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Abstract. Quantum randomness is postulated and generally reduced
to the indeterminism of quantum measurements. The connection to ran-
domness is often made via unpredictability: because the outcome is in-
deterministic there is no way to predict it, hence it is random. Here we
argue that indeterminism and randomness are theoretical, means rela-
tive, concepts which don’t imply each other.

1 Indeterminism

Broadly speaking, indeterminism occurs when the state of a system at one time
does not uniquely fix the state of the system at some future time [12]. More pre-
cisely, indeterminism is a failure in one or more forms of determinism. Classifying
indeterminism is more difficult because simply negating determinism does not
give a unique notion. A means-relative classification for functions can be based
on the fact that a deterministic function can be i) incomputable—in an infinity
of stronger and stronger forms—ii) computable, but not feasibly computable, iii)
feasibly computable—again in an infinity of stronger and stronger forms.

2 Randomness

In contrast with notions such as rain or water, some concepts like number or
velocity are only theoretical with no direct counterpart in nature: they are used
to model some “reality”, they can be measured, but are not directly observed in
the natural world. Randomness is also such a concept. As noted in [18],

. . . randomness is not in the world, it is in the interface between our
theoretical descriptions and ‘reality’ as accessed by measurement. Ran-
domness is unpredictability with respect to the intended theory and mea-
surement.

So, what is randomness? Where does it come from?

Intuitively, randomness is identified with unpredictability (see [11]), lack of
correlations (irregularity) and typicality. These characteristics of randomness can
be tested in concrete examples of “random” events, like coin-tossing. For example,
a sequence of coin tosses looks very irregular, and no matter how many times
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we have tossed the coin, even thousands and thousands of times, predicting the
outcome of the next toss seems impossible. We used the formulation “seems
impossible” because, in principle, coin-tossing is as predictable as the motion
of the planets once the initial conditions are given. However, we “believe” that
prediction is impossible—and this feeling is confirmed by experiment—because
of the peculiar combination of circumstances of coin-tossing, more precisely, the
sensitive dependence on (some set of) initial conditions coupled with the inability
to know these conditions with infinite precision.1

Probability theory assumes “randomness” and develops a very successful cal-
culus with random events/processes, but remains silent with respect to the ran-
domness of individual outcomes. Two theories, Ramsey theory [14] and algorith-
mic information theory [5,9], deal with randomness in “its individuality”, i.e. not
only as a statistical (global) phenomenon. Each of them has a strong message:

– Ramsey theory: pure/absolute/true randomness (for finite or infinite ob-
jects) does not exist because it is mathematically vacuous [5,14].2 For ex-
ample, in every infinite sequence of zeros and ones there are infinitely many
correlations, [14]. In particular, even algorithmically incompressible infinite
sequences have infinitely many correlations.

– Algorithmic information theory: disproving randomness is a resource-based
process, so there exist degrees of randomness with no upper limit. The more
resources we have, the more patterns we discover. For example, quantum
randomness obtained by measuring a value indefinite observable [1,2] is “more
random” than coin-tossing [8] or software-generated randomness (pseudo-
randomness): the first is highly incomputable, the last two are computable.
The sequence of quantum random bits obtained by the process described
above has significantly less patterns and correlations then pseudo-random
sequences of bits; however, it cannot avoid itself infinitely many correlations.

There is another way to define randomness: via an indeterministic process.
This is the standard argument in favour of quantum randomness: because the
outcome of a measurement is indeterministic, there is no way to predict it, hence
it is random. The form of randomness obtained in this way is sometimes called
process randomness (see, for example, [11]) because its “certification” comes from
the properties of the process producing it.3 Process randomness is different from
product randomness, discussed in algorithmic information theory, which ignores
the process generating the bits and studies just the result (product). Process ran-

1 Technically, this is expressed by the phenomenon of deterministic chaos [16].
2 This was anticipated by philosophers long time ago in connection to chance, a dif-
ferent but closely related concept. The 5th century BCE philosopher Leucippus was
probably the first to note (see [10, p. 133]) that Nothing occurs by chance, but there
is a reason and necessity in everything. Under the influence of mathematician A. de
Moivre, Hume [15, p. 56] called chance a mere word: . . . there be no such thing as
Chance in the world. See also [20].

3 The name “process randomness” is also used for a form of algorithmic randomness:
see [19,21,9].
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domness has no mathematical formalisation and can be certified/validated only
through a theory (difficult, if not impossible, to test) or product randomness.

3 Indeterminism vs. Randomness

Does indeterminism imply randomness? Does randomness imply indeterminism?

Coin-tossing randomness—discussed in the previous section—is a simple ex-
ample that shows that determinism is compatible with a form of randomness.

Is indeterminism necessary for randomness? The answer is negative. Software-
generated randomness is a (weak, still useful) form of randomness which is al-
gorithmically produced—no form of indeterminism is required. In fact, both
algorithmic information theory [5,9] and the practice of generating randomness
show that randomness (of any form) is:

– defined by avoiding algorithmically defined classes of patterns and
– produced algorithmically.

The halting probability of a universal self-delimiting Turing machine U is
called the Omega number of U and denoted by ΩU (see [6] and more in [5,9]).
The infinite binary expansion of ΩU is uniquely determined by U . However,
this sequence is “highly random”—technically, Martin-Löf random—because it
passes all Martin-Löf tests of randomness, i.e. it avoids all patterns defined by
the Martin-Löf algorithmic model of randomness. Randomness appears when
we “don’t know” that the sequence is the Omega number of U . But, as Ramsey
theory proves, in every Martin-Löf random sequence there are infinitely many
patterns and correlations.

In the same way, the Schrödinger equation describes how the quantum state
of some physical system changes with time: this evolution is deterministic. Quan-
tum randomness appears when we observe/measure certain individual quantum
observables, for example, value indefinite observables [2].

There is a loose analogy between the above two examples. The description
of ΩU by U corresponds to the Schrödinger equation. A first similarity appears
when we compare the processes of computing the bits of ΩU and measuring
value indefinite observables in the quantum experiment E described in [1]. One
can prove that the sequence of bits of ΩU cannot be algorithmically computed
(given U) and, similarly, the sequence of bits obtained by performing ad infini-
tum the quantum experiment E cannot be algorithmically computed (given full
information about the experiment [1,3]).

A second, more interesting similarity, appears when we compare the unpre-
dictability of individual bits. An individual bit of Omega is Martin-Löf unpre-
dictable, but only some are maximally unpredictable:4 a bit obtained in the

4 The Omega numbers of Solovay machines [7].
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quantum experiment E is maximally unpredictable in the sense of [3].5 These
results are provable in both cases.6

Is randomness necessary for indeterminism? As discussed in Section 1, in-
determinism, as a negation of determinism, has a variety of forms. Here we will
provide again a negative answer to the above question by looking at indetermin-
ism in computing science.

Of course, randomness is a very useful ingredient for computing, but a plethora
of computing machines work in an indeterministic way without any use of ran-
domness. The simplest example is the indeterministic computation7 of finite
automata. A deterministic finite automaton computation uses finitely many
rules/transitions, but at each step one single rule can be applied; this guarantees
the uniqueness of both the dynamics of the computation and the result (accept
or reject). Replicating a computation (with the same input and deterministic au-
tomation) will always produce the same output. In contrast, a non-deterministic
finite automaton provides more choices at each step of the computation. The
indeterminism here consists in the multiple branches of computation: no one is
pre-imposed, all are equally possible, the results may be different. Computation-
ally, this type of indeterminism is a form of parallel computation. To obtain a
unique result and invariance under replication we need to adopt an acceptance
rule. For example, to determine if the automaton accepts or rejects the input,
one has to compute on all possible branches and accept if one branch accepts.
Of course, one can modify this rule in various ways: instead of “accept if one
branch accepts” one can use “accept if a single branch accepts” or “accept if the
majority of branches accept” or “accept if more than half of the branches ac-
cept”. We have the same situation for the more powerful computations executed
by Turing machines. Another form of indeterminism is to allow the machine
(automaton or Turing machine) to choose between available rules according
to some probability distribution. These types of computations can make mis-
takes, but the errors are “controlled" (e.g. less than 50% mistakes). Working
with probability distributions may introduce strong correlations/biases which
can be algorithmically detected. The mathematical result which is typically true
for many forms of indeterministic computation is the following: the computation
of the non-deterministic machine (e.g. finite automaton or Turing machine) can
be simulated by the computation of a deterministic machine of the same type.
The difference is in computational complexity: deterministic machines have to
work harder to simulate their non-deterministic counterparts, see [17].

5 The Schrödinger equation cannot give the exact result of an individual measurement:
it can predict only the probability distributions.

6 The unpredictability/randomness of every individual quantum outcome was conjec-
tured/postulated by Born [4].

7 The term used in computing science is non-determinism. However, there is a tendency
to change the terminology: the negation of computable, which used to be called non-
computable, is now referred as incomputable.
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4 Instead of a Conclusion

Identifying indeterminism with randomness—as in [13, p. 31]—is misleading and
renders problematic any analysis which is based on this assumption (see [10] for
a historical review). In particular, this means that much more is required to
understand quantum randomness.
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