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1. Turing’s Barrier

The concept of digital computation which

emerged from the works of Church, Turing and

Gödel is an important achievement of the last

century. A large variety of mathematical models

of computers and computations have been de-

veloped. Turing machines, lambda-calculus, com-

binatory logic, recursive functions, Markov al-

gorithms, register machines are among the best

known classical models. Newer models range

from programming-oriented models including

concurrent models like actor model and process

calculi to quantum Turing machines, DNA com-

puters, molecular computers, wetware computers

and many others. A remarkable result was grad-

ually proved: in spite of the apparent diversity,

the computational capability of every model of

computation is the same. All models are com-

putationally equivalent. This strong mathematical

evidence motivated a more general belief: the

Turing model of computation is the right and

most general concept for digital computation.

Turing proved that Hilbert’s Entschei-

dungsproblem — the decision problem for

the predicate calculusa — is unsolvable by

any Turing machine. Independently, Church

obtained the same negative result by using his

lambda-calculus, so by proposing to

define the notion ... of an effectively cal-

culable function of positive integers by

identifying it with the notion of a recur-

sive function of positive integers (or of

a lambda-definable function of positive

integers)

he argued that Hilbert’s Entscheidungsproblem is

unsolvable (not only unsolvable by any lambda-

definable function). Motivated by a similar iden-

tification proposed by Turing, and the (mathe-

matical) equivalence between the sets of functions

computed by Turing machines, lambda-definable

aFind an effective method to determine whether an arbitrary
formula of the predicate calculus system is provable in the
system.

functions and recursive functions, Kleene intro-

duced the Church–Turing Thesis:

A function of positive integers is effec-

tively calculable only if recursive.

In the quest to give meaning to their nega-

tive solutions to Hilbert’s Entscheidungsproblem,

Turing and Church were interested in describing

what humans could “in principle” compute, so

originally the Church–Turing Thesis’ main scope

was purely mathematical. However, the Thesis

itself is not a mathematical statement as one of

the terms involved — the notion of an effectively

calculable function — is not mathematically de-

fined. In particular, the Thesis cannot be (mathe-

matically) proved: it needs empirical verification,

which can continue for ever, or a plausible refuta-

tion. This fact was recognised almost immediately

by Post, who objected to its presentation as a

definition because it “blinds us to the need of its

continual verification”.

In time the scope of the Church–Turing Thesis

shifted towards a more general goal, the ultimate

limits of digital computation. In this new context

the Church–Turing Thesis can be stated asb:

Every function of positive integers which

can be computed in a physical system

is recursive, or equivalently, it can be

computed by a Turing machine.

In this form the Church–Turing Thesis is a

statement about what can be computed in a

system of physical laws. Two components are

involved: (i) the mathematical component deter-

mines the dynamics of evolution of physical states

into others and the relation between inputs and

outputs, and (ii) the physical component deter-

mines which dynamics can be performed in the

given system of physical laws. Once we fix a

system of physical laws described mathematically,

the corresponding Church–Turing Thesis becomes

a well-posed mathematical question which can be

bSometimes this is called the Physical Church–Turing
Thesis.
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mathematically investigated: it can be proved, dis-

proved, or proved undecidable. Gödel, who was

initially unconvinced by Church’s argumentation,

changed his mind after reading Turing’s paper,

suggested the idea of an axiomatic approach for

the notion of “effective calculability” meant to

capture its generally accepted properties. In this

spirit Gandy proposed a programme where phys-

ical laws (like bounded velocity and finite density

of information) are used to “prove” the Church–

Turing Thesis; this approach was extended to

quantum theory by Arrighi and Dowek. The

Church–Turing Thesis has morphed into a class

of Church–Turing Theses, each depending on the

underlying system of physical laws; in some cases

it is true, in some false.

The physical determination of the Church–

Turing Thesis was rightly pointed out by

Deutsch [1]:

The reason why we find it possible

to construct, say, electronic calculators,

and indeed why we can perform mental

arithmetic, cannot be found in mathe-

matics or logic. The reason is that the

laws of physics “happen” to permit the

existence of physical models for the op-

erations of arithmetic such as addition,

subtraction and multiplication.

However, omitting the mathematical compo-

nent

Computers are physical objects, and

computations are physical processes.

What computers can or cannot compute

is determined by the laws of physics and

not by pure mathematics.

is wrong. The laws of physics can determine what

dynamics can be performed in a given system

of physical laws, but not what such dynamics

“compute”: this a mathematical issue. According

to Timpson

We must recognise that their [mathemat-

ical determinants’] place is prior to that

of physical determinants.

Here is an example. Consider an undecidable

problem, say the halting problemc. In every sys-

tem of physical laws the halting problem will

cDoes there exist a Turing machine capable of deciding
whether an arbitrary Turing machine halts on a given input?

be undecidable because of Turing’s proof. This

proof and its conclusion — the undecidability of

the halting problem — tell us nothing about the

system of physical laws, as no possible dynamics

can be a solution to the problem: this is a mathe-

matical fact true in any system of physical laws.

Of course, the halting problem can be solved by

other types of “machines”: such a “solution” —

obtained by mathematical or physical means —

does not challenge the validity of Turing’s result

which concerns only the mathematical concept of

Turing machine.

2. The Land of Hypercomputation

Hypercomputation studies models of computa-

tions in the hope of breaking the Turing barrier.

By placing precise physical constraints on com-

putations, hypercomputation contributes to the

program of continuous verification of the Church–

Turing Thesis suggested by Post.

The possibility of executing infinitely many

“operations” in a finite amount of time is the

core of many proposals. This idea is not new:

Zeno’s analysis of motion paved the way for the

accelerated Turing machines featured in Sec. 3.

In 1939 Turing introduced the seminal notion

of oracle Turing machine [2], a standard machine

having access to an infinite sequence of bits —

the oracle — coding answers to as many ques-

tions, and made this machine compute with finite

approximations of the infinite oracle. If the oracle

is computable the resulting computation is equiv-

alent to a standard computation, but in case the

oracle is incomputable the machine trespasses the

Turing barrier. In the expert hands of recursion-

theorists oracle Turing machines have been used

to scrutinise the land of incomputable. The “cru-

cial question”, in the words of the mathematician

M Davis [3], is:

Are there real physical processes that can

be harnessed to do the work of Turing

“oracles”?

Davis gives an unequivocally negative answer.

This issue will be re-visited in Sec. 5.

Rewind to 1970: In a footnote to [4] (p. 143)

the logician G Kreisel makes an astonishing sug-

gestion: a collision problem related to the 3-body

problemd could be regarded as “an analogue com-

dThe problem of predicting the motion of a group of celestial
objects that interact with each other gravitationally.
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putation of a non-recursive function”, so an in-

stance of hypercomputation. This possibility gets

a new dimension with Xia’s [5] construction of

no-collisions singularities in small Newtonian sys-

tems. Harnessing the incomputability identified

in different physical systems becomes a possible

source of hypercomputation.

Hypercomputation models have been con-

structed using neural networks, quantum me-

chanics, relativity theory, inductive Turing ma-

chines and many other ideas.

3. A Case Study: Accelerated Turing

Machines

Centuries ago the ancient greek philosophers wor-

ried about the implications of an infinite divis-

ibility of space and time. Zeno of Elea pointed

out that motion itself would unexist, since the

slightest finite movement would require an infin-

ity of actions. Subsequently, differential calculus

suggests to formally overcome these issues by

taking the finite differential quotient of spatial and

temporal change.

The revival of these ancient ideas came with

computation. Weyl noted the potentiality to “com-

plete” infinite computations in finite proper phys-

ical time as follows ([6], pp. 41–42):

Yet, if the segment of length 1 really con-

sists of infinitely many subsegments of

lengths 1/2, 1/4, 1/8, . . . , as of ‘chopped-

off’ wholes, then it is incompatible with

the character of the infinite as the ‘incom-

pletable’ [. . . and] there is no reason why

a machine should not be capable of com-

pleting an infinite sequence of distinct

acts of decision within a finite amount

of time; by supplying the first result after

1/2 minute, the second after another 1/4

minute, the third 1/8 minute later than

the second, etc. In this way it would be

possible [. . . ] to achieve a traversal of all

natural numbers and thereby a sure yes-

or-no decision regarding any existential

question about natural numbers!

Such a device — termed an accelerated Tur-

ing machine, reflecting that the rate of compu-

tation accelerates over its computational period

— goes beyond the Church–Turing barrier. Ques-

tions such as the halting problem can be solved as

the infinity of computational steps performed by

a non-halting computation are performed within

a finite period of time. This power comes at

an interesting cost however: for such machines

to hypercompute they must by necessity use an

infinite amount of space.

As noted earlier, the mathematical model of

an accelerated machine undergoing these infinite

dynamics must be supplemented by a search for

physical implementations. A growing body of

research has been exploring this; several propos-

als exist to harness infinite divisibility of space

and time, and to utilise physical processes for

the construction of such infinity machines. Some

of these physically inspired proposals involve,

for example, investigating the state of a lamp

with ever decreasing switching cycles, and several

ultrarelativistic methods put observers in “fast

orbits” to exploit relativistic differences in time or

throw them toward black holes where space-time

behaves strangely.

4. Statistical Physics

Hypercomputation is also relevant in statistical

physics — where information plays a key role

— and can add to the dialogue on Maxwell’s

infamous paradoxical demon. Here, the ability to

hypercompute yields the potential to improve, if

not reverse, energy dissipation.

Maxwell’s demon is supposedly capable of

separating lower-energy from higher-energy par-

ticles in an isolated box divided into two cham-

bers. Traditionally, the demon accomplishes this

by controlling a shutter in the dividing barrier,

only opening it for particles with suitable ve-

locity. In this way a temperature gradient might

be produced which would, at least in the long

run, contradict the second law of thermodynamics

(in the form that no process exists whose sole

purpose is the transformation of heat into work).

The contemporary “exorcism” of the demon

and resolution of the paradox seems to presup-

pose that nature behaves reversibly — that is,

the evolution of physical microstates is one-to-

one. Thus, every separation or contraction of mi-

crostates in one region of phase space has to be

accompanied by an equal compensating amount

of mixing or expansion. In particular, any sorting

action of the demon, associated with a decrease

of entropy of the rest of the system, should be
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compensated by an increase of information in the

demon’s “mind” memory which is at least as large

as the entropy decrease caused by the demon.

But what if the demon’s memory and com-

putational capacity is, at least in principle, un-

bounded? This case corresponds to certain types

of hypercomputability: here the contraction in

physical configuration or phase space could go

on forever at the price of consuming more and

more memory of the demon, thereby realising a

sort of Hilbert’s Hotel scenario.

Furthermore, if the demon’s capacity to com-

press information is unbounded, would it be pos-

sible to “compute” the (classical incomputable)

algorithmic information content of the informa-

tion acquired? Present literature postulates that

only the optimal compression yields optimally

small compensation on the demon’s side; other

less optimal compressions result in an overall in-

crease in entropy. Thus, in order to attain optimal

performance, hypercomputational abilities of the

demon must be assumed.

5. Quantum Oracles

Progress in the natural sciences during the 20th

century was marked by two distinct departures

from classical thought: Einstein’s theories of rel-

ativity and the theory of quantum mechanics.

Quantum mechanics has primarily been explored

in the realm of computation as a medium for

the alternative computational model of quantum

computing, but there are possibilities of attain-

ing hypercomputational power through the more

subtle approach of considering quantum oracles

instead of quantum computational models.

The proposal for a quantum oracle which we

present here is based around the heart of non-

classicality in quantum mechanics: the measure-

ment process. While there are strong results relat-

ing to the impossibility of a classical description of

measurement which lie at the centre of our argu-

ment, there are several competing interpretations

of the ontological structure of quantum systems

which alter the way measurement is viewed. Mak-

ing explicit the assumptions we rely on is critical

as the oracle is not independent of these.

In quantum mechanical theory even simple

systems can exist in states that are superposi-

tions of other states, for which any attempt to

measure the state will yield one of the possible

outcomes seemingly at random. Formally, the the-

ory only describes the probability distribution of

this process; the fact that, after measurement, a

subsequent measurement of the state will yield

the same result seems to indicate that the mea-

surement process irreversibly changes the state of

the system at random. The nature of this “state

collapse” is outside the theory and in the realm

of “interpretations”, of which many exist [7]:

the standard Copenhagen interpretation(s), the de

Broglie–Bohm theory, the many-worlds interpre-

tation of Everett, and many more exotic ones.

A natural interpretation of these state of af-

fairs, and one argued early on by Einstein, Podol-

sky and Rosen (EPR) [8], is that

the description of reality as given by a

[quantum mechanical] wave function is

not complete

in that the result of a measurement is not proba-

bilistic but in fact determined by some unknown,

yet pre-existing, “element of physical reality”.

However, the failures of a classical, deterministic

viewpoint to account for the predictions of quan-

tum mechanics are exemplified by the “no-go”

results of Bell [9] and Kochen and Specker [10].

Bell’s results show the impossibility of any hid-

den variable theory to reproduce the statistical

predictions of quantum mechanics under the as-

sumption of locality. However, of more interest

is the result of Kochen and Specker applicable to

individual quanta. The Kochen–Specker Theorem

proves that it is impossible to assign pre-existing

values to the outcomes of measurements under

the conditions of (i) value indefiniteness: all observ-

ables, even those which are not compatible (can-

not be simultaneously measured) have definite

values corresponding the result of a measurement

of them; and (ii) non-contextuality: the value corre-

sponding to the result of a measurement does not

depend on which other compatible measurement

are made alongside of it.

In a bid to maintain realism, Bell proposed that

the result of an observation may reason-

ably depend not only on the state of

the system . . . but also on the complete

disposition of the apparatus.

Attempts to give complete, contextual, interpre-

tations for quantum theory exist, such as the

de Broglie–Bohm theory, and while such inter-
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pretations reproduce certain quantum mechanical

predictions, they must by necessity embrace non-

locality and remain distinctly non-classical and

counterintuitive.

If we interpret the Kochen–Specker Theorem

as an evidence for Born’s proposal to “give up

determinism in the world of atoms”, then we

can construct a simple device acting as an in-

computable oracle. The Kochen–Specker Theo-

rem, however, does not give us a straight choice

between contextual and indeterministic realities.

Even if we choose to reject the notion of a contex-

tual reality, the theorem does not exclude the pos-

sible of partial-determinism; we may need to give

it up only for some observables. However, the

apparent co-ordinate independence of the proof

makes such a situation rather implausible unless

there is a fundamental asymmetry in the mea-

surement process. Put bluntly, one can conceive

of a demon possessing the observer and ensuring

only those observables with definite values are

ever measured; conversely, a demon could inhabit

the state ensuring the observable we choose to

measure is assigned a definite value, while those

we do not measure are allowed to be indefinite.

Such “super-deterministic” loopholes are known

to exist in, and would invalidate tests of Bell

inequalities. If we are to use a quantum system as

an oracle, we must refuse to accept such demons

from existing and conspiring to make our output

be due to predetermined elements of reality. We

hence choose to consider a complete departure

from classical omniscience and only allow those

observables in which the state was prepared as an

eigenstate of to have definite values; elsewhere we

have complete value indefiniteness.

Before we can construct our oracle we must

make one final connection between value defi-

niteness and computability by returning to EPR.

Specifically, we ask what does it mean to be

able to assign a definite value to a measurement

outcome? According to EPR,

if, without in any way disturbing a sys-

tem, we can predict with certainty the

value of a physical quantity, then there

exists an element of physical reality [hid-

den variable] corresponding to this phys-

ical quantity.

A definite value exists exactly when there is a

value allowing us to predict exactly the result

of a measurement. Thus, if we repeat the state

preparation and measurement process ad infinitum

and the sequence produced by the concatenation

of measurement outcomes is computable, then ev-

ery measurement can be predicted with certainty

and was thus of a value definite observable. This

final assumption makes the important connection

between computability and the classical notion of

determinism that quantum mechanics appears to

have abandoned.

From here it can be argued that, if each mea-

surement is of a value indefinite observable (i.e.

not of the observable which the state is in an

eigenstate of) then the infinite sequence of results

considered above must be incomputable. If it

were computable, this would mean the measured

observables were all value definite, contradicting

the assertion of value indefiniteness everywhere.

Under these assumptions we are hence guar-

anteed that such a device would produce an

incomputable sequence and act as an oracle. Such

devices have in fact been considered for the use

of random number generation, so perhaps Davis’

verdict on the existence of physical process that

can be harnessed as Turing oracles was a little

premature; one of the most plausible physical

interpretation of the conundrums presented by

quantum mechanics allows us to do just that.

It is useful to compare and contrast this envis-

aged quantum oracle to a hypothetical realisation

of a probabilistic Turing machine — a Turing

machine which chooses transitions probabilisti-

cally from some predefined computable proba-

bility distribution. If we consider a trivial such

device which, regardless of the input, accepts with

probability one-half, and rejects also with proba-

bility one-half, and consider the infinite sequence

generated by running this machine on inputs

1, 2, . . . (where “accepting” on input i means the

ith bit is 1), is this device different in any real

respect to our quantum oracle? Naı̈vely it would

seem not: both devices act as oracles where the

ith bit is 1 with probability one-half. However,

the sequences produced by this probabilistic ora-

cle are only uniformly distributed — we cannot

rule out the crucial probability-zero possibility

of a computable sequence being produced. This

probabilistic oracle would hence, in practice, be

a Turing oracle with probability-one. While this

may appear to contradict the well known Turing-

equivalence of probabilistic Turing machines, we
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note the crucial distinction that this device does

not formally compute any sequence at all —

we are simply envisaging a single output of an

infinite run of it being used as an oracle. The

existence of a physical realisation of such a prob-

abilistic Turing machine is, of course, as difficult

a problem to solve as that of a Turing oracle; we

simply note that such a device is not the same as

our proposed quantum oracle which is stronger

in that it is unable to produce any computable

output.

While our quantum oracles behave as oracles

in the Turing sense, we know of no way of saying

more about the set which they are an oracle for.

The most important open question is: what is the

computational power of a Turing machine working

with a quantum oracle?

6. The Known, The Unknown, and

The Unknowable

The body of every subject can be divided into

three parts: the known, the unknown, and the

unknowable. In time, the unknown shrinks, with

some facts migrating to the known and the un-

knowable parts. The unknowable is the most

problematic part as to prove that a condition

is impossible one has to show that it implies

a contradiction or an absurdity. A limit implies

an impossibility, but the converse implication is

false. Impossibilities are provable, hence objec-

tive; limits tend to be subjective and temporal.

In contrast to mathematics where the triad is

sharp and its poles — the known and the un-

knowable — are rather stable, the division fluctu-

ates in science. Mathematical limits, like Gödel’s

incompleteness theorem or incomputability re-

sults, cannot be automatically transferred to

physics. Hypercomputation is a subject at the in-

tersection of mathematics, computer science and

various particular sciences, physics, chemistry, bi-

ology, so here impossibility and limits are difficult

to obtain and tend to be temporal.

References

[1] D. Deutsch, Quantum theory, the Church–Turing
principle and the universal quantum computer,
Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences (1934-1990), 400
(1985), pp. 97–117.

[2] A. M. Turing, Systems of logic based on ordinals,
Proceedings of the London Mathematical Society, Series
2, 45 (1939), pp. 161–228.

[3] M. Davis, The myth of hypercomputation, in
Alan Turing: Life and Legacy of a Great Thinker, C.
Teuscher (ed.) (Springer, Berlin, 2004), pp. 195–212.

[4] G. Kreisel, Church’s thesis: a kind of reducibility
axiom for constructive mathematics, in Intuition-
ism and Proof Theory: Proceedings of the Summer
Conference at Buffalo N.Y. 1968, Studies in Logic and
the Foundations of Mathematics, A. Kino, J. Myhill
and R. E. Vesley, (eds.), 60 (North Holland, 1970),
pp. 121–150.

[5] Z. Xia, The existence of noncollision singularities
in the n-body problem, Annals of Mathematics, 135
(1992) 411–468.

[6] H. Weyl, Philosophy of Mathematics and Natural
Science (Princeton University Press, Princeton, NJ,
1949).

[7] J. A. Wheeler and W. H. Zurek, Quantum The-
ory and Measurement (Princeton University Press,
Princeton, NJ, 1983).

[8] A. Einstein, B. Podolsky and N. Rosen, Can
quantum-mechanical description of physical real-
ity be considered complete? Physical Review, 47
(1935) 777–780.

[9] J. S. Bell, On the Einstein Podolsky Rosen paradox,
Physics, 1 (1964) 195–200.

[10] S. Kochen and E. P. Specker, The problem of
hidden variables in quantum mechanics, J. Math-
ematics and Mechanics, 17 (1967) 59–87.

Alastair Abbott is a Doctoral Candidate at the University of Auckland and the École 
Polytechnique, Paris. He has a background in theoretical computer science and quantum 
theory, and works in the interface between these two disciplines. His current research is 
looking at the role of algorithmic notions of randomness in physical processes which are 
intuitively seen as random such as quantum events and chaotic systems.

Alastair A Abbott
University of Auckland, New Zealand

January 2012, Volume 2 No 114

Asia Pacific Mathematics Newsletter



Cristian S Calude, is a mathematician and computer scientist based at the University of 
Auckland, New Zealand, where he is a chair professor and the founding director of the 
Centre for Discrete Mathematics and Theoretical Computer Science. His research includes 
theoretical and experimental work in computability, complexity, randomness and quantum 
theories. Calude is a member of the Academia Europaea.

After studying theoretical physics in Vienna and Heidelberg, Karl Svozil has held visiting 
positions at various academic organisations; among them UC Berkeley and the Lawrence 
Berkeley Lab in California, Moscow State University and the Lebedev Physical Institute, as 
well as the Centre for Discrete Mathematics and Theoretical Computer Science in Auckland, 
New Zealand. Svozil studies and teaches theoretical physics in Vienna.

Cristian S Calude
University of Auckland, New Zealand
www.cs.auckland.ac.nz/~cristian

Karl Svozil
Vienna University of Technology, Austria

January 2012, Volume 2 No 1 15

Asia Pacific Mathematics Newsletter


