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1 INTRODUCTION

Evaluating (or even guessing) the degree of complexity of an open problem,
conjecture or mathematically proven statement is not an easy task not only
for beginners, but also for the most experienced mathematicians.

Is there a (uniform) method to evaluate, in some objective way, the dif-
ficulty of a mathematical statement or problem? The question is not trivial
because mathematical problems can be so diverse: the Mathematics Subject
Classification (MSC2000), based on two databases, Mathematical Reviews
and Zentralblatt MATH, contains over 5,000 two-, three-, and five-digit clas-
sifications [24]. But, is there any indication that all, or most, or even a large
part of mathematical problems have a kind of “commonality” allowing a uni-
form evaluation of their complexity? How could one compare a problem in
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number theory with a problem in complex analysis, a problem in algebraic
topology or a theorem in dynamical systems?

Surprisingly enough, such “commonalities” do exist for many mathemati-
cal problems. One of them is based on the possibility of expressing the prob-
lem in terms of (very) simple programs reducible to a (natural) question in
theoretical computer science, the so-called halting problem [7]. A more gen-
eral “commonality” can be discovered using the inductive type of computa-
tion [1]. As a consequence, uniform approaches for evaluating the complexity
of a large class of mathematical problems/conjectures/statements can be, and
have been, developed. This paper reviews current progress and some open
problems.

2 WHAT DO THESE MATHEMATICAL SENTENCES
HAVE IN COMMON?

Consider the following mathematical statements: Euclid’s theorem of the
infinity of primes, Goldbach’s conjecture, Fermat’s last theorem, Hilbert’s
tenth problem, the four colour theorem, the Riemann hypothesis, the Collatz
conjecture, the P vs NP problem. What do they have in common? Apparently
very little, apart from their notoriety. Some are (famous) conjectures, some
are well-known theorems. They belong to different areas of mathematics,
number theory, Diophantine equations, complex analysis, graph theory, and
complexity theory. Among theorems, some state positive facts, some negative
results; some are very old, some are relatively new.

A mathematical “common” property of most of the above statements is
their “logical form”: they can be represented as �1-statements, i.e. state-
ments of the form “∀n P(n)”, where P is a computable predicate. For some
statements, like the Goldbach’s conjecture and Fermat’s last theorem, this
is obvious; for others, like for the Riemann hypothesis, this is not trivial to
prove. It is not known how to represent the Collatz conjecture and the P vs
NP problem as �1-statements.

The “commonality” discussed above shows that all the above sentences
are finitely refutable: a single counter-example proves the statement false.
This is the base for the development of the first method of evaluating the com-
plexity of mathematical sentences. This method applies to all �1-statements,
a large class of mathematical sentences, but, obviously, not all (see [13]
for more mathematical facts). Simple examples for which the method does
not apply are the twin prime conjecture—there are infinitely many primes
p such that p + 2 is also prime—believed to be true because of the prob-
abilistic distribution of primes, and the conjecture that there are infinitely
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ALGORITHMIC COMPLEXITY OF MATHEMATICAL PROBLEMS 3

many Mersenne primes1, believed to be true because the harmonic series
diverges.

Intuitively, the complexity of a �1–problem π = ∀n P(n) is measured by
the size of the “smallest/simplest” program which systematically searches for
a counter-example for π : if P(0) is false then check P(1); if P(1) is false then
check P(2); if P(2) is false then check P(3), and so on. This program semi-
decides the problem π because the program stops if and only if there exists
an m such that P(m) is false; in particular, if π is false then the program never
stops. Accordingly, the resulting complexity is a semi-decidability complex-
ity measure.

The semi-decidability complexity CU —see the formula (1) for a precise
definition—evaluates the complexity of the most intuitive way to solve a
problem, a brute-force search for a counter-example. If the conjecture is false,
a counter-example will eventually be found. But if a conjecture is true, the
search will run on forever. The search for a counter-example uses essential
“knowledge” about π , but not “the deep understanding an expert mathemati-
cian may have about π”. This “knowledge” evolves in time as more “under-
standing” of the problem is accumulating, hence simpler predicates P for
describing π are found. The search for a counter-example should be “gen-
uine” even in case the problem is solved in the affirmative or negative; in this
way we exclude the use of trivial predicates P , e.g. a constant predicate. The
method is not based on the subjective expertise of a given expert but on the
minimal amount of knowledge necessary to solve “in principle” the problem.
Last but not least, the predicate P has to be effectively and explicitly obtained
from the problem.2

In this way we can uniformly and objectively compare problems from dif-
ferent areas of mathematics, a task generally impossible for human experts,
because there are few mathematicians with such expertise. However, the com-
parison is limited by the uniformity of the solution we analyse—we evalu-
ate only one possible solution from infinitely many candidates. In particular,
knowing the complexity of an open �1–problem does not give any clue about
possible ways to solve the problem.

A generalisation of this method, which uses a more powerful type of
computation—the inductive computation—evaluates the complexity of the
decidability of problems and can be applied to the larger class of �2–
statements. We illustrate it for the Collatz and the twin prime conjectures
and the P vs NP problem.

Finally, a few open questions are discussed.

1I.e. numbers of the form 2n − 1.
2The importance of this requirement will be seen in the discussion of the Collatz conjecture.
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3 THE SEMI-DECIDABILITY COMPLEXITY MEASURE

The intuitive approach described at the end of the previous section can be
mathematically modelled in the following way. First we fix a formalism
describing a universal prefix-free Turing machine3 U ; in our case we will
use register machine programs, cf. [4, 5, 7]. The machine U (which is fully
described in [5]) has to be minimal in the sense that none of its instructions
can be simulated by a program for U written with the remaining instructions.
To every representation of the �1–problem as π = ∀m P(m) we associate the
algorithm �P = inf{n : P(n) = false} which “tries” to find the smallest n
such that P(n) is false; if P is true, then �P runs forever, so no number is
produced. There are many programs (for U ) which implement �P ; without
loss of generality, any such program will be denoted also by �P .

There are computable predicates P ′ such that π = ∀m P(m) = ∀m P ′(m),
but some of them are not “genuine”. For example, if π is true, we can take P ′

to be the constant true predicate, which is not genuine in this context. Why?
Because this will not reflect any “algorithmic knowledge” about π permitting
a “real” search for a counter-example, say by a proof-assistant; such a search
should work only for π . Consequently, for every computable predicate P , the
program containing the single instruction halt is not a program for �P . This
requirement seems difficult to capture in mathematical formulas, but is easy
to recognise, hence, without loss of generality, this condition will be kept
informal.

The complexity (with respect to U ) of a �1–problem π is defined by
the length of the smallest-length program (for U ) �P—defined as above—
where minimisation is calculated for all possible “genuine” representations
π = ∀nP(n) and all implementations in U of the program �P :4

CU (π ) = min{|�P | : π = ∀nP(n)}. (1)

Note that π is true if and only if U (�P ) never halts.
Another way of defining the complexity CU is to consider the Omega

number associated to U

�U =
∑

U (x) halts

2−|x |.

It is known (see [3]) that �U is Martin-Löf random (hence incomputable) and
the halting problem with respect to U for all programs p with |p| ≤ N can be

3The domain of the machine is prefix-free, i.e. no proper prefix of a string in the domain is included in
the domain.
4For CU it is irrelevant whether π is known to be true or false.

IJUC˙0117˙Calude˙V2 4



ALGORITHMIC COMPLEXITY OF MATHEMATICAL PROBLEMS 5

solved using the first N bits of the binary expansion of �U . The complexity
CU (π ) is—within an additive constant—the smallest N such that given the
first N bits of the binary expansion of �U one can decide whether π is true
or not.

If instead of U we use a different universal self-delimiting Turing machine
U ′ then one can compute a constant c (depending upon U and U ′) such that
for every �1–problem π one has

|CU (π ) − CU ′ (π )| ≤ c. (2)

Because the complexity CU is incomputable, we work with upper bounds
for CU . As the exact value of CU is not important, following [5] we classify
�1–problems into the following classes:

CU,n = {π : π is a �1–problem, CU (π ) ≤ 210n}. (3)

The adopted threshold is to some extent arbitrary and may be easily changed:
its main goal is only to provide a scale to compare/rank mathematical state-
ments in a uniform way. An argument in favour of our choice is given by
experimental calculations which show that for minimal machines the con-
stant c in the inequality (2) is smaller than 210.

4 A CONCRETE UNIVERSAL PREFIX-FREE BINARY
TURING MACHINE

Let π, ρ be �1–problems. If U and U ′ are universal self-delimiting Turing
machines and CU (π ) ≤ CU (ρ), then CU ′(π ) ≤ CU ′(ρ) + 2c, where c comes
from (2). For this reason in what follows we fix a universal self-delimiting
Turing machine and evaluate the complexity with respect to this machine.

We briefly describe the syntax and the semantics of a register machine
language which implements a (natural) minimal universal prefix-free binary
Turing machine U ; it is a refinement of the languages in [7, 12] constructed
in [5].

Any register program (machine) uses a finite number of registers, each of
which may contain an arbitrarily large non-negative integer.

By default, all registers, named with a string of lower or upper case letters,
are initialised to 0. Instructions are labelled by default with 0,1,2, aso.

The register machine instructions are listed below. Note that in all cases
R2 and R3 denote either a register or a non-negative integer, while R1 must
be a register. When referring to R we use, depending upon the context, either
the name of register R or the non-negative integer stored in R.
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=R1,R2,R3
If the contents of R1 and R2 are equal, then the execution continues at the
R3-rd instruction of the program. If the contents of R1 and R2 are not equal,
then execution continues with the next instruction in sequence. If the content
of R3 is greater than the number of instructions in the program, then we have
an illegal-branch error.

&R1,R2
The contents of register R1 is replaced by R2.

+R1,R2
The contents of register R1 is replaced by the sum of the contents of R1 and
R2.

!R1
One bit is read into the register R1, so the contents of R1 becomes either 0
or 1. Any attempt to read past the last data-bit results in an over-read error.
The read instruction is necessary for the universality of the register machine
language; it will not be used in our programs.

%
This is the last instruction for each register machine program before the input
data. It halts the execution in two possible states: either successfully halts or
it halts with an under-read error.

A register machine program consists of a finite list of labelled instructions
from the above list, with the restriction that the halt instruction appears only
once, as the last instruction of the list. The input data (a binary string) follows
immediately after the halt instruction. A program not reading the whole data
or attempting to read past the last data-bit results in a run-time error. Some
programs (as the ones presented in this paper) have no input data; these pro-
grams cannot halt with an under-read error.

The instruction =R,R,n is used for the unconditional jump to the n-
th instruction of the program. For Boolean data types we use integers 0 =
false and 1 = true.

For longer programs it is convenient to distinguish between the main pro-
gram and some sets of instructions called “routines” which perform specific
tasks for another routine or the main program. The call and call-back of a
routine are executed with unconditional jumps.

5 BINARY CODING OF PROGRAMS

In this section we develop a systematic efficient method to uniquely code in
binary the register machine programs. To this aim we use a prefix-free coding
(the set of code-words is prefix-free); decoding is unique and instantaneous.
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The binary coding of special characters (instructions and comma) is the
following (ε is the empty string):

special characters code special characters code

, ε + 111
& 01 ! 110
= 00 % 100

TABLE 1
Special characters

For registers we use the prefix-free code code1 = {0|x |1x | x ∈ {0, 1}∗}.
Here are the codes of the first 32 registers:5

register code1 register code1 register code1 register code1

R1 010 R9 0001010 R17 000010010 R25 000011010
R2 011 R10 0001011 R18 000010011 R26 000011011
R3 00100 R11 0001100 R19 000010100 R27 000011100
R4 00101 R12 0001101 R20 000010101 R28 000011101
R5 00110 R13 0001110 R21 000010110 R29 000011110
R6 00111 R14 0001111 R22 000010111 R30 000011111
R7 0001000 R15 000010000 R23 000011000 R31 00000100000
R8 0001001 R16 000010001 R24 000011001 R32 00000100001

TABLE 2
Registers

For non-negative integers we use the prefix-free code code2 = {1|x |0x |
x ∈ {0, 1}∗}. Here are the codes of the first 16 non-negative integers:

integer code2 integer code2 integer code2 integer code2

0 100 4 11010 8 1110010 12 1110110
1 101 5 11011 9 1110011 13 1110111
2 11000 6 1110000 10 1110100 14 111100000
3 11001 7 1110001 11 1110101 15 111100001

TABLE 3
Non-negative integers

The instructions are coded by self-delimiting binary strings as follows:

1. &R1,R2 is coded in two different ways depending on R2:6

01code1(R1)codei (R2),

5The register names are chosen to optimise the length of the program, i.e. the most frequently used
registers have the smallest code1 length.
6As xε = εx = x , for every string x ∈ {0, 1}∗, in what follows we omit ε.
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where i = 1 if R2 is a register and i = 2 if R2 is an integer.

2. +R1,R2 is coded in two different ways depending on R2:

111code1(R1)codei (R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.

3. =R1,R2,R3 is coded in four different ways depending on the data
types of R2 and R3:

00code1(R1)codei (R2)code j (R3),

where i = 1 if R2 is a register and i = 2 if R2 is an integer, j = 1 if
R3 is a register and j = 2 if R3 is an integer.

4. !R1 is coded by

110code1(R1).

5. % is coded by

100.

All codings for instruction names, special symbol comma, registers and
non-negative integers are self-delimiting; the prefix-free codes used for reg-
isters and non-negative integers are disjoint. The code of any instruction is the
concatenation of the codes of the instruction name and the codes (in order)
of its components, hence the set of codes of instructions is prefix-free. The
code of a program is the concatenation of the codes of its instructions, so the
set of codes of all programs is prefix-free too.

The smallest program which halts is 100 and smallest program which
never halts is 00010010100100.

6 PROGRAMMING TECHNIQUES

A very important tool for coding sequences is Cantor’s bijection which maps
(codes) a pair of non-negative integers a, b into a single non-negative integer
〈a, b〉. This function can be iterated to a bijection between Nk and N, for
every k > 1; we shall adopt, by convention, the left-associative iteration. For
example, to work with arrays in register machine programs we need to code
(finite) sequences of non-negative integers into single non-negative integers.
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For example the 4-element sequence [2, 1, 1, 0] is encoded by 1484 as
〈〈〈2, 1〉, 1〉, 0〉 = 〈〈8, 1〉, 0〉 = 〈53, 0〉 = 1484. The reverse process allows to
convert, for each given k ≥ 1, any non-negative integer into a unique k-
element sequence of non-negative integers. For example, the integer 5564
can be converted to the 2-element sequence [104, 0] and the 4-element
sequence [3, 1, 0, 0] via the decomposition 5564 = 〈104, 0〉 = 〈〈13, 0〉, 0〉 =
〈〈〈3, 1〉, 0〉, 0〉.

Cantor’s bijection is efficient for codings of large data; the coding pre-
sented in [16] is preferable for smaller data. The routine below computes the
Cantor’s function using the formula 〈a, b〉 = (a + b)(a + b + 1)/2 + a.

This routine has 38 instructions and the program size is 480 bits. The rou-
tine includes two stand-alone routines, one for the multiplication d=a*b,
encoded in the instructions 1 to 6, and the other one for integer division
d=[a/b],b>0, encoded in the instructions 7 to 17. Note that the value of
c, used inside a routine to get back to the calling environment, is set—to a
non-zero integer value—before the routine is called, therefore it creates no
infinite loop.

Mathematical elegance is not always a guarantee for program-size opti-
mality. For example, we can compute Cantor’s bijection with the shorter rou-
tine, presented in Table 5, using the mathematically “ugly” formula 〈a, b〉 =
1 + 2 + . . . + (a + b) + a:

nr label instruction nr label instruction

0 =a, a, CAN 19 &bc, b
1 MUL &d, 0 20 &cc, c
2 &e, 0 21 &d, a
3 LM1 =e, b, c 22 +d, b
4 +d, a 23 &ec, d
5 +e, 1 24 +ec, 1
6 =a, a, LM1 25 &a, d
7 DIV &d, 1 26 &b, ec
8 &e, b 27 &c, LC1
9 &f, 0 28 =a, a, MUL

10 LD1 =e, a, c 29 LC1 &a, d
11 +e, 1 30 &b, 2
12 +f, 1 31 &c, LC2
13 =f, b, LD3 32 =a, a, DIV
14 =a, a, LD1 33 LC2 +d, a
15 LD3 &f, 0 34 &a, ac
16 +d, 1 35 &b, bc
17 =a, a, LD1 36 &c, cc
18 CAN &ac, a 37 =a, a, c

TABLE 4
Cantor’s bijection with 38 instructions
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nr instruction code length

0 &e, a 01 011 010 8
1 +e, b 100 011 00110 11
2 &d, 0 01 00101 100 10
3 =e, 0, 9 101 011 100 1110011 16
4 &f, 1 01 00100 101 10
5 +d, f 100 00101 00100 13
6 =e, f, 9 101 011 00100 1110011 18
7 +f, 1 100 00100 101 11
8 =a, a, 5 101 010 010 11011 14
9 +d, a 100 00101 010 11

10 =a, a, c 101 010 010 00111 14

TABLE 5
Cantor’s bijection with 11 instructions

This register machine routine has 136 bits:

01011010100011001100100101100101011100111001101001001011000010100100
10101100100111001110000100101101010010110111000010101010101001000111

As the first approach uses two other routines, multiplication and division,
one can argue that their encodings are part of the general program therefore
they should not be counted towards the size of Cantor’s function encoding.
Even if we do not consider the encodings for multiplication (6 instructions)
and division (11 instructions) as part of the Cantor’s encoding in Table 4, the
number of instructions (21) is still larger than in the approach presented in
Table 5 (11 instructions).

7 SOME RESULTS

Legendre’s conjecture (there is a prime number between n2 and (n + 1)2, for
every positive integer n), Fermat’s last theorem (there are no positive integers
x, y, z satisfying the equation xn + yn = zn , for any integer value n > 2) and
Goldbach’s conjecture (every even integer greater than 2 can be expressed as
the sum of two primes) are in CU,1, Dyson’s conjecture (the reverse of a power
of two is never a power of five; the reverse of a number is the number formed
with the same digits but written in opposite order. For example, the reverse
of 131075 is 570131) is in CU,2 [4, 5, 15, 17], the Riemann hypothesis (all
non-trivial zeros of the Riemann zeta function have real part 1/2) and Euler’s
integer partition theorem (the number of partitions of an integer into odd
integers is equal to the number of partitions into distinct integers) are each in
CU,3 [8, 14], the four colour theorem (the vertices of every planar graph can
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be coloured with at most four colours so that no two adjacent vertices receive
the same colour) is in CU,4 [6]. Related results have been discussed in [10].
For every positive integer n there is an integer m > n such that CU,n is strictly
include in CU,m ; it is an open question whether m can be taken to be n + 1.
Except for problems in CU,1, all other results are not known to be strict.

8 THE COLLATZ CONJECTURE

The Collatz conjecture7 proposed by L. Collatz (when he was a student) is
the following: given any positive integer seed a1 there exists a natural N such
that aN = 1, where

an+1 =
{

an/2, if an is even,

3an + 1, otherwise .

There is a huge literature on this problem and various natural generalisations:
see [21]. Does there exist a program �Collatz such that Collatz’s conjecture is
false if and only if �Collatz halts? A brute-force tester, i.e. the program which
enumerates all seeds and for each of them tries to find an iteration equal to 1,
may never stop for two different reasons: a) because the Collatz conjecture
is true, b) because there exists a seed a1 such that there is no N such that
aN = 1. How can one algorithmically differentiate these cases? How can one
refute b) by a brute-force tester? We do not know the answers to the above
questions. However, a simple non-constructive argument [7] answers in the
affirmative the first question of this section. Indeed, observe first that the set

Collatz = {a1 | aN = 1, for some N > 1}

is computably enumerable. Collatz’s conjecture requires to prove that the set
Collatz coincides with the set of all positive integers.

If Collatz is not computable, then the conjecture is false. As a) is ruled
out, in this case any program which eventually halts can be taken in principle
as �Collatz; this is not the case for most of the programs because they do not
“genuinely” search for a counter-example to the Collatz conjecture.

If Collatz is computable, then we can write a program �Collatz using the
computable predicate defining Collatz: the conjecture is true if and only if
�Collatz never stops.

The above observation shows that, in principle, the method developed can
be applied to the Collatz conjecture. In fact, the method cannot be applied,

7Known as the 3x + 1 problem, or Ulam’s problem.
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at least for the time being, as we do not know how to explicitly construct the
program �Collatz. This raises the question of extending the method such that it
can be applied to the Collatz conjecture and similar mathematical statements.

It is easy to see that the Collatz conjecture is a �2–statement, i.e. a state-
ment of the form ∀n∃i R(n, i), for some computable binary predicated R. The
above non-constructive proof given for the Collatz conjecture works for every
�2–statement. Obviously, for infinitely many �2–statements this proof can-
not be constructivised, that is, infinitely many �2–statements are not prov-
ably �1–statements.

9 A MORE GENERAL METHOD: INDUCTIVE
COMPLEXITY MEASURES

Can the complexity method developed for �1–statements be extended to �2–
statements? The algorithmic brute force verification of the validity of a �2–
statement does not work as for the simpler �1–statements: the program never
stops irrespective whether the statement is true or false. A natural solution
is to use inductive Turing computations [1] (which are 0′–computations by
Shöenfield’s lemma) instead of classical Turing computations.

We recall following [1] that an inductive Turing machine of the first order
is a normal Turing machine with input, output and working tapes, which com-
putes “inductively”: The result of the computation of such an inductive Tur-
ing machine M on x is the content of the output tape in case this content stops
changing at some step of the computation; otherwise, there is no result. So,
in contrast with the (classical) computation of the Turing machine M on x—
which assumes that the computation has stopped and the result is the content
of the output tape—the inductive computation of M on x may stop and in this
case the result is the same as in the classical mode, or may not stop, in which
case there is a result only when the content of the output tape has stabilised
at some step of the (infinite) computation. In this case, we say that M is an
inductive Turing machine of first order.

First we note that the method of evaluating the complexity of �1–
statements can be reformulated in terms of inductive Turing machines of
first order. To the computable predicate P(m) we assign the problem π =
∀m P(m), the algorithm �P = inf{n : P(n) = false} and finally the induc-
tive program of first order �

ind,1
P constructed from the program �P in which

the stop instruction, %, is replaced with the instruction &a,1 followed by
%; here a is a register not appearing in �P designed as the output register.
Denote by Uind the machine U working inductively. It is easy to see that

π is true if and only if U (�P ) never stops if and only if Uind (�ind,1
P ) = 0.
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The inductive complexity measure of first order is defined by

Cind,1
U (π ) = min{|�ind,1

P | : π = ∀nP(n)}, (4)

and the corresponding inductive complexity class of first order by

C
ind,1
U,n = {π : π is a �1–statement, Cind,1

U (π ) ≤ 210n}. (5)

There is a constant c < 1024 such that for every �1–statement π we have:

|CU (π ) − Cind,1
U (π )| ≤ c,

so

CU,n ⊆ C
ind,1
U,n ⊆ CU,n+1.

In this way, all results proved for CU and CU,n become automatically true
for Cind,1

U and C
ind,1
U,n . Why do we need to compute inductively instead of

classically? Because we can extend the first method from sentences ∀m P(m)
to more complex sentences, in particular, to �2–sentences.

From the sentence ∀n∃i R(n, i) we construct the inductive Turing machine
of first order T ind,1

R defined by

T ind,1
R (n) =

{
1, if ∃i R(n, i),
0, otherwise .

Next we construct the inductive Turing machine Mind,2
R defined by

Mind,2
R =

{
1, if ∀n∃i R(n, i),
0, otherwise .

Clearly,

Mind,2
R =

{
1, if ∀n (T ind,1

R (n) = 1),
0, otherwise ,

hence we say that Mind,2
R is an inductive Turing machine of second order.

Note that the predicate T ind,1
R (n) = 1 is well-defined because the inductive

Turing machine of first order T ind,1
R always produces an output. However, the

inductive Turing machine Mind,2
R is of the second order because it uses an

IJUC˙0117˙Calude˙V2 13
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inductive Turing machine of the first order T ind,1
R (the functional composi-

tion of two inductive Turing machine is not necessarily an inductive Turing
machine).

To every mathematical sentence of the form ρ = ∀n∃i R(n, i), where
R(n, i) is a computable predicate, we associate the inductive Turing machine
of second order Mind,2

R as above. Note that there are many programs for Uind

which implement Mind,2
R ; for each of them we have:

∀n∃i R(n, i) is true if and only if Mind,2
R = 1 (on Uind ). (6)

In this way, the inductive complexity measure of first order Cind,1
U (π ) (see

(4)) can be extended to the inductive complexity measure of second order:

Cind,2
U (ρ) = min{|Mind,2

R | : ρ = ∀n∃i R(n, i)},

and the inductive complexity class of first order C
ind,1
U,n (see (5)) to the induc-

tive complexity class of second order:

C
ind,2
U,n = {ρ : ρ = ∀n∃i R(n, i), Cind,2

U (ρ) ≤ 210n}.

The above construction of the inductive Turing machine of second order
Mind,2

R leading to the equivalence (6) is “algorithmic”. The optimisation nec-
essary for the approximation of the complexity Cind,2

U (ρ) is not algorithmic:
it depends on the predicate R(n, i) and implies some creativity.

The inductive computation goes beyond the Turing barrier, in the sense it
can compute Turing incomputable functions, and the possibility of effectively
running such a computation is not completely elucidated (at the time of the
writing of this paper). Does this create a problem? The answer is negative as
the main goal here is not to solve the problem, i.e. not to run the computation,
but to encode efficiently an algorithm solving the problem. Incidentally, this
is an example of the use of a hypercomputation model for which the prob-
lem whether the computation can be materially executed in our Universe is
irrelevant.

Using this technique, it was shown that the Collatz conjecture and the
twin prime conjecture are in the inductive complexity class C

ind,2
U,1 (see [2]),

Goodstein’s theorem (every “Goodstein sequence” eventually terminates at 0)
is in C

ind,2
U,7 (see [18]), and the P vs NP problem is in C

ind,2
U,7 , cf. [9]. Goodstein’s

theorem can be proven rather easily in second order arithmetic, but not in
Peano arithmetic [20]. There are no arguments in favour of the unprovability
of the Collatz conjecture in Peano arithmetic, hence the complexity results
match well the current “intuition”.
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10 OPEN PROBLEMS

In this section we present a few open problems.

1. Find methods to prove lower bounds for the complexity of problems
and use them for the problems studied.

2. Can one construct programs �Collatz and �twinprimeconjecture, i.e. are the
statements of the Collatz and twin prime conjectures provably �1–
statements?

3. Evaluate the complexity of the Poincaré theorem [23]; see also [19,22].

4. (Dinneen [16]) Consider the universal machine U presented in sec-
tion 6 (see [5]). Can one determine how many initial bits of its halting
probability (if any) can be computed? Compare this result with the 40
bits that were computed in [11, 12] to get some indirect information
regarding of how far away we are from actually solving mathematical
conjectures such as the Riemann’s hypothesis. See other related open
problems in [16].

11 CONCLUSIONS

A uniform method for evaluating the complexity of mathematical problems
represented by �1–statements was described. The method was applied to a
variety of problems, including the Fermat last theorem, the Goldbach conjec-
ture, the four colour problem and the Riemann hypothesis. The complexities
of some problems in this class, like the Collatz conjecture and the twin prime
conjecture, have not been evaluated because we could not explicitly construct
the computable predicate appearing in the corresponding �1–statements. To
cover these cases the method was extended, using inductive Turing machine
computations instead of Turing machine computations, to a larger class of
problems including all �2–statements. In this way the inductive complexity
of the Collatz, twin prime conjectures and the P vs NP problem have been
evaluated.

It is not excluded that a problem is more complex than another problem
in the sense of our measure, yet the current mathematical practice seems to
indicate that the contrary relation might be true (because different methods
have been used to solve the problem). This last situation is as “provisional” as
our complexity estimation, as new proofs, possible shorter ones, can always
be discovered.

The scalability of the measure, both in terms of ordering, the role of
the additive constants involved, and its relativisation to various unsolvable
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problems are open questions. Further interesting open problems are discussed
in the previous section.
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