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Abstract

The set of random sequences is large in the sense of measure, but small in the sense of category. This is the cas
regard the set of infinite sequences over a finite alphabet as a subset of the usual Cantor space. In this note we will sh
above result depends on the topology chosen. To this end we will use a relativization of the Cantor topology, theUδ-topology
introduced by Staiger [RAIRO Inform. Théor. 21 (1987) 147–173]. This topology is also metric, but the distance betw
sequences does not depend on their longest common prefix (Cantor metric), but on the number of their common pre
given languageU . The resulting space is complete, but not always compact. We will show how to derive a computablU

from a universal Martin-Löf test such that the set of non-random sequences is nowhere dense in theU δ-topology. As a byproduc
we obtain a topological characterization of the set of random sequences. We also show that the Law of Large Numbe
fails with respect to the usual topology, is true for theU δ-topology.
 2003 Elsevier B.V. All rights reserved.
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Algorithmic information theory plays many centr
roles in theoretical computer science, and, in part
lar, in the theory of computation, both in terms of i
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study from a topological point of view the set of ra
dom sequences. This problem is interesting in its
(because the set of random sequences has constru
Lebesgue measure one, but it is constructively me
with respect to Cantor’s topology) and has connecti
with probability theory (classically, the Law of Larg
Numbers fails to hold topologically). Is there any n
ural topology with respect to which the set of rando
sequences is topologically “large”? We will prove th
a relativization of the Cantor topology gives a po

.
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tive answer to the above question (the set of random
sequences is co-nowhere dense) and leads to a topo-
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For our purposes it is convenient to use the following
equivalent metric (cf. [18,15]):
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logical analogue of Martin-Löf’s measure-theoretic
characterization of random sequences (the role of c
structive null sets is played by nowhere dense sets)
nally, the Law of Large Numbers is topologically tru
in this space.

2. Notation

By N = {0,1,2, . . .} we denote the set of na
ural numbers. The cardinality of the setA is denoted
by card(A). Let us fixX an alphabet of cardinalit
card(X) = r � 2, e.g.,X = {0, . . . , r − 1}. By X∗ we
denote the set of finite strings (words) onX, includ-
ing theemptystring e. The length of the stringw is
denoted by|w|. We consider the spaceXω of infinite
sequences (ω-words) overX. If x = x1x2 · · ·xn · · · ∈
Xω , thenx(n) = x1x2 · · ·xn is the prefix of lengthn
of x. Strings and sequences will be denoted resp
tively by u,v,w, . . . andx,y, . . . . Forw,v ∈X∗ and
x ∈ Xω let w · v,w · x (simply wv,wx) be the con-
catenation ofw and v,x, respectively. The concate
nation product extends naturally to subsetsW ⊆ X∗
(languages) andB ⊆X∗ ∪Xω. By “�” we denote the
prefix relation between strings:w � v if there is av′
such thatwv′ = v. The relation “❁” is similarly de-
fined for w ∈ X∗ and x ∈ Xω: w ❁ x if there is a
sequencex′ such thatwx′ = x. The sets pref(x) =
{w: w ∈X∗, w ❁ x} and pref(B)= ⋃

x∈B pref(x) are
the languages of prefixes ofx ∈ Xω andB ⊆Xω , re-
spectively. Finally,wXω = {x ∈Xω: w ∈ pref(x)}.

The unbiased discrete measure onX is the prob-
abilistic measureh(A)= card(A)/r, for every subse
A of X. It induces the product measureµ defined on
all Borel subsets ofXω. This measure coincides wit
the Lebesgue measure on the unit interval, it is co
putable andµ(wXω) = r−|w|, for everyw ∈ X∗. For
more details see [9,10,2].

3. The Cantor space

The setXω is a compact metric space (Cant
space) with the metric

ρ1(x,y)= inf

{
1

1+ |w| : w ∈ pref(x)∩ pref(y)

}
.

ρ(x,y)= inf
{
r−|w|: w ∈ pref(x)∩ pref(y)

}
= r1−card(pref(x)∩pref(y)). (1)

The open ballBε(y) of radiusε ∈ (0,1] and centery
in (Xω,ρ) can be described as

Bε(y)=
{
x: ρ(y,x) < ε

} =wy,ε ·Xω,
where wy,ε is the unique prefix ofy with length
|wy,ε| = �− logr ε� + 1. Thus the open sets in th
Cantor space(Xω,ρ) are sets of the formWXω =⋃
w∈W wXω . The setswXω are both open and close
Theδ-limit of a languageU ⊆ X∗ is the setUδ of

all sequences inXω having infinitely many prefixes in
U , Uδ = {y ∈ Xω: pref(y) ∩ U is infinite}. This no-
tion is useful in obtaining the following characteriz
tion of Gδ-sets, i.e., countable intersections of op
sets (cf. [18,14,15]):

Theorem 1. In the Cantor space, a subsetF ⊆ Xω

is aGδ-set iff there is a languageU ⊆ X∗ such that
F =Uδ .

4. The Uδ-topology

A new metric topology onXω has been introduce
in [14] in connection with the study of sequent
mappings. In this section we define this topology a
relate it to the usual topology in the Cantor space.

Definition 2. Fix a languageU ⊆ X∗ and letx,y ∈
Xω. Then we define

ρU(x,y)=
{

0, if x = y,

r1−card(pref(x)∩pref(y)∩U), otherwise.

It is easy to see thatρU is a metric; its induced
topology onXω will be called theUδ-topology.

The metricρU resembles, in some sense, the me
ρ in the Cantor space; in fact,ρ = ρX∗ . In contrast
with ρ, ρU counts only those common prefixes ofx
andy contained inU . Further on, sinceρU(x,y) �
ρ(x,y), theUδ-topology refines the topology of th
Cantor space. In particular, every closed (open)
in the Cantor space is also closed (open) in theUδ-
topology ofXω.
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The following result shows when two languages
U,V induce the same topology onXω; hence, a great
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Theorem 5 [16,17]. Let U ⊆ X∗. Then x ∈ Uδ is
an accumulation point ofF in (Xω,ρU ) iff x is an
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variety of languages induce the same topology (
[14,15] for examples).

Theorem 3 [17]. TheUδ-topology and theV δ-topol-
ogy ofXω coincide iff Uδ = V δ .

The open ball in(Xω,ρU ) is given by the formula:

Bε,U (x)=




{x}, if ρU(x,y)� ε,
for all y �= x,

Xω, if ε > r,
wx,ε ·Xω, otherwise.

Herewx,ε is the unique prefix ofx in U with

card
(
pref(wx,ε)∩U

) = �− logr ε� + 2.

The following topological properties of(Xω,ρU )
will be useful. Recall that a pointx is called anaccu-
mulation point of a setF in the metric space(Xω,d)
provided for eachε > 0 there exists a sequencey ∈ F ,
x �= y such thatd(x,y) < ε. Invoking Definition 2 we
obtain:

Corollary 4. A pointx ∈Xω is an accumulation poin
of the whole space(Xω,ρU ) iff x ∈Uδ .

As (Xω,ρU ) is a metric space, the smallest clos
(with respect toρU ) subset ofXω containingF ,
CU(F ), is given by the formula

CU(F )= F ∪ {
x: x ∈Xω, x is an accumulation poin

of F in (Xω,ρU )
}
. (2)

A point x ∈ F which is not an accumulation poin
of F is called anisolated pointof F . Thus,x is an
isolated point ofXω iff there is anε > 0 such that
Bε,U (x)= {x}. Theset of isolated pointsof (Xω,ρU )
will be denoted byIU =Xω \Uδ .

An arbitrary set of isolated points ofXω is open.
In caseUδ = ∅, in particular ifU is finite, every point
of (Xω,ρU ) is isolated. Thus, in general,(Xω,ρU ) is
a complete metric space, not necessarily compac
the Cantor space). More precisely, the space(Xω,ρU )

is not compact wheneverIU �= ∅, cf. [17], Theorem 9.
The close relationship between theUδ-topology

and the topology of the Cantor space is visible in
case of accumulation points and closed sets.
accumulation point ofF in (Xω,ρ).

From (2) we obtain:

Corollary 6. Let C(F ) = CX∗(F ) be the smalles
closed set containingF in the Cantor space. Then

CU(F )= F ∪ (
C(F )∩Uδ) = C(F )∩ (F ∪Uδ).

In particular, every setF containingUδ is closed in
(Xω,ρU ).

As it was mentioned above, every setJ ⊆ IU of
isolated points is an open set in(Xω,ρU ), and every
set of the formWXω is open in the Cantor spac
Consequently, Corollary 6 yields

Corollary 7. A setE ⊆ Xω is open in(Xω,ρU ) iff
E =WXω ∪ J , for someW ⊆X∗ andJ ⊆ IU .

Recall that a setF is nowhere densein (Xω,ρU ) if
its closure,CU(F ), does not contain any non-emp
open set, that is, ifCU(Xω \ CU(F )) = Xω; F is
denseif it intersects any non-empty open set, that is
CU(F )=Xω.

The next result is simple but very useful:

Lemma 8. The setUδ is the union of all nowhere
dense sets in(Xω,ρU ).

Proof. We take a nowhere dense setF ⊆ Xω and we
show thatF ⊆ Uδ . To this aim we prove that ever
sequencex ∈ F is inUδ : this is true because ifx /∈ Uδ,
then the singleton set{x} is non-empty and open
hence it cannot be nowhere dense, a contradiction.✷

Of course,Uδ may or may not be itself nowher
dense. The next theorem gives a necessary and
cient condition forUδ to be nowhere dense.

Theorem 9. Let U ⊆ X∗. Then the following condi
tions are equivalent:

(1) The setIU is dense in the Cantor space(Xω,ρ).
(2) The setUδ is nowhere dense in(Xω,ρU ).
(3) The setUδ is a maximal nowhere dense set.
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Proof. For the implication “(1) ⇒ (2)” we observe
that Uδ is closed in(Xω,ρ). If Uδ = Xω \ IU is
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U is a universal Martin-Löf test, then
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not nowhere dense in(Xω,ρU ), then in view of
Corollary 7 it contains a non-empty open set of
form E = WXω ∪ J, J ⊆ IU . Due to the inclusion
E ⊆ Uδ we haveJ = ∅, that is,E = WXω . Since
IU is dense in the Cantor space(Xω,ρ), we have
IU ∩ WXω �= ∅ unlessWXω = ∅, so E = ∅, a
contradiction.

The implication “(2)⇒ (3)” follows from Lemma 8
For “(3) ⇒ (1)” we assume thatUδ is nowhere

dense in(Xω,ρU ), henceCU(IU) = CU(Xω \ Uδ) =
Xω . According to Corollary 6 we haveXω = CU(IU)
= C(IU)∩ (IU ∪Uδ), henceC(IU)=Xω. ✷

5. A Uδ-topology for random sequences

There are various equivalent definitions of rand
sequences, complexity-theoretic (see [4,5]), meas
theoretic (see [9]), topological; for a proof of the
equivalence see [5,2]. In what follows we will use t
definition based on Martin-Löf tests.

We briefly recall the necessary facts on Martin-L
tests; a more thorough treatment can be found in
textbooks [2,13].

A subsetV ⊆ X∗ × N is called Martin-Löf test
provided

(1) V is computably enumerable,
(2) Vm+1 ⊆ Vm ·X∗, for allm� 1,
(3) card(Xn∩Vm ·X∗) < rn−m/(r−1), for all n,m�

1, whereVm = {v ∈ X∗: (v,m) ∈ V} is themth
section ofV andXn = {v: v ∈X∗, |v| = n}.

It is seen thatµ(ViXω) � r−i/(r − 1), for all
i � 1, so limi→∞µ(Vi ·Xω)= 0, constructively, that
is, there exists a computable functionH such that
µ(Vi · Xω) < 2−m, for all i > H(m). Moreover, it is
possible to chooseV in such a way that eachVi is
prefix-free, that is,v,w ∈ Vi andv �w imply v = w
(cf. [13, Corollary 4.10]).

A Martin-Löf test U is called universal if for
every Martin-Löf testV there exists a constantc > 0
(depending uponU andV) such thatVm+c ⊆Um ·X∗,
for all m � 1. In [9] Martin-Löf has proved the
existence of universal Martin-Löf tests (see also [2])
i∈N

The set of random sequences,rand, is defined as
rand = Xω \ ⋂

i∈N
Ui · Xω, whereU is a universal

Martin-Löf test. Of course, the definition does n
depend upon the choice ofU.

A set S ⊆ Xω is constructive nullif there exists
a computably enumerable setA ⊆ X∗ × N such that
S ⊆ ⋂∞

m=1Am ·Xω, (Am is themth section ofA), and
limm→∞µ(Am ·Xω)= 0, constructively.

The following result follows immediately from th
existence of the universal Martin-Löf test:

Theorem 10 [9]. The setXω \ rand equals the union
of all constructive null sets, hence it is a maxim
constructive null set.

From Theorem 10 it follows thatXω \ rand is a
constructive null set, sorand is large in the sense o
measure:

Corollary 11 [9]. The setrand has constructiveµ
measure one.

However, in the Cantor space, the setrand is
small in the sense of category [3,2]. A setS ⊆ Xω

is constructively meagrein the Cantor set if there
exist a computably enumerable setA ⊆ X∗ × N and
a computable functionf :X∗ × N → X∗ such that
S ⊆ ⋃∞

m=1X
ω \Am ·Xω, for all m� 1, and for every

v �= e we havev � f (v,m) andf (v,m) ∈Am.

Theorem 12 [3]. The set rand is constructively
meagre in the Cantor space.

Next we will explore similarities between The
rem 9 (see also Lemma 8) and Theorem 10. F
we obtain a topological characterization of random
quences:

Theorem 13. LetU be a universal Martin-Löf test an
assume that every section ofU, Ui = {u: (u, i) ∈ U},
is prefix-free. Then

rand =Xω
∖( ⋃

i∈N

Ui

)δ
. (3)
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Proof. If x ∈ rand, thenx /∈ Ui · Xω, for almost all
i ∈ N (asUm+1 ⊆ Um · X∗). Since allUi are prefix-
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It should be noted that the space(Xω,ρU ) is
induced by the computable setU in spite of the fact
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free, pref(x)∩ (⋃i∈N
Ui) is finite.

Conversely, letx /∈ rand, that is,x ∈ ⋂
i∈N
Ui ·Xω.

From the inequalityµ(Ui ·Xω)� r−i/(r − 1) we de-
duce that the minimum string length inUi , min{|u|:
u ∈ Ui}, tends to infinity asi → ∞. Thusx has infi-
nitely many prefixes in

⋃
i∈N
Ui . ✷

From the well-known fact thatrand is dense in the
Cantor space (see [2]) and Theorem 9 we obtain:

Corollary 14. Let U be a universal Martin-Löf tes
and assume that eachUi = {u: (u, i) ∈ U} is prefix-
free. DefineU = ⋃

i∈N
Ui . Then the setU is com-

putable andXω \ rand is nowhere dense in the spa
(Xω,ρU ).

Proof. We need to prove only the computability
U . To this aim we fix an arbitrary universal Martin
Löf test U such that each sectionUi is prefix-free.
Furthermore, let us fix a computable enumeration
this Martin-Löf test. A decision algorithm forU =⋃
i∈N
Ui works as follows:

Given a stringw, let k be the smallest positive integ
such thatµ(wXω) > r−k/(r − 1). Then,w /∈ Ui , for
any i � k. Start the computable enumeration of t
universal Martin-Löf testU and wait until for each
i < k some element(vi, i) of the Martin-Löf test has
been enumerated such thatw � vi or vi � w. If one
of the vi is equal tow, then the answer affirmative
otherwise, the answer negative.

First we show that the algorithm will stop aft
finitely many steps. Note that set of non-random
ements is dense. Hence,wXω contains some non
random sequencez. Since the Martin-Löf test is
assumed to be universal, the setUi must contain a
prefix of z, for everyi. Hence, the algorithm will stop
after finitely many steps.

Secondly, we prove the correctness of the al
rithm. The affirmative answer is certainly correct wh
it is given. The negative answer is correct when i
given, because in that casew cannot be contained i
anyUi , for everyi < k sinceUi is prefix-free, and we
have already seen thatw /∈ Ui , for everyi � k. ✷
that the universal Martin-Löf testU is not computable
With reference to the setU in Corollary 14,

we recall that in the space(Xω,ρU ) every random
sequencex is an isolated point, whereas Corollary
shows that every non-random sequencex can be
topologically approximated by random sequenc
This situation parallels the measure-theoretical
(see also [6,8,7,2]). It is interesting to note th
the union of all null sets is not a null set, b
the union of nowhere dense sets in(Xω,ρU ) is a
(maximal) nowhere dense set. So, nowhere dense
in (Xω,ρU ) are analogous to constructive null se
The space(Xω,ρU ) is residual (see [19]) as eac
nowhere dense set has measure zero.

We close the paper with a short discussion of
Law of Large Numbers. In [12,11] it was proved th
the Law of Large Numbers fails to hold true in th
sense of category, i.e., the set LLN of binary sequen
x such that limn→∞(x1 + x2 + · · · + xn)/n = 1/2
is meagre with respect to the natural topology of
unit interval; a similar situation occurs with the set
random sequences with respect to the Cantor topo
(see Theorems 10 and 12). As every random sequ
satisfies the Law of Large Numbers (see [1,2])
obtain:

Corollary 15. The complement of the setLLN is
nowhere dense in({0,1}ω,ρU ), that is, the Law of
Large Numbers holds true in the sense of categor
the space({0,1}ω,ρU ).

Acknowledgements

We warmly thank Lane Hemaspaandra and
anonymous referees for their critique and suggesti
in particular, the algorithm given in the proof o
Corollary 14 and its correctness have been sugge
by a referee.

References

[1] C. Calude, Borel normality and algorithmic randomness,
G. Rozenberg, A. Salomaa (Eds.), Developments in Langu
Theory, World Scientific, Singapore, 1994, pp. 113–129.



250 C.S. Calude et al. / Information Processing Letters 88 (2003) 245–250

[2] C.S. Calude, Information and Randomness. An Algorithmic
Perspective, 2nd edn., Springer Verlag, Berlin, 2002.

ical

e

on-

orm.

n-

48

m.

ist

rlin,

[12] J.C. Oxtoby, S.M. Ulam, Measure preserving homeomor-
phisms and metrical transitivity, Ann. Math. 42 (1941) 874–

re

s.),
ag,

&
rld

tor
itted

en
B,

9)
[3] C. Calude, I. Chi̧tescu, Random sequences: some topolog
and measure-theoretical properties, An. Univ. Bucure¸sti Mat.-
Inf. 2 (1988) 27–32.

[4] G.J. Chaitin, Algorithmic Information Theory, Cambridg
University Press, Cambridge, 1987 (3rd printing 1990).

[5] G.J. Chaitin, Exploring Randomness, Springer-Verlag, L
don, 2001.

[6] P. Gács, Every sequence is reducible to a random one, Inf
and Control 70 (1986) 186–192.

[7] P. Hertling, Surjective functions on computably growing Ca
tor sets, J. UCS 3 (1997) 1226–1240.
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