture based on M ind,2
Collatz is

presented in Table 1. The program uses the routine HColatz and has 38 instruc-

tions and 516 bits, therefore the Collatz conjecture is in the inductive complexity

class Cind,2
U,1 .

Table 1. Inductive program for the Collatz conjecture.

label instruction label instruction label instruction

=a,a,MAIN +g,a =a,a,c

HCollatz &OH,0 +g,a MAIN &OM,1

&i,1 +g,1 &N,1

LH7 &k,1 LH8 =k,i,LH4 LM1 &a,N

LH5 &e,0 +k,1 &c,LM2

&f,0 &a,g =a,a,HColatz

LH1 =a,e,LH3 =a,a,LH5 LM2 =OH,1,LM3

+e,1 LH4 =g,1,LH6 &OM,0

=a,e,LH2 +i,1 =a,a,LM4

+e,1 =a,a,LH7 LM3 +N,1

+f,1 LH3 &g,f =a,a,LM1

=a,a,LH1 =a,a,LH8 LM4 %

LH2 &g,a LH6 &OH,1

9. Inductive Complexity of the Twin Prime Conjecture

In this section we evaluate the inductive complexity of second order of the twin

prime conjecture: there are infinitely many primes p such that p+ 2 is also prime.

Using the procedure in Section 7 for the twin prime conjecture we present the

pseudo-code for H(n) = HTwinPrime(n):

HTwinPrime(n)

1. set OH to 0

2. set i to n

3. if i is prime

4. then if i+2 is prime

5. then set OH to 1

6. goto 10
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7. else set i to i+1

8. goto 3

9. else goto 7

10. stop

Table 2. Inductive program for the twin prime conjecture.

label instruction label instruction label instruction

=a,a,MAIN =a,a,LP7 &OH,1

PRIME &f,2 LP6 &d,1 &a,ah

LP1 =f,a,LP6 LP7 =a,a,c &c,ch

&e,f HTwinPrime &ah,a =a,a,c

&h,0 &ch,c MAIN &OM,1

LP2 =e,a,LP3 &OH,0 &N,1

+e,1 &ih,a LM1 &a,N

+h,1 LH1 &c,LH2 &c,LM2

=h,f,LP4 &a,ih =a,a,HTwinPrime

=a,a,LP2 =a,a,PRIME LM2 =OH,1,LM3

LP3 =h,0,LP5 LH2 =d,1,LH4 &OM,0

+f,1 LH3 +ih,1 =a,a,LM4

=a,a,LP1 =a,a,LH1 LM3 +N,1

LP4 &h,0 LH4 &c,LH5 =a,a,LM1

=a,a,LP2 =a,a,PRIME LM4 %

LP5 &d,0 LH5 =d,0,LH3

The inductive program solving the twin prime conjecture is presented in Table 2.

The predicate PRIME (PRIME(a) = 1 if a is prime and = 0 otherwise) is imple-

mented in the 18 instructions starting with PRIME &f,2 and its result is stored in

register d. The main program has 47 instructions and 649 bits, therefore is in the

inductive complexity class Cind,2
U,1 .

10. Conclusions

In this paper we have extended the method of evaluation of the complexity of math-

ematical problems based on their semi-decidability to a more general and powerful

method based on the decidability of problems. In this process we have replaced clas-

sical computations by inductive computations [3] to define the inductive complexity

and the inductive complexity classes. We have illustrated our method by evaluating

the inductive complexity of the decidability of the Collatz and twin prime con-

jectures. These problems cannot be currently evaluated with the semi-decidability

complexity developed in [6, 7, 9, 15, 16]; they are both in the lowest inductive com-

plexity class C
ind,2
U,1 . In [11] and [20] it was proved that the P vs NP problem and

Goodstein’s theorem (every “Goodstein sequence” eventually terminates at 0) are

both in the inductive complexity class of second order 7, Cind,2
U,7 .
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One of the referees noticed that

Goodstein’s theorem is relatively easy to prove, whereas the Collatz con-

jecture is apparently much more difficult. This intuition is in contradiction

with the estimated complexities: Goodstein’s theoremi is in class Cind,2
U,7 and

the Collatz conjecture is in the class Cind,2
U,1 .

This is indeed a very interesting observation. First and foremost, the complex-

ity measure discussed here compares the hardness of solving problems in a very

particular way: by searching for a counter-example. Goodstein’s theorem can be

proven rather easily in second order arithmetic, but cannot be proved in Peano

arithmetic [21]: if Goodstein’s theorem would be proven in Peano Arithmetic (PA)

then one would be able to prove the consistency of PA, which is known to be un-

provable from within PA. It follows that Goodstein’s theorem appears to be more

complicated than the Collatz conjecture because there is no (strong) evidence that

the conjecture might be also unprovable in PA.

We also note that it is possible that a problem is more complex than another

problem in the sense of our measure, yet the mathematical practice indicates that

the contrary relation might be true (because different methods have been used

to solve the problem). The last situation is as “provisional” as our complexity

estimation, as new, possible shorter proofs, can always be discovered.

There are many open problems. In this paper, as well as in [6–9], only prob-

lems formulated in the language of the first order logic have been considered, and

mainly number-theoretical. It will be interesting to study complexity of mathemat-

ical problems formulated in the language of the second order logic. What is the

highest complexity order of well-known mathematical problems is another open

question.
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