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Deutsch’s problem is the simplest and most frequently examined example of computa-

tional problem used to demonstrate the superiority of quantum computing over classical
computing. Deutsch’s quantum algorithm has been claimed to be faster than any classical

ones solving the same problem, only to be discovered later that this was not the case. Var-

ious de-quantised solutions for Deutsch’s quantum algorithm—classical solutions which
are as efficient as the quantum one—have been proposed in the literature. These solutions

are based on the possibility of classically simulating “superpositions”, a key ingredient of
quantum algorithms, in particular, Deutsch’s algorithm. The de-quantisation proposed

in this note is based on a classical simulation of the quantum measurement achieved

with a model of observed system. As in some previous de-quantisations of Deutsch’s
quantum algorithm, the resulting de-quantised algorithm is deterministic. Finally, we

classify observers (as finite state automata) that can solve the problem in terms of their

“observational power”.

Keywords: Deutsch problem; Deutsch’s quantum algorithmp; de-quantisation.

2010 Mathematics Subject Classification: 68W01,81P68

∗Corresponding author.

191

http://dx.doi.org/10.1142/S0129054111007940
www.cs.auckland.ac.nz/~cristian


January 5, 2011 14:5 WSPC/INSTRUCTION FILE S0129054111007940

192 C. S. Calude, M. Cavaliere & R. Mardare

1. Introduction

The “brute-force” classical simulation of a quantum algorithm—derived from the

matrix mechanics formulation of quantum mechanics [13]—increases exponentially

the computational time. Is it possible to do it better? The answer is affirmative.

The de-quantisation of a quantum algorithm is a technique to develop a classical

algorithm which: a) solves the same problem as the given quantum algorithm, b) is

not exponentially slower in time compared to the quantum algorithm. The paper

[2] reviews the main techniques and results in de-quantisation.

Why de-quantisation? Quantum algorithms are notoriously difficult to run, so a

quantum algorithm would be preferred to a classical algorithm only if the quantum

algorithm is provable faster than any classical one solving the same problem. For

most known quantum algorithms such results are not available. Understanding the

conditions when de-quantisation is impossible reveals features that are necessary

for a quantum algorithm to be faster than any classical one. Conversely, successful

de-quantisations produce efficient classical algorithms designed on radically new

techniques inspired from quantum computation.

Deutsch’s problem is the simplest and most frequently examined example of

computational problem used to show the power and superiority of quantum comput-

ing over classical computing [11, 10, 14, 16, 4]. De-quantised solutions for Deutsch’s

quantum algorithm have been proposed in the literature [3, 4, 15, 1]. These solutions

are based on the possibility of efficiently simulating “superpositions”. In this note

we take a different approach: we focus on the interplay between an observed system

and its observer. More precisely, we use a model of observed systema to present an

observer-based de-quantisation of the Deutsch’s quantum algorithm which allows

us to investigate the role of the “power” of the external observer. As in some previ-

ous studies [4, 1, 2], our de-quantised algorithm is deterministic and produces more

information than Deutsch’s quantum algorithm.

2. Automata Theory Preliminaries

We use some basic notions from automata theory and formal languages [17]. By

V ∗ we denote the set of strings over the alphabet V ; λ is the empty string and

V + = V ∗ \ {λ}. The concatenation of the strings w1 andw2 is denoted by w1w2.

A finite state automaton (FSA), with no final states, is a 4-tuple A = (Q, V, δ,Q0)

where Q is a set of states, Q0 ⊆ Q is the set of initial states, V is the input

alphabet and δ is the transition function δ : Q× (V ∪ {λ})→ 2Q (2Q is the power

set of Q). The extended transition function δ∗ is defined by δ∗(q, λ) = {q} and

δ∗(q, ax) =
⋃

p∈S δ
∗(p, x) with S = δ(q, a).

A configuration of A is a string uqv where q ∈ Q and uv ∈ V ∗; the configuration

denotes the current state q, the read input u and the input yet to be read v. A

a“Computing by observing” is a paradigm where the computation is obtained by observing and
interpreting the trajectories of a monitored system. The technique [8] was originally presented in
the area of P systems developed by G. Păun and then extended to other areas [6, 7].
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configuration is initial when u = λ and q ∈ Q0. The automaton A can move from a

configuration C1 = uq1av to a configuration C2 = uaq2v, where q1, q2 ∈ Q, uv ∈ V ∗
and a ∈ V , if q2 ∈ δ(q1, a); such move, called transition, is represented by the string

C1 : C2, where : is a symbol not in V ∪Q. A computation of A on input v ∈ V ∗ from

initial state q ∈ Q0 is a finite sequence of transitions (represented as 〈qv : C1, C1 :

C2, · · · , Ci : Ci+1, Ci+1 : Ci+2, · · · , Ck−1 : vq′〉). For a non-deterministic FSA there

may be several computations on v. The set of all possible computations of A on

v ∈ V ∗ starting from the state q ∈ Q0 is denoted by A(q, v); A(v) = ∪q∈Q0
A(q, v).

We denote by FSA the class of finite state automata.

Following [9], an observer is a tuple O = (Q,W, δ, {q}, U, σ), where (Q,W, δ, {q})
is an FSA, with no final state and having only one initial state q; U is the output

alphabet and σ : Q 7→ U ∪ {λ} is a labelling function. The output of an observer

is the label associated to the state of the observer in which the observer halts. For

a string w ∈ W ∗ and an observer O we then write O(w) for this output; for a

sequence 〈w1, . . . , wn〉 of n ≥ 1 strings over V ∗ we write O(〈w1, . . . , wn〉) for the

string O(w1) · · ·O(wn).

A System/Observer system (S/O system) is a pair constituted by an observed

system A = (Q, V, δ,Q0) and an observer O = (Q′, V ∪ Q ∪ {:}, δ′, {q′}, U, σ). We

denote such an observed system/observer by Ω = A ⊕ O. To make possible the

desired interaction between the observed system and the observer, in an S/O system

the input alphabet of the observer O must be V ∪ Q ∪ {:}, the alphabet used to

describe transitions of the observed system A.

In an S/O system the observer O translates the computations of the ob-

served system A (i.e., sequences of transitions) into strings over the output al-

phabet of the observer. Formally, given Ω = A ⊕ O, v ∈ V ∗ and q ∈ Q0,

we define Ω(q, v) = {O(〈w0, w1, . . . , wn〉) | 〈w0, w1, . . . , wn〉 ∈ A(q, v)},Ω(v) =

{O(〈w0, w1, . . . , wn〉) | 〈w0, w1, . . . , wn〉 ∈ A(v)},Ω(V ∗) = {O(〈w0, w1, . . . , wn〉) |
〈w0, w1, · · · , wn〉 ∈ A(V ∗)}. We will often (informally) refer to the strings present

in the various sets (over U) Ω as observed behaviors of the observed system A.

Example 1. We construct three S/O systems. The observed system described in

Figure 1 is the FSA A = (Q,V, δ,Q0), with Q = {q0, q1, q2}, V = {a, b}, Q0 =

{q0}. The transition function δ is defined as follows: δ(q0, a) = {q1}, δ(q0, b) =

{q0}, δ(q1, a) = {q1}, δ(q1, b) = {q2}, δ(q2, a) = {q2}, δ(q2, b) = {q2}.
We consider three distinct observers Ofin,Oint,Ochange with output alphabet U

and different computational powers, given by the following mappings (we fix p ∈ U):

Ofin(w) =


λ, if w = zqav : zaq′v, z ∈ V ∗, a ∈ V,

v ∈ V +, q, q′ ∈ Q,
q′, if w = zqa : zaq′, z ∈ V ∗, a ∈ V, q, q′ ∈ Q,
p ∈ U, if w /∈ {zqav : zaq′v, z ∈ V ∗, a ∈ V, v ∈ V +, q, q′ ∈ Q}

∪ {zqa : zaq′, z ∈ V ∗, a ∈ V, q, q′ ∈ Q}.
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q0

q1

q2

a

b

a, b

b

a

1

Fig. 1. The observed system is represented by the FSA A = ({q0, q1, q2, a, b, :}, {a, b}, δ, {q0}). For
instance, the string aq1ba : abq2a denotes the transition from state q1 to state q2 reading the

symbol b. A computation of A is described by a sequence of strings over the alphabet of A.

Oint(w) =

{
q′, if w = zqav : zaq′v, z, v ∈ V ∗, a ∈ V, q ∈ Q,
p ∈ U, if w /∈ {zqav : zaq′v, z, v ∈ V ∗, a ∈ V, q ∈ Q}.

Ochange(w) =


c, if w = zqav : zaq′v, z, v ∈ V ∗, a ∈ V,

q, q′ ∈ Q, q 6= q′, c /∈ V ∪Q ∪ {λ}
u, if w = zqav : zaqv, z, v ∈ V ∗, a ∈ V, q ∈ Q,
p ∈ U, if w /∈ {zqav : zaq′v, z, v ∈ V ∗, a ∈ V, q, q′ ∈ Q, q 6= q′}

∪ {z, v ∈ V ∗, a ∈ V, q ∈ Q}.
FAS implementations of the observers are described in Figures 2 and 3. We

can compose the observed system A (Fig. 1) with the above defined observers and,

for each composition, we obtain a specific observed behavior of the system A.

For instance, Ωchange(q0, aabb) = {cucu},Ωfin(q0, aabb) = {q2},Ωint(q0, aabb) =

{q1q1q2q2}:
changing the observer, we get different observed behaviors for A, as is discussed

in Figure 4.

3. Expressing Deutsch’s Problem in Terms of FSA’s

Given a Boolean function f : {0, 1} → {0, 1} and a black box for computing this

function, Deutsch’s problem asks to test whether f is constant (that is, f(0) = f(1))

or balanced (f(0) 6= f(1)) using only one query on the black box.

The quantum technique pioneered Deutsch in [11] “embeds” the classical com-

puting box (given by f) into a quantum box, then use the quantum device on a

“superposition” state, and finally make a single measurement of the output pro-

duced. The problem was extended in [12] and fully solved in [10] (see [5, 14, 16, 4]).

The quantum solution is obtained with probability one. The de-quantisation in [4] is

deterministic and relies on an efficient classical superposition; this technique works

when the quantum algorithm does not use entanglement [2].
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z1

z2

z3

z4

q0

q1

q2

a, b, :

a, b, :

a, ba, b, :

z1

z4

z5

z2 z3
q1, q2, q3 q0

q2

q1

a, b, :
a, b, :

a, b

a, b

a, b

Fig. 2. The observer in the left is Ofin = (Z,W, δ, {z1}, U, σ), where Z = {z1, z2, z3, z4}, U =

{q0, q1, q2, λ}, σ(z1) = λ, σ(z2) = q0, σ(z3) = q1, σ(z4) = q2; in the right, the observer is Oint =

(Z,W, δ, {z1}, U, σ) where Z = {z1, z2, z3, z4, z5}, U = {q0, q1, q2}, σ(z1) = σ(z2) = any p ∈ U ,
σ(z3) = q0, σ(z4) = q1, σ(z5) = q2. Each observer takes as input a string representing a transition

of the observed system and output the symbol associated to the state where the observer stops.
For example, if observer Ofin reads the string representing the transition aq1ba : abq2a (of the

observed system in Figure 1), then the observer stops in the state z1, hence the observer output

the symbol λ = σ(z1). The observer Ofin can watch the state of the observed system only when
this has completely read its input while Oint can watch any state passed by the observed system

processing its input.

We show that Deutsch’s problem is equivalent to the problem of identifying

a certain unknown FSA, in a given class of FSA’s, using a specific observer. The

success of such individuations is related to the computational power of the observer,

and the way the observer is implemented.

In comparing the quantum solution with the classical solution proposed here it is

important to note the role played by the “new black box” in which the original black

box is embedded. The quantum solution embeds the classical box into a quantum

black box capable of computing with superpositions, a feature unavailable to the

original box. Our new black box has the capability of evaluating on strings not only

on 0 and 1, again, a feature unavailable to the original box. It is a difficult open

problem to define and evaluate the complexity of the embedding; see more in [2].

Let A = (Q, V, δ,Q0) be an arbitrary FSA and a ∈ V an arbitrary symbol. A is

a-constant if there exists q ∈ Q such that for any q′ ∈ Q, δ(q′, a) ⊆ {q}. If A is not

a-constant, then it is a-balanced.

Let f1, f2, f3, f4 : {0, 1} → {0, 1} be the four Boolean functions that appear

in Deutsch’s problem, i.e. the functions defined by f1(0) = 0, f1(1) = 1, f2(0) =

1, f2(1) = 0, f3(0) = 0, f3(1) = 0, f4(0) = 1, f4(1) = 1.

Without adding extra information, we can associate to these functions four

FSA’s, with states Q = {q0, q1}:
A1 = (Q, {a}, δ1,Q) with δ1(q0, a) = {q0} and δ1(q1, a) = {q1}, A2 =

(Q, {a}, δ2,Q) with δ2(q0, a) = {q1} and δ2(q1, a) = {q0}, A3 = (Q, {a}, δ3,Q) with
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z1

z2

z3

z9

z5

z6

z7

z8

z4

z10

q0

q0

q1, q2

q1
q1

q0, q2

q2

q2

q0

a, b

a, b, :

a, b, :

a, b, :

a, b

a, b

a, b

a, b

a, b

a, b

Fig. 3. The observer Ochange = (Z,W, δ, {z1}, U, σ), where Z = {z1, . . . , z10},W = {a, b,
q1, q2, q3}, U = {u, c}, σ(z1) = σ(z2) = σ(z3) = σ(z4) = any p in U, σ(z5) = σ(z7) = σ(z9) =

u, σ(z6) = σ(z8) = σ(z10) = c. The observer output u or c depending on the observed transitions.

For instance, the observer reading the transition aq1ba : abq2a, stops in the state z8 and then out-
put the symbol c. The observer Ochange can see when the observed system has changed its state.

If the observers presented in Figures 2 and 3 read a string that syntactically does not represent a
transition then they output any p from U .

q0aabb: aq1aabb      aq1aabb:aaq1bb     aaq1bb:aabq2b     aabq2b:aabbq2 

Ωchange(q0,aabb)

Ωint(q0,aabb)

Ωfin(q0,aabb)

       c                              u                        c                         u

        q1                            q1                       q2                       q2
 
        λ                              λ                        λ                       q2 

Fig. 4. The three S/O systems Ωchange, Ωfin and Ωint are obtained by coupling A, system is
the FSA A described in Figure 1, with observers,Ofin,Oint and Ochange described in Figures 2

and 3. The observed behaviours of A Ωfin(q0, aabb),Ωint(q0, aabb) and Ωchange(q0, aabb) are then
presented.

δ3(q0, a) = {q0} and δ3(q1, a) = {q0}, A4 = (Q, {a}, δ4,Q) with δ4(q0, a) = {q1} and

δ4(q1, a) = {q1}. In this way, a black box that computes one of the functions fi can

be seen as a black box simulating the corresponding FSA Ai.

Therefore, we can reformulate Deutsch’s problem using FSA’s A1,A2,A3 and

A4 (see Figure 5), in the following way: Given a black box that simulates an FSA

A ∈ {A1,A2,A3,A4}, decide whether or not A is a-constant or a-balanced, by using
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only one input (one query on the black box). In other words, the Deutsch’s problem

is equivalent with the problem of deciding, given an arbitrary unknown FSA A ∈
{A1,A2,A3,A4}, whether A is a-constant or a-balanced, by providing to A a single

input. In the paper this is referred as (reformulated) Deutsch’s problem.

q1

q0

q1

q0

q1

q0

q1

q0

a

a

aa aa

a

a

A1 A2 A3 A4

Fig. 5. Original FSA’s.

The next step is to provide an embedding of each FSA Ai, i = 1, . . . , 4, into an

FSA Ab
i , i = 1, . . . , 4 (see Figure 6), in such a way that the black box simulating Ai

is not “opened”, that is, the operation of embedding does not use/depend on any

specific information identifying Ai.

For each Ai = (Q, {a}, δi,Q), i = 1 . . . 4, we define the FSA Ab
i =

(Q, {a, b}, γi,Q) with γi(qj , a) = δi(qj , a) for j = 0, 1, γi(q0, b) = {q1} and

γi(q1, b) = {q0}.

q1

q0

q1

q0

q1

q0

q1

q0

a

a

bb b b b bbb aa aa

a

a

Ab
1 Ab

2 Ab
3 Ab

4

Fig. 6. “Embedded” FSA’s.

Observe that Ab
1 = A1 ∪A, Ab

2 = A2 ∪A, Ab
3 = A3 ∪A, Ab

4 = A4 ∪A, where A =

(Q, {b}, δ,Q) for some b 6= a, and δ(q0, b) = {q1} and δ(q1, b) = {q0}. (We recall that,

given two finite state automata A = (Q,Σ, δ, Q0) and A′ = (Q′,Σ′, δ′, Q′0), the union
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of A and A′ is the finite state automaton A∪A′ = (Q∪Q′,Σ∪Σ′, δ ∪ δ′, Q0 ∪Q′0),

with δ∪ δ′(q, a) = δ(q, a)∪ δ′(q, a), for each q ∈ Q∩Q′; δ∪ δ′(q, a) = δ(q, a) for each

q ∈ Q \Q′; δ ∪ δ′(q, a) = δ′(q, a), for each q ∈ Q \Q′. )

The proposed embedding (transforming Ai in Ab
i ) is essentially a function F :

FSA→ FSA by F (X) = X ∪A. The function plays a similar role as the standard

quantum embedding used by Deutsch’s algorithm. The following lemma is a simple

consequence of the definitions.

Lemma 2. (i) Ai is a-balanced iff Ab
i is a-balanced, for any i = 1 . . . 4. (ii) Ai is

a-constant iff Ab
i is a-constant, for any i = 1 . . . 4.

We now consider S/O systems obtained by coupling the FSA’s Ab
i , i = 1 . . . 4, (as

observed systems) with the observers Ochange,Ofin,Oint defined in Example 4. We

present results that show how the reformulated Deutsch’s problem (i.e., deciding if

an unknown observed system is a-constant or a-balanced) can be solved depending

on the computational power of the allowed observer and on the possibility of finding

a “smart” input for the observed system.

Consider the FSA’s Ab
i = (Q, {a, b}, γi,Q), i = 1 . . . 4 and let Ωi

fin = Ab
i ⊕Ofin,

i = 1 . . . 4. Dividing all the possible inputs on their lengths (odd/even) or on their

number of symbols bs, and assuming an arbitrary initial state for the observed

system, one can prove the following result.

Theorem 3. Given an arbitrary S/O system Ω = A ⊕ Ofin ∈ {Ω1
fin, Ω2

fin,

Ω3
fin,Ω

4
fin} there exist no input w ∈ {a, b}∗ and no computable function f :

Ω({a, b}∗) −→ {0, 1}, such that f(Ω(w)) = {1} iff A is a-constant.

Proof. We start by remarking that, for all w ∈ {a, b}∗, Ω = A ⊕ Ofin ∈
{Ω1

fin,Ω
2
fin,Ω

3
fin,Ω

4
fin} and any initial state of A, there exists at least a computa-

tion on input w of A. However, it is possible to decide whether A is a-constant or

a-balanced using the set Ωfin(w) if and only if Ωfin(w) = {qi} (if A is a-balanced)

and Ωfin(w) = {qj} (if A is a-constant), where {i, j} = {1, 2}. Consequently, there

would exist an input w for which, independently of the initial (starting) state of

the Ab
1,Ab

2 (the a-balanced FSA’s), Ω1
fin(w),Ω2

fin(w) are the set {qi}, i ∈ {1, 2}.
However this is impossible as Ab

2 stops in a state different than the initial state on

inputs of odd length and a final state identical with the initial state on inputs of

even length. Hence, there is no computation of A that produces the same final state

for Ab
2 no matter what is the initial state of Ab

2. A similar argument can be found

for Ab
1 by taking into account not the parity of the length of input w, but the parity

of the number of occurrences of b in w: an odd number of occurrences of b in w

changes the state, an even number conserves the state. Therefore the function f

cannot be constructed and this proves the theorem.

However, the reformulated Deutsch’s problem can be solved with one input if

one permits the observer Oint. One can check that the two inputs aaba, or abaa, can
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be used to determine if the observed system is a-constant or a-balanced. Moreover,

any input whose length is equal or shorter than 3, is not enough to determine the

type of the observed system.

Theorem 4. Consider the FSA’s Ab
i = (Q, {a, b}, γi,Q) and let Ωi

int = Ab
i ⊕Oint,

i = 1 . . . 4. Let Ω = A⊕Oint ∈{Ω1
int,Ω

2
int,Ω

3
int,Ω

4
int} be an arbitrary S/O system.

(i) There exist no input w ∈ {a, b}∗ with |w| ≤ 3 and no computable function

f : Ω({a, b}∗) −→ {0, 1} such that f(Ω(w)) = {1} iff A is a-constant.

(ii) There exist an input w ∈ {a, b}∗ with |w| = 4 and a computable function f :

Ω({a, b}∗) −→ {0, 1}, such that f(Ω(w)) = {1} iff A is a-constant. Moreover, there

exist a computable function f ′ : Ω({a, b}∗) −→ {1, 2, 3, 4}, and an input w ∈ {a, b}∗
such that f ′(Ω(w)) = {i} iff Ω = Ωi

int for any i = 1 . . . 4.

Proof. (i) We first prove that any input of length at most 3 cannot be used to

decide if A is a-constant or a-balanced. If |w| = 1 the result derives as in the proof

of Theorem 3. If |w| = 2, we have two cases:

(1) if w = aa or w = ab, then Ω1
int(w, q0) = Ω3

int(w, q0).

(2) if w = ba or w = bb, then Ω1
int(w, q1) = Ω3

int(w, q1).

If |w| = 3, we have four cases:

(1) if w = aaa or w = aab, then Ω1
int(w, q0)= Ω3

int(w, q0).

(2) if w = aba or w = abb, then Ω2
int(w, q0) = Ω4

int(w, q0).

(3) if w = baa or w = bab, then Ω1
int(w, q1)= Ω3

int(w, q1).

(4) if w = bba or w = bbb, then Ω1
int(w, q1)= Ω4

int(w, q1).

As we can see there is no input that can differentiate the case when A is a-balanced;

therefore the function f cannot exist. (ii) We prove now that w = aaba can precisely

identify Ω, i.e., it can also decide if A is a-constant or a-balanced. For doing this

we show that for each Ωi
int, i = 1 . . . 4, the result is different.

If Ω = Ω1
int, the two possibilities with aaba are: Ω(aaba, q0) = {q0q0q1q1},

Ω(aaba, q1) = {q1q1q0q0}. If Ω = Ω2
int, the two possibilities with aaba are

Ω(aaba, q0) = {q1q0q1q0},Ω(aaba, q1) = {q0q1q0q1}. If Ω = Ω3
int, the two possibilities

with aaba are Ω(aaba, q0) = {q0q0q1q0},Ω(aaba, q1) = {q0q0q1q0}. If Ω = Ω4
int, the

two possibilities with aaba are Ω(aaba, q0) = {q1q1q0q1},Ω(aaba, q1) = {q1q1q0q1}.
The computable function f ′ : Ω({a, b}∗) −→ {1, 2, 3, 4} can be then defined by:

f ′(v) =


1, if v ∈ {q0q0q1q1, q1q1q0q0},
2, if v ∈ {q1q0q1q0, q0q1q0q1},
3, if v ∈ {q0q0q1q0, q0q0q1q0},
4, if v ∈ {q1q1q0q1, q1q1q0q1}.

It is easy to verify that f ′(Ω(w)) = {i} iff Ω = Ωi
int for any i = 1 . . . 4.

We can also define f : Ω({a, b}∗) −→ {0, 1} by

f(v) =

{
0, if f ′(v) ∈ {1, 2},
1, if f ′(v) ∈ {3, 4},
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and check that f(Ω(w)) = {1} iff A is a-constant.

In a similar way one can show that there are only two inputs of length 4, aaba

and abaa, that can distinguish the two classes and identify Ω.

If we decrease the “observational power” by working with the observer Ochange

one can still decide if the automaton A is a-balanced or a-constant using a specific

input, but, in this case, it is not possible to identify the precise automaton. In fact,

the input aaba (or abaa) can be used to differentiate if the observed system is a-

constant or a-balanced. Any other input of length shorter than 4 is not enough to

distinguish the type of observed system.

Theorem 5. Consider the FSA’s Ab
i = (Q, {a, b}, γi,Q), with i = 1 . . . 4

and Ωi
change = Ab

i ⊕ Ochange for i = 1 . . . 4. Let Ω = A ⊕ Ochange ∈
{Ω1

change,Ω
2
change,Ω

3
change,Ω

4
change} be an arbitrary S/O system.

(i) There exist no input w ∈ {a, b}∗ with |w| ≤ 3 and computable function

f : Ω({a, b}∗) −→ {0, 1} such that f(Ω(w)) = {1} iff A is a-constant.

(ii.a) There exist an input w ∈ {a, b}∗ with |w| = 4 and a computable function f :

Ω({a, b}∗) −→ {0, 1} such that f(Ω(w)) = {1} iff A is a-constant. (ii.b) Moreover,

there are no computable function f ′ : Ω({a, b}∗) −→ {1, 2, 3, 4} and input w ∈
{a, b}∗ such that f ′(Ω(w)) = {i} iff Ω = Ωi

change, i = 1 . . . 4.

Proof. (i) The proof is similar to that of Theorem 4. (ii.a) We show that, us-

ing the input w = aaba one can differentiate A ⊕ Ochange, with A a-constant,

from A ⊕ Ochange with A a-balanced. There are only four possible cases. If

Ω = Ω1
change, we have Ω(aaba, q0) = {ucu},Ω(aaba, q1) = {ucu}. If Ω = Ω2

change,

we have Ω(aaba, q0) = {ccc},Ω(aaba, q1) = {ccc}. If Ω = Ω3
change, we have

Ω(aaba, q0) = {ucc},Ω(aaba, q1) = {ucc}. If Ω = Ω4
change, we have Ω(aaba, q0) =

{ucc},Ω(aaba, q1) = {ucc}.
It is easy to verify that f(Ω(w)) = {1} iff A is a-constant for the function

f : Ω(V ∗) −→ {0, 1} defined by

f(v) =

{
0, if v ∈ {ucu, ccc},
1, if v ∈ {ucc}.

(ii.b) The only two inputs of length 4 that can differentiate the S/O system Ω,

where A is a-constant automaton from the S/O systems where A is an a-balanced

automaton, are aaba and abaa. However, they cannot distinguish the S/O sys-

tems having A as a-balanced FSA’s. Indeed, Ω3
change(aaba) = Ω4

change(aaba) and

Ω3
change(abaa) = Ω4

change(abaa) which shows the impossibility to construct f ′.

The computable functions f defined in Theorems 4 and 5 can be implemented by

a finite state transducer. In this way, a single finite state automaton can be obtained

by a standard Cartesian product of the corresponding observers and transducers.
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4. Conclusions

We have applied the technique of computing by observing to de-quantise Deutsch’s

quantum algorithm by isolating the external observer from the observed system.

We have shown that the ability to solve Deutsch’s problem depends on the compu-

tational power of the external observer and we have classified observers (as finite

state automata) that can solve the problem.
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