
Chapter 17
Solving the Broadcast Time Problem
Using a D-wave Quantum Computer

Cristian S. Calude and Michael J. Dinneen

Abstract We illustrate how the D-Wave Two quantum computer is programmed
and works by solving the Broadcast Time Problem. We start from a concise integer
program formulation of the problem and apply some simple transformations to arrive
at the QUBO form which can be run on the D-Wave quantum computer. Finally, we
explore the feasibility of this method on several well-known graphs.

17.1 Introduction

D-Wavemachines are “theworld’s first commercially available quantumcomputers.”
D-Wave Two is an adiabatic machine which operates on 512 qubits. Various teams
based in academia and major companies like Lockheed Martin, NASA, Google,
are exploring the computational capability of this machine as well as its potential
applications.

ProgrammingD-Wave is radically different fromprogrammingclassicalmachines,
like one’s traditional home computer. In this paper we use the Broadcast Time Prob-
lem, an NP-complete problem, to illustrate how to develop programs for the D-Wave
Two machine and how it operates. We start from a concise integer program for-
mulation of our optimization problem and, through several intermediate phases, we
convert it to the QUBO form, the formulation which can be run on the D-Wave
computer. Finally we explore the feasibility of this method on several well-known
graphs.

C.S. Calude (B) · M.J. Dinneen
Department of Computer Science, University of Auckland, Auckland, New Zealand
e-mail: cristian@cs.auckland.ac.nz

M.J. Dinneen
e-mail: mjd@cs.auckland.ac.nz

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_17

439

440 C.S. Calude and M.J. Dinneen

17.2 Adiabatic Computing

Theadiabaticmodel of quantumcomputinguses thepropensity of physical systems—
classical or quantum—to minimize their free energy. Quantum annealing is free
energy minimization in a quantum system.

Its mathematical precursors are the Monte Carlo methods [1]—in which a prob-
lem is solved by generating repeated random samplings from a probability distrib-
ution, performing simple deterministic computations and aggregating the results—
and theMetropolis-Hastings algorithm—aMarkov chainMonte Carlomethod useful
when direct sampling is difficult [2]. In 1983 an analogy between minimizing the
cost function of a combinatorial optimization problem—solved efficiently with the
Metropolis-Hastings algorithm—and the slow cooling of a solid until it reaches its
low energy ground state was discovered in [3]. The proposed method—called sim-
ulated annealing [3, 4]—is very simple: substitute the cost for energy and run the
Metropolis-Hastings algorithm in a sequence of slowly decreasing temperature val-
ues, which makes the system progress through various energy states till, hopefully,
it finds a global optimal answer.

An adiabatic quantum computation (AQC) is an algorithm that computes an exact
or approximate solution of an optimization problem encoded in the ground state—its
lowest-energy state—of aHamiltonian (the operator corresponding to the total energy
of the system). The algorithm starts at an initial state HI that is easily obtained, then
evolves adiabatically, i.e. by slowly changing to the Hamiltonian HP . An example of
evolution is H = (1 − t)HI + t HP as the time t increases monotonically from 0 to
1. During the entire computation, the system must stay in a valid ground state. If the
system can reach its ground state we get an exact solution; if it can only reach a local
minimum, then we get an approximate solution. The slower the evolution process
the better the approximate (possibly exact) solution is obtained.

The adiabatic quantum computing model shares the same paradigm as simulated
annealing. The main difference is that simulated annealing is based on “thermody-
namic energy” and quantum annealing is based on “quantum fluxuations” during
a cooling process. One suggested advantage of quantum annealing is the ability to
“quantum tunnel” out of some local optimal states,1 as illustrated in Fig. 17.1.

AQC is based on theBorn–Fock adiabatic theorem [5]which accounts for the adia-
batic evolution of quantumstateswhen the change in the time-dependentHamiltonian
is sufficiently slow [6]:

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on
it slowly enough and if there is a gap between the eigenvalue and the rest of theHamiltonian’s
spectrum.

The quantum adiabatic computation model and the gate quantum computation
model—probably the most studied model of quantum computing—are polynomially
time equivalent [7].

1D-Wave Two is capable of using it.

17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 441

Energy Potential

State (position, charge, phase, etc.)

local min

global min

classical path

quantum path

Fig. 17.1 Annealing with quantum tunneling

17.3 D-Wave Computers

The D-Wave computers are produced by the Canadian company D-Wave Systems:
D-WaveOne (2011) operates on a 128-qubit chipset; D-Wave Two (2013)workswith
512 qubits [8]. D-Wave computers use quantum annealing to improve convergence
of the system’s energy towards the ground state energy of aQuadratic Unconstrained
Binary Optimization (QUBO) problem. QUBO is an NP-hard mathematical problem
consisting in theminimization of a quadratic objective function f (x) = xT Qx, where
x is a n-vector of binary variables and Q is a symmetric n × n matrix:

x∗ = minx
∑

i≥ j

xi Q(i, j)x j , where xi ∈ {0, 1}.

The computer architecture consists of qubits arranged with a host configuration
as a subgraph of a Chimera graph. A Chimera graph consists of an M × N two-
dimensional lattice of blocks, with each block consisting of 2L vertices (a complete
bipartite graph KL ,L), in total 2MNL variables. TheD-WaveOnehasM = N = L =
4 for a maximum of 128 qubits. D-Wave qubits are loops of superconducting wire,
the coupling between qubits is magnetic wiring and themachine itself is supercooled.

To index a qubit we use four numbers (i, j, u, k), where (i, j) indexes the (row,
column) of the block, u ∈ {0, 1} is the left/right bipartite half of KL ,L and 0 < k < L
is the offset within the bipartite half. Qubits indexed by (i, j, u, k) and (i ′, j ′, u′, k ′)
are neighbors if and only if

1. i = i ′ and j = j ′ and [(u, u′) = (0, 1) or (u, u′) = (1, 0)] or
2. i = i ′ ± 1 and j = j ′ and u = u′ and u = 0 and k = k ′ or
3. i = i ′ and j = j ′ ± 1 and u = u′ and u = 1 and k = k ′.

Figure17.2 shows for L = N = 4 (and M > 2) the structure of an initial part of
a Chimera graph where the two half partitions of the bipartite graphs KL ,L (blocks)
are drawn horizontally and vertically, respectively. The linear index (qubit id of the
vertices) from the four tuple (i, j, u, k) is the value 2NLi + 2L j + Lu + k.

442 C.S. Calude and M.J. Dinneen

. . .

... . . .

0 1 2 3

4

5

6

7

8 9 10 11

12

13

14

15

32 33 34 35

36

37

38

39

40 41 42 43

44

45

46

47

Fig. 17.2 D-Wave architecture: a subgraph of a Chimera graph with L = N = 4

17.4 The Broadcast Time Problem

Broadcasting concerns the dissemination of a message originating at one node of
a network to all other nodes [9, 10]. This task is accomplished by placing a series
of calls over the communication lines of the network between neighboring nodes.
Each call requires a unit of time, a call can involve only two nodes and a node can
participate in only one call per time step.

A broadcast tree for a vertex v (called the originator) of an undirected graph G =
(V, E) is an implicit rooted tree based on a sequence V0 = {v}, E1, V1, E2, . . . , Et ,

Vt = V (of broadcast height t) such that each Vi ⊆ V , each Ei is an oriented subset
of E , and for every 1 ≤ i ≤ t : (1) each arc (u, w) in Ei has only the source u endpoint
in Vi−1, (2) no two arcs in Ei share a common endpoint, and (3) Vi = Vi−1 ∪ {w |
(u, w) ∈ Ei }.

The Broadcast Time Problem is the following: Given a connected graph G =
(V, E), originator v ∈ V and integer t , is there a broadcast tree Tv rooted at v with
the height of Tv at most t? This is a well-known NP-complete problem (see [ND49]
of [11]), even for graphs of maximum vertex degree 3 (see [12]). The optimization

17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 443

0
2

1

3

3

2

3

3

1

2 3

54

6 7

Fig. 17.3 The graph Q3 with broadcast time 3

version of this problem is approximable within O(log2 |V |/ log log |V |), but is not
expected to have a polynomial-time approximation scheme [13].

In the example shown in Fig. 17.3 (hypercube Q3) an optimal broadcast tree is
illustrated for the originator vertex 0.

The development of a quantum solution will be presented in a sequence of four
phases, which are described in Sects. 17.5–17.8. We summarize this general solu-
tion approach for Q3 in Sect. 17.9 before giving a detailed implementation of our
broadcast time solution for K2 in Sect. 17.10. Finally, we present some general exper-
imental results for several other small common graphs (Sect. 17.11) and concluding
comments (Sect. 17.12).

17.5 Integer Programming Formulation

In the first phase we present a simple formulation (i.e. polynomial-time reduction)
of the Broadcast Time Problem with the originator fixed2 at v = 0 as an Integer
Programming (IP) Optimization Problem (see [14]). The input is a connected graph
G = (V = {0, 1, . . . , n − 1}, E) representing a network with n = |V | vertices and
m = |E | edges. For the graph G, we use the following n + 2m + 1 variables:

• t is the required time to complete a broadcast,
• vi is the time in {0, 1, . . . , t} in which the vertex i ∈ V receives the message,
0 ≤ i < n,

• bi, j is a binary variable which is 1 if and only if the vertex i broadcasts to the
vertex j (for each {i, j} ∈ E).

The objective function for our optimization problem is min(t), or equivalently,
max(n − t).

Several families of constraints on the variables are now presented. First, the time
t must be at most n − 1:

2Solving the problem for other originators can be easily done by relabelling the vertices of the graph
or doing obvious modifications in the formulation below.

444 C.S. Calude and M.J. Dinneen

0 ≤ t ≤ n − 1. (17.1)

Every vertex receives the message at a time step at most t :

0 ≤ vi ≤ t, for all i ∈ V . (17.2)

The originator vertex has no parent and every other vertex must have exactly one
parent in the broadcast tree:

∑

j 	=0

b j,0 = 0, (17.3)

∑

j 	=i

b j,i = 1, for all i ∈ V \ {0}. (17.4)

There are no broadcast cycles, that is for a child vertex, the informed time of the
parent must be strictly less than its message received time:

bi, j (1 + vi − v j) ≤ 0, for all {i, j} ∈ E . (17.5)

Finally, every two child vertices { j, k} informed by the same parent i must occur
at different times:

bi, j + bi,k − (v j − vk)
2 ≤ 1, for all {i, j} ∈ E, {i, k} ∈ E with j 	= k. (17.6)

17.6 Binary Integer Programming Formulation

Next we convert all non-binary variables (in IP formulation) into binary variables.
The following simple procedure converts an integer constrained variable 0 ≤ x ≤ D
into a set of O(log D) binary variables x0, x1, . . . , xc representing its binary repre-
sentation:

x = x0 + 2x1 + 4x2 + · · · + 2cxc =
c∑

i=0

2i xi ,

where xi ∈ {0, 1} and 2c ≤ D < 2c+1. Each constraint of the form x ≤ D is replaced
by the following equivalent constraint:

c∑

i=0

2i xi ≤ D. (17.7)

17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 445

17.7 Linear Binary Integer Programming Formulation

Using standard techniques (e.g., see [15]) we convert the above quadratic binary IP
formulation into a linear formulation. Each occurrence of a product of two binary
variables xy is replaced by a newvariable zxy and the following two linear constraints:

0 ≤ x + y − zxy ≤ 1, (17.8)

−1 ≤ 2zxy − (x + y) ≤ 0, (17.9)

enforce zxy = xy.
We can reduce the number of “product” binary variables by observing that for

Eq. (17.5) we do not need to consider j = 0 and for Eq. (17.6) we can only consider
vertices j > 0 and k > 0 with a common neighbor.

Note that the above reduction was automated and the SageMixed Integer Program
Solver [16] was used to verify correctness of many small graphs [17].

17.8 QUBO Formulation

The first step to converting the current binary linear IP formulation to QUBO is to use
a “standard form,” where all inequalities are replaced with equalities by introducing
slack variables [14].

The next step is to build an equivalent QUBO of the IP formulation and add rules
to force all linear equation constraints to be satisfied when assigning 0/1 to the binary
variables. Consider a linear equality constraint Ck of the form

∑n
i=1 c(k,i)xi = dk for

xi ∈ {0, 1} with fixed integer constants c(k,i) and dk . This equation is satisfied if
and only if

∑n
i=1 c(k,i)xi − dk = 0, or equivalently, if 〈ck, x〉 − dk = 0, where ck =

(c(k,i), c(k,2), . . . , c(k,n)) and 〈ck, x〉 is the product of the vectors ck and x. If 〈ck, x〉 −
dk is not zero we need to have a penalty greater than the maximum feasible value of
t , which is n. Thus, we can construct the following QUBO that is equivalent to the
IP formulation of the Broadcast Time Problem:

x∗ = minx

(
t + n ·

∑

k

(〈ck, x〉 − dk)
2

)
, where xi ∈ {0, 1}.

Note first that the variable t is obtained from the variables used in Eq. (17.1)
of Sect. 17.5 and is added to the other QUBO entries in Q from the set of linear
constraints Ck . The QUBO constants for the binary variables representing t will
be powers of 2, as given by Eq. (17.7). Second, any term d2

k in the square terms
of (〈ck, x〉 − dk)2 which does not involve a variable xi can be ignored since those
additive terms are independent of any assignment of variables (i.e. we have a fixed
additive QUBO offset to the objective solution). Third, since variables xi are binary,

446 C.S. Calude and M.J. Dinneen

we have x2i = xi and the constants for those terms are included in the main diagonal
entries of Q. Finally, the conversion from an arbitrary Broadcast Time Problem
instance to QUBO was automated [17].

17.9 Q3 Example

In this section we illustrate the quantum solution phases for Q3. In the first phase (IP
formulation) we get 33 integer variables (the variable t , eight variables of the type
vi , and 24 variables of the type bi, j) and 65 quadratic constraints. These constraints
are shown in the appendix of this chapter.

The conversion to the binary formulation results in 51 (= 33 + 2 · 9) binary vari-
ables as we need three binary variables for each of the previous integer variables
t , v0, . . . , v7. The number of constraints stays the same but each gets expanded
with more variables. For example, x1 ≤ x0 becomes−x ′

0 + x ′
3 − 2x ′

1 + 2x ′
4 − 4x ′

2 +
4x ′

5 ≤ 0.
The next conversion (Sect. 17.7) produces 447 binary variables and 851 linear

constraints. Finally, the conversion toQUBOgenerated 999 slack variables, so in total
1446 binary variables: they represent the number of logical qubits for our QUBO
formulation. Full details for our phases 2 through 4 may be found in [17].

To be able to solve this QUBO problem on D-Wave we need one more step
to encode the theoretical problem on physical hardware (see [18]) which will be
illustrated in the next section with a feasible example for the D-Wave Two.

17.10 K 2 Example

We present both the final IP formulation (see Table17.1) and QUBO matrix Q (see
Table17.2) for the Broadcast Time Problem for the graph K2 of one edge. The total
number of binary variables is 22 (13 of them are slack variables) and the QUBO
offset is 12. When run on the D-Wave simulator [18] (without embedding onto the
hardware, which has limited qubit connections) we get this expected result:

answer={ ’energies’: [-11.0],

’solutions’: [[1,0,0,1,1,0,0,1,0,0,1,1,0,0,0,

0,1,0,1,0,0,0]] }

Whenwe add the offset 12 to theminimumenergy statewe get our expected broadcast
time of 1. We can also see that t = x1 = 1, b0,1 = x7 = 1 and b1,0 = x8 = 0, which
indicates a valid broadcast tree from the obtained solution x∗.

To actually run this QUBO instance on the D-Wave machine we need to find a
minor-containment embedding on the actual physical qubit hardware (the Chimera
graph). One valid heuristic is to map each logical qubit to a path of physical qubits.

17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 447

Table 17.1 Final Binary Integer Program for broadcasting in K2

Integer program constraints Comments

x0 + x1 = 1 x0 is objective variable t and x1 is a slack variable

−x0 + x2 + x3 = 0 x2 is vertex variable v0; Eq. (4)

−x0 + x4 + x5 = 0 x4 is vertex variable v1; Eq. (4)

x6 = 0 x6 is broadcast variable b1,0; Eq. (5)

x7 = 1 x7 is broadcast variable b0,1; Eq. (6)

x2 + x7 − x8 + x9 = 1 x8 is for product b0,1v0 with Eq. (10)

−x2 − x7 + 2x8 + x10 = 0 Equation (7) with (11)

x4 + x7 − x11 + x12 = 1 x11 is for product b0,1v1
−x4 − x7 + 2x11 + x13 = 0 Equation (7)

x4 + x6 − x14 + x15 = 1 x14 is for product b1,0v1
−x4 − x6 + 2x14 + x16 = 0 Equation (7)

x2 + x6 − x17 + x18 = 1 x17 is for product b1,0v0
−x2 − x6 + 2x17 + x19 = 0 Equation (7)

x7 + x8 − x11 + x20 = 0 Equation (8)

x6 + x14 − x17 + x21 = 0 Equation (8)

Table 17.2 Final QUBO matrix Q for broadcasting in K2

3 4 −4 −4 −4 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 −2 0

−4 0 2 4 0 0 8 8 −12 4 −4 0 0 0 0 0 0 −12 4 −4 0 0

−4 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−4 0 0 0 2 4 8 8 0 0 0 −12 4 −4 −12 4 −4 0 0 0 0 0

−4 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 8 0 4 0 0 0 0 0 0 0 −8 4 −4 −16 4 −4 0 4

0 0 8 0 8 0 0 0 −8 4 −4 −16 4 −4 0 0 0 0 0 0 4 0

0 0 −12 0 0 0 0 −8 16 −4 8 −4 0 0 0 0 0 0 0 0 4 0

0 0 4 0 0 0 0 4 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −4 0 0 0 0 −4 8 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −12 0 0 −16 −4 0 0 16 −4 8 0 0 0 0 0 0 −4 0

0 0 0 0 4 0 0 4 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 −4 0 0 −4 0 0 0 8 0 2 0 0 0 0 0 0 0 0

0 0 0 0 −12 0 −8 0 0 0 0 0 0 0 16 −4 8 −4 0 0 0 4

0 0 0 0 4 0 4 0 0 0 0 0 0 0 −4 −2 0 0 0 0 0 0

0 0 0 0 −4 0 −4 0 0 0 0 0 0 0 8 0 2 0 0 0 0 0

0 0 −12 0 0 0 −16 0 0 0 0 0 0 0 −4 0 0 16 −4 8 0 −4

0 0 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 −4 −2 0 0 0

0 0 −4 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 8 0 2 0 0

0 0 0 0 0 0 0 4 4 0 0 −4 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 −4 0 0 0 2

448 C.S. Calude and M.J. Dinneen

One such example is given below where our 22 logical qubits, labeled 0 to 21,
become 50 active hardware qubits on D-Wave Two’s Chimera graph with L = 4,
N = M = 8.

’embedding=’: [0=[224, 226, 228], 1=[230], 2=[276,

283, 284, 288, 292], 3=[290], 4=[227, 291, 348, 355,

356, 357], 5=[229], 6=[336, 338, 341, 347, 349], 7=

[293, 297, 301, 361], 8=[294, 296, 302], 9=[289], 10=

[300], 11=[298, 362, 365], 12=[359, 367], 13=[364],

14=[345, 351],15=[344], 16=[346], 17=[275, 277, 281,

285, 339], 18=[272], 19=[274], 20=[303], 21=[343]]

This best energy solution of−11 is also obtainedwhenwe run it on an actual D-Wave
Two machine. This optimal answer occurs about 33% of the time for our trials of
about 1000 runs. In the other cases, the machine did not converge to the optimal
ground-state energy.

17.11 Experimental Results

We have produced QUBO representations of the Broadcast Time Problem for several
small commongraphs using the above IP formulation procedure. Tables17.3 and 17.4
summarize them for some small common graph families and known special graphs
(all graphs can be obtained from Sage [16, 17]). Recall that for non-symmetric
graphs we initiate the broadcast at vertex labeled 0, using the vertex labels given
by Sage’s adjacency lists. In these tables, columns 2 and 3 (Integer Variables and
Quadratic Constraints) indicate the size of the IP formulation presented in Sect. 17.5.
Next, columns 4 and 5 (Binary Variables and Binary Constraints) indicate the size
of the IP formulation given in Sect. 17.7. Finally, columns 6–8 (Slack Variables,
Logical Qubits and Chimera/Physical Qubits) indicate the size of the final QUBO
representation described in Sect. 17.8. Using this approach, the number of logical
qubits equals the number of binary variables plus the number of slack variables.

17.12 Conclusions

In this paper we have shown the process of converting a well-known combinatorial
optimization problem, the Broadcast Time Problem, to a QUBO form that can be
solved on an adiabatic quantum computer like the D-Wave Two. Our procedure of
using an integer programming formulation (e.g., standard polynomial-time reduc-
tion) can be easily applied to other hard problems. However, this straightforward
approach does require a large number of qubits for relatively small input graph
instances. Future work is required to reduce this overhead. One area of study is

17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 449

Table 17.3 Number of qubits required for some small graphs families
Graph Order Size Integer

variables
Quadratic
constraints

Binary
variables

Binary
constraints

Slack
variables

Logical
qubits

Chimera
qubits

C3 3 3 10 16 50 86 96 146 394

C4 4 4 13 21 74 131 146 220 662

C5 5 5 16 26 178 324 366 544 3258

C6 6 6 19 31 240 443 495 735 4164

C7 7 7 22 36 311 580 642 953

C8 8 8 25 41 391 735 807 1198

C9 9 9 28 46 778 1484 1608 2386

C10 10 10 31 51 944 1809 1948 2892

C11 11 11 34 56 1126 2166 2320 3446

C12 12 12 37 61 1324 2555 2724 4048

Grid2× 3 6 7 21 37 254 472 543 797 4306

Grid3× 3 9 12 34 65 832 1597 1816 2648

Grid3× 4 12 17 47 93 1414 2745 3084 4498

Grid4× 4 16 24 65 133 2420 4737 5252 7672

Grid4× 5 20 31 83 173 5537 10909 11815 17352

K2 2 1 5 7 9 15 13 22 47

K3 3 3 10 16 50 86 96 146 394

K4 4 6 17 33 94 171 202 296 1378

K5 5 10 26 61 248 469 606 854 7973

K6 6 15 37 103 366 713 981 1347

K7 7 21 50 162 507 1014 1482 1989

K8 8 28 65 241 671 1375 2127 2798

K9 9 36 82 343 1264 2591 4200 5464

K10 10 45 101 471 1574 3279 5588 7162

K2× 1=P2 3 2 8 12 36 59 64 100 170

K1× 2=S2 3 2 8 12 40 68 76 116 238

K2× 2=C4 4 4 13 21 74 131 146 220 662

K2× 3 5 6 18 32 192 353 414 606 4823

K3× 3 6 9 25 49 282 529 633 915

K3× 4 7 12 32 69 381 727 894 1275

K4× 4 8 16 41 97 503 973 1227 1730

K4× 5 9 20 50 129 976 1906 2432 3408

K5× 5 10 25 61 171 1214 2391 3124 4338

K5× 6 11 30 72 118 1468 2914 3896 5364

K6× 6 12 36 85 277 1756 3511 4804 6560

S2=K1× 2 3 2 8 12 40 68 76 116 238

S3 4 3 11 18 64 114 130 194 505

S4 5 4 14 25 164 301 354 518 3711

S5 6 5 17 33 226 423 501 727 5120

S6 7 6 20 42 297 564 672 969

S7 8 7 23 52 377 724 867 1244

S8 9 8 26 63 760 1471 1736 2496

S9 10 9 29 75 926 1803 2132 3058

S10 11 10 32 88 1108 2168 2568 3676

450 C.S. Calude and M.J. Dinneen

Table 17.4 Number of qubits required for hypercubes and some other small known graphs
Graph Order Size Integer

variables
Quadratic
constraints

Binary
variables

Binary
constraints

Slack
variables

Logical
qubits

Chimera
qubits

Q1 = K2 2 1 5 7 9 15 13 22 47

Q2 = C4 4 4 13 21 74 131 146 220 662

Q3 8 12 33 65 447 851 999 1446

Q4 16 32 81 193 2564 5045 5860 8424

BidiakisCube 12 18 49 97 1432 2779 3124 4556

Bull 5 5 16 28 178 324 366 544 3523

Butterfly 5 6 18 33 192 353 414 606 5927

Chvatal 12 24 61 145 1540 3013 3604 5144

Clebsch 16 40 97 273 2708 5373 6628 9336

Diamond 4 5 15 27 84 151 174 258 742

Dinneen 9 21 52 142 994 1950 2552 3546

Dodecahedral 20 30 81 161 5515 10855 11645 17160

Durer 12 18 49 97 1432 2779 3124 4556

Errera 17 45 108 320 4480 8900 10890 15370

Frucht 12 18 49 97 1432 2779 3124 4556

GoldnerHarary 11 27 66 209 1414 2814 3792 5206

Grotzsch 11 20 52 118 1288 2508 2968 4256

Heawood 14 21 57 113 1894 3691 4100 5994

Herschel 11 18 48 101 1252 2429 2800 4052

Hexahedral 8 12 33 65 447 851 999 1446

Hoffman 16 32 81 193 2564 5045 5860 8424

House 5 6 18 32 192 353 414 606 4176

Icosahedral 12 30 73 205 1648 3257 4164 5812

Krackhardt 10 18 47 114 1088 2116 2548 3636

Octahedral 6 12 31 73 324 619 795 1119

Pappus 18 27 73 145 4514 8869 9575 14089

Petersen 10 15 41 81 1034 1995 2276 3310

Poussin 15 39 94 276 2446 4863 6152 8598

Robertson 19 38 96 229 5211 10287 11570 16781

Shrikhande 16 48 113 369 2852 5715 7508 10360

Sousselier 16 27 71 154 2474 4849 5452 7926

Tietze 12 18 49 97 1432 2779 3124 4556

Wagner 8 12 33 65 447 851 999 1446

to exploit the problem’s characteristics for a possible direct encoding into QUBO
form. Also substantial work is needed to reduce the blowup in embedding the logical
qubits to physical qubits, which is required for embedding into the target machine’s
architecture.

Acknowledgments This work was supported in part by the Quantum Computing Research Initia-
tives at Lockheed Martin. We thank A. Fowler for comments which improved the presentation.

17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 451

Appendix: Quadratic IP Formulation for Broadcasting in Q3

The output of our integer programming formulation from Sect. 17.5 with the hyper-
cube Q3 as input is given below.

x0 ≤ 7 (1) time t
x1 ≤ x0 (2) vertices v0 . . . v7 informed times ≤ t
x2 ≤ x0
x3 ≤ x0
x4 ≤ x0
x5 ≤ x0
x6 ≤ x0
x7 ≤ x0
x8 ≤ x0
x9 + x10 + x11 ≤ 0 (3) originator has no parent
x12 + x13 + x14 ≤ 1 (4) other vertices have one parent
x15 + x16 + x17 ≤ 1
x18 + x19 + x20 ≤ 1
x21 + x22 + x23 ≤ 1
x24 + x25 + x26 ≤ 1
x27 + x28 + x29 ≤ 1
x30 + x31 + x32 ≤ 1
x12 + x12 ∗ x1 − x12 ∗ x2 ≤ 0 (5) parent time less than child time
x15 + x15 ∗ x1 − x15 ∗ x3 ≤ 0
x21 + x21 ∗ x1 − x21 ∗ x5 ≤ 0
x9 + x9 ∗ x2 − x9 ∗ x1 ≤ 0
x18 + x18 ∗ x2 − x18 ∗ x4 ≤ 0
x24 + x24 ∗ x2 − x24 ∗ x6 ≤ 0
x10 + x10 ∗ x3 − x10 ∗ x1 ≤ 0
x19 + x19 ∗ x3 − x19 ∗ x4 ≤ 0
x27 + x27 ∗ x3 − x27 ∗ x7 ≤ 0
x13 + x13 ∗ x4 − x13 ∗ x2 ≤ 0
x16 + x16 ∗ x4 − x16 ∗ x3 ≤ 0
x30 + x30 ∗ x4 − x30 ∗ x8 ≤ 0
x11 + x11 ∗ x5 − x11 ∗ x1 ≤ 0
x25 + x25 ∗ x5 − x25 ∗ x6 ≤ 0
x28 + x28 ∗ x5 − x28 ∗ x7 ≤ 0
x14 + x14 ∗ x6 − x14 ∗ x2 ≤ 0
x22 + x22 ∗ x6 − x22 ∗ x5 ≤ 0
x31 + x31 ∗ x6 − x31 ∗ x8 ≤ 0
x17 + x17 ∗ x7 − x17 ∗ x3 ≤ 0
x23 + x23 ∗ x7 − x23 ∗ x5 ≤ 0
x32 + x32 ∗ x7 − x32 ∗ x8 ≤ 0
x20 + x20 ∗ x8 − x20 ∗ x4 ≤ 0
x26 + x26 ∗ x8 − x26 ∗ x6 ≤ 0

452 C.S. Calude and M.J. Dinneen

x29 + x29 ∗ x8 − x29 ∗ x7 ≤ 0
x12 + x15 − sqr(x2 − x3) ≤ 1 (6) each child with different times
x12 + x21 − sqr(x2 − x5) ≤ 1
x15 + x21 − sqr(x3 − x5) ≤ 1
x9 + x18 − sqr(x1 − x4) ≤ 1
x9 + x24 − sqr(x1 − x6) ≤ 1
x18 + x24 − sqr(x4 − x6) ≤ 1
x10 + x19 − sqr(x1 − x4) ≤ 1
x10 + x27 − sqr(x1 − x7) ≤ 1
x19 + x27 − sqr(x4 − x7) ≤ 1
x13 + x16 − sqr(x2 − x3) ≤ 1
x13 + x30 − sqr(x2 − x8) ≤ 1
x16 + x30 − sqr(x3 − x8) ≤ 1
x11 + x25 − sqr(x1 − x6) ≤ 1
x11 + x28 − sqr(x1 − x7) ≤ 1
x25 + x28 − sqr(x6 − x7) ≤ 1
x14 + x22 − sqr(x2 − x5) ≤ 1
x14 + x31 − sqr(x2 − x8) ≤ 1
x22 + x31 − sqr(x5 − x8) ≤ 1
x17 + x23 − sqr(x3 − x5) ≤ 1
x17 + x32 − sqr(x3 − x8) ≤ 1
x23 + x32 − sqr(x5 − x8) ≤ 1
x20 + x26 − sqr(x4 − x6) ≤ 1
x20 + x29 − sqr(x4 − x7) ≤ 1
x26 + x29 − sqr(x6 − x7) ≤ 1

References

1. Tee, G.J.: The Monte Carlo Method. Pergamon Press, Oxford and New York (1966)
2. Metropolis, N.C., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: J. Chem. Phys. 21(6),

1087 (1953)
3. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Science 220(4598), 671 (1983)
4. Wikipedia, Simulated annealing. http://en.wikipedia.org/wiki/Simulated_annealing (2014).

Accessed 30 Oct 2014
5. Born, M., Fock, V.: Zeitschrift für Physik 51(3–4), 165 (1928). doi:10.1007/BF01343193
6. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution

(2000). arXiv:quant-ph/0001106v1
7. Aharonov, D., Dam, W.v., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum

computation is equivalent to standard quantum computation (2005). arXiv:quant-ph/0405098
8. D-Wave. D-Wave overview: a brief introduction to D-Wave and quantum computing (2013).

http://www.dwavesys.com/sites/default/files/D-Wave-brochure-102013F-CA.pdf
9. Farley, A., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Discret. Math. 25, 189 (1979)
10. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: Networks 18, 319 (1998)
11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman & Co., New York (1979)

http://en.wikipedia.org/wiki/Simulated_annealing
http://dx.doi.org/10.1007/BF01343193
http://arxiv.org/abs/quant-ph/0001106v1
http://arxiv.org/abs/quant-ph/0405098
http://www.dwavesys.com/sites/default/files/D-Wave-brochure-102013F-CA.pdf

17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 453

12. Dinneen, M.J.: The complexity of broadcasting in bounded-degree networks. Technical
Report Combinatorics report LACES-[05C-94-31], Los Alamos National Laboratory (1994).
arXiv:math/9411222

13. Ravi, R.: In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
FOCS’94, pp. 202–213. IEEE Computer Society Press (1994)

14. Wikipedia, Integer programming. http://en.wikipedia.org/wiki/Integer_programming (2015).
Accessed 30 Oct 2014

15. Khosravani, M.: Searching for optimal caterpillars in general and bounded treewidth graphs.
Ph.D. dissertation, University of Auckland, Auckland, New Zealand (2011)

16. Stein, W., et al.: Sage Mathematics Software (Version 6.3). The Sage Development Team
(2014). http://www.sagemath.org

17. Calude, C.S., Dinneen, M.J.: Solving the broadcast time problem using a D-wave quan-
tum computer. Tech. Rep. Report CDMTCS-473, Centre for Discrete Mathematics and
Theoretical Computer Science, University of Auckland, Auckland, New Zealand (2014).
Paper URL http://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.
php?download&paper_file=526. Data URL http://www.cs.auckland.ac.nz/research/groups/
CDMTCS/researchreports/index.php?download&data_file=7

18. D-Wave, Programming with QUBOs. Technical report, D-Wave Systems, Inc. (2013). Python
Release 1.5.1-beta4 (for Mac/Linux), 09-1002A-B

http://arxiv.org/abs/math/9411222
http://en.wikipedia.org/wiki/Integer_programming
http://www.sagemath.org
http://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_file=526
http://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_file=526
http://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&data_file=7
http://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&data_file=7

	17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer
	17.1 Introduction
	17.2 Adiabatic Computing
	17.3 D-Wave Computers
	17.4 The Broadcast Time Problem
	17.5 Integer Programming Formulation
	17.6 Binary Integer Programming Formulation
	17.7 Linear Binary Integer Programming Formulation
	17.8 QUBO Formulation
	17.9 Q3 Example
	17.10 K2 Example
	17.11 Experimental Results
	17.12 Conclusions
	References

